Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires."

Transcription

1 3 ème A IE3 théorème de Thalès S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS = 8 cm Exercice 2 : (6 points) Nicolas, le jardinier, prépare son massif devant l hôtel de ville. Il a commandé un schéma de ce massif. Ce massif est un cercle de centre A et de 10 mètres de diamètre. On a BD = 8 mètres et E milieu de [AC]. Le massif est symétrique par rapport à A. Les droites (EF) et (CD) sont parallèles. Nicolas décide de planter des rosiers le long de la ligne CDFEA prolongée de son symétrique par rapport à A. Il plante un rosier en C, puis il espace les plants de 40 cm. Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation. 1

2 3 ème A IE3 théorème de Thalès S2 Utiliser la figure suivante pour démontrer que les droites (BC) et (DE) sont parallèles. Calculer ensuite BC. AB = 2 cm AC = 1,2 cm AD = 3 cm AE = 5 cm DE = 4 cm Exercice 2 : (6 points) Nicolas, le jardinier, prépare son massif devant l hôtel de ville. Il a commandé un schéma de ce massif. Ce massif est un cercle de centre A et de 58 mètres de diamètre. On a CE = 42 mètres et B milieu de [AC]. Le massif est symétrique par rapport à A. Les droites (BD) et (EF) sont parallèles. Nicolas décide de planter des rosiers le long de la ligne FEDBA prolongée de son symétrique par rapport à A. Il plante un rosier en F, puis il espace les plants de 80 cm. Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation. 2

3 3 ème A IE3 théorème de Thalès S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS = 8 cm OT OS = 3 OU et 8 OR = 2,7 7,2 = = 3 8 OT OS = OU et les points T, S, O d une part et U, O, S d autre part sont alignés dans cet ordre, donc, OR selon la réciproque du théorème de Thalès, les droites (TU) et (RS) sont parallèles. Les droites (TU) et (RS) étant parallèles, on peut appliquer le théorème de Thalès pour calculer RS : OT OS = TU RS Soit 3 8 = 3,5 RS D où RS = 3,5 8 3 = 28 3 cm Exercice 2 : (5 points) Nicolas, le jardinier, prépare son massif devant l hôtel de ville. Il a commandé un schéma de ce massif. Ce massif est un cercle de centre A et de 10 mètres de diamètre. On a BD = 8 mètres et E milieu de [AC]. Le massif est symétrique par rapport à A. Nicolas décide de planter des rosiers le long de la ligne CDFEA prolongée de son symétrique par rapport à A. Il plante un rosier en C, puis il espace les plants de 40 cm. Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. On a AC = BC 2 = 10 2 = 5 m et AE = EC = AC 2 = 5 2 = 2,5 m Calcul de la longueur CD Le triangle BCD étant inscrit dans le cercle de diamètre [BC] est rectangle en D.

4 3 ème A IE3 théorème de Thalès S1 On applique le théorème de Pythagore dans le triangle BCD rectangle en D : BC² = BD² + CD² Soit 10² = 8² + CD² Donc CD² = 10² - 8² = = 36 = 6² Donc CD = 6 m Calcul des longueurs AE, FD et AE : Les droites (EF) et (CD) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles BEF et BCD : BE BC = BF BD = EF CD Or BE = BA + AE = 5 + 2,5 = 7,5 m Donc : 7,5 10 = BF 8 = EF 6 D où : BF = 7, Et DF = BD BF = 8 6 = 2 m = 6 m et EF = 6 7,5 10 = 4,5 m Calcul de la longueur de la ligne CDFEA : Longueur(CDFEA) = CD + DF + FE + AE = ,5 + 2,5 = 15 m La longueur totale de la ligne CDFEA prolongée de son symétrique par rapport à A sera donc : 2 longueur(cdfea) = 2 15 = 30 m (car la symétrie centrale conserve les longueurs). Comme le jardinier espace les plants de 40 cm = 0,4 m, il lui faudra : 30 = 75 rosiers. 0,4 4

5 3 ème A IE3 théorème de Thalès S2 Utiliser la figure suivante pour démontrer que les droites (BC) et (DE) sont parallèles. Calculer ensuite BC. AB = 2 cm AC = 1,2 cm AD = 3 cm AE = 5 cm DE = 4 cm AB AE = 2 AC et 5 AD = 1,2 3 = = 2 5 AB AE = AC et les points B, A, E d une part et C, A, D d autre part sont alignés dans cet ordre, donc, AD selon la réciproque du théorème de Thalès, les droites (BC) et (DE) sont parallèles. Les droites (BC) et (DE) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles ABC et AED pour calculer BC : AB AE = BC DE Soit 2 5 = BC 4 D où BC = = 8 = 1,6 cm 5 Exercice 2 : (6 points) Nicolas, le jardinier, prépare son massif devant l hôtel de ville. Il a commandé un schéma de ce massif. Ce massif est un cercle de centre A et de 58 mètres de diamètre. On a CE = 42 mètres et B milieu de [AC]. Les droites (BD) et (EF) sont parallèles. Le massif est symétrique par rapport à A. Nicolas décide de planter des rosiers le long de la ligne FEDBA prolongée de son symétrique par rapport à A. Il plante un rosier en F, puis il espace les plants de 80 cm. Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

6 3 ème A IE3 théorème de Thalès S2 On a AC = FC 2 = 58 2 = 29 m et AB = BC = AC 2 = 29 2 = 14,5 m Calcul de la longueur EF Le triangle CEF étant inscrit dans le cercle de diamètre [FC] est rectangle en E. On applique le théorème de Pythagore dans le triangle CEF rectangle en E : CF² = CE² + EF² Soit 58² = 42² + EF² Donc EF² = 58² - 42² = = 1600 = 40² Donc EF = 40 m Calcul des longueurs BD et DE : Les droites (EF) et (BD) étant parallèles, on peut appliquer le théorème de Thalès dans les triangles CBD et CFE : CB CF = CD CE = BD FE Soit : 14,5 58 = CD 42 = BD 40 D où : CD = 14, = 10,5 m et BD = 14, Et DE = CE CD = 42 10,5 = 31,5 m = 10 m Calcul de la longueur de la ligne FEDBA : Longueur(FEDBA) = FE + ED + DB + BA = , ,5 = 96 m La longueur totale de la ligne FEDBA prolongée de son symétrique par rapport à A sera donc : 2 longueur(fedba) = 2 96 = 192 m (car la symétrie centrale conserve les longueurs). Comme le jardinier espace les plants de 80 cm = 0,8 m, il lui faudra : 192 = 240 rosiers. 0,8 6

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF. Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED 85 36 75-196 599 599 77 mm Exercice

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie)

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie) e - Contrôle d acquisitions er Trimestre Novembre 200 MATHÉMATIQUES e Devoirs n 6 (Algèbre) et n 7 (géométrie) Les deux devoirs sont à faire sur des copies différentes. On mettra les copies l une dans

Plus en détail

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation. 3 ème E IE3 théorème de Thalès 2015-2016 S1 Les droites (TP) et (YG) sont sécantes en I. IP = 5 cm ; IG = 7 cm ; IY = 1,4 cm ; YT = 0,8 cm ; TI = 1 cm. 1) Les droites (PG) et (YT) sont-elles parallèles?

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1 THEME : Correction MILIEUX ET PARALLELES DANS UN TRIANGLE CORRECTION(s) EXERCICES SERIE 1 Exercice : Soit ABC un triangle. Soit D le milieu de [BC]. Soit M le milieu de [AD]. Les parallèles à la droite

Plus en détail

3 ème A Contrôle : théorème de Thalès sujet 1

3 ème A Contrôle : théorème de Thalès sujet 1 3 ème A Contrôle : théorème de Thalès 2009-2010 sujet 1 Consignes : justifier les réponses en citant correctement les théorèmes utilisés. Exercice 1 (6 points) T Les points T, O, I sont alignés et les

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Exercice n 1 : FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Sur la figure ci-contre : les points K, A, F, C sont alignés ; les points G, A, E, B sont alignés ; (EF) et (BC) sont parallèles

Plus en détail

Activités numériques [12 Points]

Activités numériques [12 Points] Activités numériques [1 Points] EXERCICE 1 On considère les trois nombres A, B et C : A = 5 6 + 5 6 7 ; B = 1 9 5 : 1 7 + 1 ; C = 1. Calculer A et B et donner le résultat sous la forme de fraction irréductible.

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3

DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 THEME : DROITES REMARQUABLES DANS UN TRIANGLE - EXERCICES CORRIGES SERIE 3 Exercice 14 : O est le centre du cercle circonscrit au triangle ABC. Soient A',B' et C' les milieux des côtés respectifs [BC],

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes.

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. 3 ème B DS4 calcul littéral -trigonométrie 2012-2013 sujet 1 Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. Trace un demi-cercle () de centre O et de diamètre [AB]

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC Novembre 008 - CORRECTION DE MATHÉMATIQUES PARTIE 1 : ACTIVITÉS NUMÉRIQUES (1 points) Exercice 1 (3 points) Effectuer les calculs suivants et donner les résultats sous forme de fractions irréductibles.

Plus en détail

Construire le triangle de côtés a, b et c. Ce triangle est-il rectangle? Refaire cette activité avec d autres triangles et essayer de conclure.

Construire le triangle de côtés a, b et c. Ce triangle est-il rectangle? Refaire cette activité avec d autres triangles et essayer de conclure. Pythagore 1 La relation de Pythagore, activité préparatoire. 1 théorème de Pythagore 1 Réciproque de l'énoncé de Pythagore 3 triangle non rectangle dans un rectangle 3 triangle non rectangle dans un carré

Plus en détail

Exercice de géométrie

Exercice de géométrie DOMAINE : Géométrie NIVEAU : Débutants CONTENU : Exercices AUTEUR : Igor KORTCHEMSKI STAGE : Cachan 2011 (junior) Exercice de géométrie 1 Énoncés Exercice 1 Soit ABC un triangle. Montrer que l intersection

Plus en détail

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES CORRECTION DE L EXAMEN DE FIN D ANNEE 003 EPREUVE DE MATHEMATIQUES 1. PARTIE NUMERIQUE : 1 points Exercice 1 Effectue les calculs suivants en inscrivant toutes les étapes : A = [ - ( - 6 + 7 ) + ( - 3

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

S14C. Autour de la TRIGONOMETRIE Corrigé

S14C. Autour de la TRIGONOMETRIE Corrigé CRPE S4C. Autour de la TRIGONOMETRIE Corrigé Mise en route A. Le triangle MNP étant rectangle en P, on peut utiliser la trigonométrie. [MN] est l hypoténuse du triangle, [MP] est le côté adjacent à et

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

EXERCICE 1 : (6 points)

EXERCICE 1 : (6 points) EXERCICE 1 : (6 points) Corrigé Un jeu de fléchettes consiste à lancer trois fléchettes sur une cible. La position des fléchettes sur la cible détermine le nombre de points obtenus. La cible est installée

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Théorème de Thalès Corrigés d exercices / Version de décembre 2012

Théorème de Thalès Corrigés d exercices / Version de décembre 2012 Corrigés d exercices / Version de décembre 0 Les exercices du livre corrigés dans ce document sont les suivants : Page 06 : N, 4, 7, 8 Page 07 : N 0, 4 Page : N 5 Page : N 53 N page 06 Le segment [ AB

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

1 3Enseigner les sciences l cole maternelle : les cinq sens

1 3Enseigner les sciences l cole maternelle : les cinq sens 1 3Enseigner les sciences l cole maternelle : les cinq sens Lindsey Contardo To cite this version: Lindsey Contardo. Enseigner les sciences l cole maternelle : les cinq sens. 0 7ducation.

Plus en détail

Correction et barème.

Correction et barème. Correction et barème. Activités numériques (12 points) Exercice 1 : (0,5 points par réponses) Réponses : 1 0,028 2 5 2 3 5 16 4 5 6 5 12 5 Exercice 2 : (4,5 points) 1) Développer et réduire D (1 point)

Plus en détail

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7 EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES EXERCICES CORRECTION EXERCICE N 1 : Figure 1 : ABC est rectangle en A, donc, BC² = AB² + AC² BC² = 5² + 7² BC² = 25 + 49 AB = 5, AC

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

Correction du Brevet blanc n 1.

Correction du Brevet blanc n 1. Correction du Brevet blanc n 1. Exercice 1 : Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, quatre réponses sont proposées : une seule d entre elles est exacte. Pour chaque

Plus en détail

agrandissement > 1 rapport coefficient d agrandissement réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1

agrandissement   > 1 rapport coefficient d agrandissement    réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1 ET SA RECIPROQUE I Agrandissement et réduction d un triangle Sur cette figure nous avons M (AB) et N () et (MN) // (). On peut dire que le triangle AMN est un agrandissement du triangle A. Toutes les longueurs

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

LES DROITES PARALLELES

LES DROITES PARALLELES LES DROITES PARALLELES D. LE FUR Lycée Pasteur, São Paulo Le théorème de Thalès Les configurations de Thalès Le triangle N B O M A Les configurations de Thalès Le triangle La figure papillon N B B O M

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4

Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4 Activités numériques sur 12 points Rappels : Exercice 1 Fonction : image et antécédents L image d un nombre par une fonction se lit sur l axe des ordonnées (axe vertical). Le ou les antécédents d un nombre

Plus en détail

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé CRPE Mise en route S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé A. Dans chaque exercice une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. Si le triangle

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore:

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore: TRIANGLE RECTANGLE - REVISIONS I- Cercle circonscrit à un triangle rectangle: 1) Propriété 1: Soit ABC un triangle rectangle en A. Le cercle circonscrit au triangle ABC a pour centre le point I milieu

Plus en détail

2.5 Solutions des exercices

2.5 Solutions des exercices .5 Solutions des exercices Réponses au questionnaire à choix multiples.1.5 Vrai Faux 1 Deux angles et sont complémentaires si + = 180. V F Deux angles et sont supplémentaires si + = 180. V F 3 Un polygone

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Corrigé brevet Maths 2005 Série Collèges

Corrigé brevet Maths 2005 Série Collèges Corrigé brevet Maths 2005 Série Collèges Activités algébriques Exercice 1 1) Calcul de l expression 2) Expression scientifique de 3) Ecriture sous la forme le nombre Page 1 sur 10 4) Développons et simplifions

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller.

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller. Déclic Construire-01 1. Trace un carré ABCD de 8 cm de côté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [AC] et [BD] du carré. 3. Le point O est le point d'intersection de ces deux diagonales.

Plus en détail

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions Seconde 2 2-24 Sujet Exercice : ( points) DBG est un triangle équilatéral. C est le demi-cercle de centre A et de diamètre [BD]. ) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection

Plus en détail

Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement

Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement Wassim Mimeche, Bernard Fallery, Florence Rodhain To cite this version: Wassim Mimeche, Bernard Fallery, Florence

Plus en détail

vs Christia 1 n Poisson

vs Christia 1 n Poisson vs Christian 1 Poisson Cet ouvrage contient une sélection d'études d'echecs composées par ordinateur, plus précisément par l'analyse de tables de finales, en l'occurrence ici la table, à l'aide de WinChloe

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

CLÉ DE CORRECTION. Exercice 1. Section 6. Partie 1 : Théorème de Pythagore. Triangle rectangle Triangle isocèle Triangle rectangle isocèle

CLÉ DE CORRECTION. Exercice 1. Section 6. Partie 1 : Théorème de Pythagore. Triangle rectangle Triangle isocèle Triangle rectangle isocèle Section 6 Partie 1 : Théorème de Pythagore CLÉ DE CORRECTION Exercice 1 Triangle rectangle Triangle isocèle Triangle rectangle isocèle Triangle scalène Triangle équilatéral Exercice 2 1. 2. 2 3. L angle

Plus en détail

SECTIONS AGRANDISSEMENT REDUCTION

SECTIONS AGRANDISSEMENT REDUCTION ECTION AGRANDIEMENT REDUCTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A - ECTION D'UN PAVE DROIT PAR UN PLAN La section d'un pavé droit par un plan

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

Cours de mathématiques Classe de Quatrième

Cours de mathématiques Classe de Quatrième CHAPITRE 5 PROJECTION ET COSINUS Le calcul d'erathostène 76 Cosinus d'un angle aigu 77 Projection ; Cosinus d'un angle aigu 78 Projection et milieu 83 Exercices de démonstration 83 Utilisation du Cos 85

Plus en détail

Utiliser les connaissances géométriques pour démontrer Corrigé des exercices

Utiliser les connaissances géométriques pour démontrer Corrigé des exercices Utiliser les connaissances géométriques pour démontrer Corrigé des exercices Exercice 1 1. Construction de l'isocervolant Construire deux droites (d) et (d') perpendiculaires en A. (AC) est un axe de symétrie

Plus en détail

Correction de l évaluation de mathématiques en entrée en Seconde - Septembre 2013 SUJET A

Correction de l évaluation de mathématiques en entrée en Seconde - Septembre 2013 SUJET A Correction de l évaluation de mathématiques en entrée en Seconde - Septembre 01 SUJET A Exercice 1 - QCM Partie 1 : Parmi les choix proposés, une seule réponse est correcte. Entoure-la. 6 min Pour tout

Plus en détail

Question Réponse A Réponse B Réponse C 1. La factorisation de 4 X 2 25 est : (2 X 5)² (2 X 5) (2 X + 5) (4 X 5) (4 X + 5)

Question Réponse A Réponse B Réponse C 1. La factorisation de 4 X 2 25 est : (2 X 5)² (2 X 5) (2 X + 5) (4 X 5) (4 X + 5) Année scolaire 2014-2015 Mathématiques 9 décembre 2014 Classe de ème Brevet Blanc N 1 Durée : 1h50min Les calculatrices sont autorisées ainsi que les instruments usuels de dessin 4 points sont réservés

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

BREVET BLANC DE MATHÉMATIQUES N janvier 2011

BREVET BLANC DE MATHÉMATIQUES N janvier 2011 CORRECTION BREVET BLANC DE MATHÉMATIQUES N 1 19 janvier 2011 -L emploi des calculatrices est autorisé. -Toutes les réponses devront être soigneusement rédigées sur la copie ( sauf indication contraire).

Plus en détail

Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA = 6,1cm et MG = 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près.

Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA = 6,1cm et MG = 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près. Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA,1cm et MG 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près. Dans le triangle MAG rectangle en G, on a : MG cos( AMG)

Plus en détail

Chapitre 5 : Géométrie dans l'espace

Chapitre 5 : Géométrie dans l'espace Source : site Bacamahts (G.Constantini) et Mathématiques 2 nde (Terracher) I. Règles de base de la géométrie dans l'espace Il existe une et une seule droite de l'espace passant par deux points distincts.

Plus en détail

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations :

Composition n 2 de Mathématiques Seconde. Mercredi 30 Janvier 2013 Classe : NOTE : Nom : Signature : Prénom : /20. Observations : Nom : Composition n 2 de Mathématiques Seconde Mercredi 30 Janvier 2013 Classe : NOTE : Signature : Prénom : /20 Observations : 1 La calculatrice est autorisée. Il sera tenu compte de la rigueur et du

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

Correction de l épreuve de mathématiques du CRPE 2014 du sujet du PG3

Correction de l épreuve de mathématiques du CRPE 2014 du sujet du PG3 Correction de l épreuve de mathématiques du CRPE 2014 du sujet du PG3 Denis Vekemans Exercice 1 Affirmation 1 Sans utiliser de calculateur ni poser l opération, on peut affirmer que l écriture décimale

Plus en détail

Triangles rectangles et cercles

Triangles rectangles et cercles 1) Médiane d un triangle : Triangles rectangles et cercles Dans un triangle, une médiane est une droite qui passe par un sommet et par le milieu du côté opposé à ce sommet. I est le milieu de [BC], donc

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

Plus en détail

DS 1 25 SEPTEMBRE 2015

DS 1 25 SEPTEMBRE 2015 DS 1 5 SEPTEMBRE 015 Durée : h SANS Calculatrice NOM : Prénom : La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l argumentation. Aucun prêt n est autorisé

Plus en détail

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme.

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme. Seconde Exercices sur les vecteurs Page 1 Définition, égalité de vecteurs ---------------------------------------------------------------------------------------------------- Exercice 1 : A vue d œil,

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

Correction brevet blanc n 1

Correction brevet blanc n 1 Correction brevet blanc n 1 Exercice 1: 1) a) Les nombres 840 et 1176 sont des nombres pairs donc ils sont divisibles par 2. Par conséquent, ils ne sont pas premiers entre eux. b) Pour faire 15 lots, il

Plus en détail

Utilité : si dans un triangle rectangle on connaît la longueur de 2 côtés, alors on peut calculer la longueur du 3ème côté.

Utilité : si dans un triangle rectangle on connaît la longueur de 2 côtés, alors on peut calculer la longueur du 3ème côté. AP Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Utilité : si dans un triangle rectangle on connaît la longueur

Plus en détail

Géométrie analytique plane

Géométrie analytique plane Exercice 1 EXERCICES SUR LE CHAPITRE 8 Géométrie analytique plane Soit ( O, i ) un repère d une droite d (1) Placer sur cette droite les points I ( 1), A ( 3) et B( 2) (2) Déterminer l abscisse du point

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée.

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Mardi 13 Mars 01 DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Eercice 1 / 4 On donne dans le repère orthonormé (O ; I, J) ci-dessous la courbe représentative C d une fonction

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

AIRES Cette leçon complète la leçon "Aires" de sixième Se reporter éventuellement à cette leçon pour des révisions. I- Aire d'un parallélogramme:

AIRES Cette leçon complète la leçon Aires de sixième Se reporter éventuellement à cette leçon pour des révisions. I- Aire d'un parallélogramme: AIRES Cette leçon complète la leçon "Aires" de sixième Se reporter éventuellement à cette leçon pour des révisions I- Aire d'un parallélogramme: Calculer l'aire d'un parallélogramme de base 4,7 cm et de

Plus en détail

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma).

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma). EXERCICE 1 : (CALCULS NUMERIQUES) Soit A = 5 3 7 3 9 4 Exercices type brevet ; B = 45 1 5 ; C = ( ) 4 3 10 1, 10 3 0, 10 1) Calculer A et donner le résultat sous la forme d une fraction irréductible. )

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

EPREUVE D ENTRAÎNEMENT 21 MAI 2012

EPREUVE D ENTRAÎNEMENT 21 MAI 2012 EPREUVE D ENTRAÎNEMENT 21 MAI 2012 MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent dans l appréciation des copies

Plus en détail

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin.

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin. 3 ème A - B C Composition 2 de MATHÉMATIQUES Date : 03/03/2010 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 0 Présentation : / Les calculatrices sont autorisées (il est interdit de se

Plus en détail

Collège Blanche de Castille. Partie I : Activités numériques (12 points)

Collège Blanche de Castille. Partie I : Activités numériques (12 points) 3 ème A - B - C Composition 1 de MATHÉMATIQUES Date : 10/11/2010 Durée : 2h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées (il est interdit

Plus en détail

Brevet Blanc : épreuve de Mathématiques. Mardi 19 janvier 2016 ********************************** Corrigé **********************************

Brevet Blanc : épreuve de Mathématiques. Mardi 19 janvier 2016 ********************************** Corrigé ********************************** Brevet Blanc : épreuve de Mathématiques Mardi 19 janvier 016 ********************************** Corrigé ********************************** Exercice 1 adapté de différents sujets 5 points Cet exercice est

Plus en détail