Essai randomisé en grappe
|
|
|
- Luc Patel
- il y a 9 ans
- Total affichages :
Transcription
1 Essai randomisé en grappe Références: Donner A, Klar N, Kerry SM, Bland JM, Campbell MK, Kirkwood BR Définition: Essai randomisé dans lequel des unités sociales sont assignées aléatoirement à différents groupes d intervention
2 Essai randomisé en grappe: Pourquoi ce design? Nature de l intervention Faisabilité / acceptabilité / coûts Minimisation du biais de contamination
3 Intérêt: Minimise biais contamination Définition: Biais lié à des changements de groupes des participants Risque de contamination important quand pas de double aveugle Surtout en randomisation individuelle Impact: Dilution
4 Prix à payer Perte d efficience statistique Randomisation moins efficace
5 Prix à payer: Perte d efficience statistique Cause: tendance à la similarité à l intérieur des grappes variation inter-grappe de la réponse Degré de similarité intra-grappe mesuré par coefficient de corrélation intra-grappe ρ (ICC) Estimation: Analyse de variance, Bootstrap
6 Variabilité inter-grappes: Raisons Individus ont la possibilité de choisir les grappes auxquelles ils appartiennent Individus d une grappe partagent exposition commune Interactions personnelles entre individus d une grappe les rendant similaires
7 Variabilité inter-grappes: Implications pratiques 1) Perte en terme de taille d échantillon effective Adapter calcul de n (vers le haut) sinon under-powered 2) Manque d indd indépendance statistique Adapter analyse sinon, p-valeurs biaisées vers le bas
8 Quantification de l effet design Essai avec k grappes de m individus assignées à un groupe expérimental et un groupe témoin Objectif = comparer les moyennes d une variable réponse Y Estimations de µ 1 et µ 2 données par: 1 et Variance de chaque moyenne: Var(Y i 2 σ ) = m km [ 1+ ( 1) ρ] Y 2 Y
9 Quantification de l effet design Effet design = IF = [ 1+ ( m 1)ρ ] Coefficient de corrélation intra-grappe grappe: Si ρ = 0 (indépendance statistique) Taille effective de la grappe = m Si ρ = 1 (dépendance statistique totale) Taille effective de la grappe = 1 Importance de la taille de la grappe (m) dans l effet design
10 Taille d échantillon Formule similaire à SRS*effet design Estimation de n nécessite: Estimation préalable de la taille des grappes et du coefficient ρ Analyse de sensibilité
11 Questions de design: Randomisation 1) Complètement randomisé 2) Stratifié Intérêt si stratifié pour caractéristiques des grappes associées à l outcome outcome! 3) Apparié Présente nombreuses limites
12 Question de design: Choix de l unité d inférence Individu ou grappe? Unité d inférence conditionne type de collecte de données type d analyse
13 Questions de design: Biais Le plus souvent, pas de double aveugle Effet Hawthorne possible car groupe contrôle bénéficie du programme habituel Groupe contrôle actif entre les 2 groupes, recrutement / refus post-randomisation / perdus de vue Biais d observation
14 Analyse 1) Intention de traiter 2) Prendre en compte l effet grappe (absence indépendance) pas (peu) d impact sur estimations impact pfs important sur la précision 3) Différentes approches possibles
15 Analyse: Grappe = unité d analyse Approche la plus simple Unité de randomisation = unité d analyse Techniques usuelles Analyse pondérée si m très variable Analyses moins puissantes
16 Analyse: Individu = unité d analyse Unité d analyse unité de randomisation Préférable si on veut ajuster Permet d estimer plus facilement ρ Différentes approches Nécessitent un nombre élevé de grappes
17 Analyse: Comparaison de proportions 1) Niveau grappe Test-t t pour échantillons indépendants comparant moyennes de proportions Approches non-paramétriques Mann-Whitney Whitney-U test Fisher s two-sample permutation test
18 Analyse: Comparaison de proportions 1) Niveau individuel χ2 2 de Pearson ajusté pour l effet l design (Approche utilisant ratio de 2 variances) Robust standard errors Bootstrap (Modélisation paramétrique) Generalized estimated equations (GEE) Multilevel (random effet) logistic regression
19 Analyse: Logiciels Prise en compte de covariables individuelles &/ou cluster-level level Sas (procédure GENMOD - PROCMIXED) Acluster MLWin Stata SUDAAN S+ Spss,, module suppl. éch.. complexes version 12 Etc +C-sample epi-info info (univarié uniquement)
20 Essais randomisés en grappe: Conclusion Nombreuses applications en évaluation d intervention en santé publique Parfois la seule façon possible de randomiser Multidisciplinaire Inconvénients: Perte d efficience statistique Randomisation moins efficace Méthodes pas encore bien standardisées Défis particuliers si peu de grappes
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
PROGRAMME (Susceptible de modifications)
Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Évaluations aléatoires : Comment tirer au sort?
Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011
L approche de régression par discontinuité Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 Plan de la présentation L approche de régression par discontinuité (RD) Historique
Études épidémiologiques analytiques et biais
Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Restaurer la confiance? Etudes Empiriques Conclusion et ouverture
Restaurer la confiance des investisseurs : une exploration expérimentale systématique de l effet des politiques d investissement socialement responsable. Marco Heimann Sous la direction de Jean-François
LECTURE CRITIQUE 1 ER PAS
1 LECTURE CRITIQUE D UN ARTICLE SCIENTIFIQUE 1 ER PAS FORUM PCI 20,05,14 MJ Thévenin / Inf. EPIAS/ SMPH BUTS ET ORGANISATION DE LA PRÉSENTATION Utiliser une grille de lecture critique d un article Comprendre
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Item 169 : Évaluation thérapeutique et niveau de preuve
Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes
Valeur ajoutée relative basée sur les comparaisons indirectes Giens 2008, TR 5
Valeur ajoutée relative basée sur les comparaisons indirectes Giens 2008, TR 5 Claire Le Jeunne Bertrand Xerri Cécile Rey-Coquais Jean-Michel Joubert Jean Delonca Martine Pigeon Michel Lièvre Patricia
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de
Partie 1. Principes. Karmela Krleža-Jerić, An-Wen Chan, Kay Dickersin, Ida Sim, Jeremy Grimshaw, Christian Gluud, for the Ottawa GroupT 1
Déclaration d Ottawa sur l enregistrement des essais d interventions de santé: Proposition pour l enregistrement international d informations relatives au protocole et de résultats des essais réalisés
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
GUIDE MÉTHODOLOGIQUE
L UNITÉ D ÉVALUATION DES TECHNOLOGIES ET DES MODES D INTERVENTION EN SANTÉ Centre hospitalier universitaire de Québec Recherche et analyse documentaires visant la réalisation d un rapport d évaluation
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
1 Imputation par la moyenne
Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
La méthode de régression par discontinuité et l évaluation des politiques de l emploi
La méthode de régression par discontinuité et l évaluation des politiques de l emploi Thomas Lemieux University of British Columbia Le 24 novembre 2009 Plan de la présentation La méthode de régression
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
CE QU IL FAUT SAVOIR PARTICIPATION À UN ESSAI CLINIQUE SUR UN MÉDICAMENT
CE QU IL FAUT SAVOIR PARTICIPATION À UN ESSAI CLINIQUE SUR UN MÉDICAMENT Sommaire Comment se fait la recherche sur un nouveau médicament? (page 1) A quoi sert la recherche sur un nouveau médicament? (page
Options et Swap sur intérêt
Options et Swap sur intérêt Risk Management - TP 3-1 - Exercice1 : choix de deux options J ai décidé d utiliser le site Swissquote pour cette recherche. Toutefois j ai préféré prendre des warrants (certificats
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme
TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
SAS ENTERPRISE MINER POUR L'ACTUAIRE
SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de
Séminaire du Pôle Santé
1 Séminaire du Pôle Santé Les télésoins à domicile au Québec représentent-ils une solution économiquement viable? Guy Paré, Ph.D., MSRC Titulaire de la Chaire de recherche du Canada en technologies de
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Votre Réseau est-il prêt?
Adapter les Infrastructures à la Convergence Voix Données Votre Réseau est-il prêt? Conférence IDG Communications Joseph SAOUMA Responsable Offre ToIP Rappel - Définition Voix sur IP (VoIP) Technologie
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Annexe - Dictionnaire Détaillé
Annexe - Dictionnaire Détaillé Arrêt: Arrêt de bus. Il est défini par une commune, un nom et un sens. Attributs Nom Arrêt Sanitaire Banc Poubelle Bande Podotactile Assis Debout JEI Miroir Position Passage
Optimisation du rééchantillonnage dans un logiciel d Amélioration des Plantes
Optimisation du rééchantillonnage dans un logiciel d Amélioration des Plantes Baradat P. INRA-Département EFPA UMR AMAP 34398 Montpellier Cedex 5 FRANCE [email protected] Labbé T. INRA-Département
CONCEPTION ET TIRAGE DE L ÉCHANTILLON
CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.
TP 1. Prise en main du langage Python
TP. Prise en main du langage Python Cette année nous travaillerons avec le langage Python version 3. ; nous utiliserons l environnement de développement IDLE. Étape 0. Dans votre espace personnel, créer
FORD FOCUS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 17 19 20 21 9 3 1 1 6 4 2 5 7 8 10 23 25
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
L olivier Assurances Licence 3 Econométrie Lyon II
15 novembre 2013 L olivier Assurances Licence 3 Econométrie Lyon II Pascal Gonzalvez 1 L olivier Assurances et le Groupe Admiral Segmentation et tarification en assurance auto Autres applications de la
Figure 3.1- Lancement du Gambit
3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh
Car Insurance Survey. L assurance automobile RC chez les jeunes. Statistics Belgium. Rapport final
L assurance automobile RC chez les jeunes Car Insurance Survey Rapport final Statistics Belgium Direction générale Statistique et Information économique 2 0 1 3 Table des matières 1 But et objet de l'étude...
Cancer bronchique primitif: données épidémiologiques récentes
Cancer bronchique primitif: données épidémiologiques récentes Pr Jean Trédaniel Service de pneumologie et oncologie thoracique Groupe Hospitalier Paris Saint Joseph Université Paris Descartes Sources Données
PROJET MODELE DE TAUX
MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Cours de Systèmes d Exploitation
Licence d informatique Synchronisation et Communication inter-processus Hafid Bourzoufi Université de Valenciennes - ISTV Introduction Les processus concurrents s exécutant dans le système d exploitation
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Utilisation des médicaments au niveau des soins primaires dans les pays en développement et en transition
09-0749 1 WHO/EMP/MAR/2009.3 Utilisation des médicaments au niveau des soins primaires dans les pays en développement et en transition Synthèse des résultats des études publiées entre 1990 et 2006 Organisation
METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES
Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé
Méthodes d apprentissage statistique «Machine Learning»
Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun>
94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue
choisir H 1 quand H 0 est vraie - fausse alarme
étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts
Structure d un programme et Compilation Notions de classe et d objet Syntaxe
Cours1 Structure d un programme et Compilation Notions de classe et d objet Syntaxe POO 1 Programmation Orientée Objet Un ensemble d objet qui communiquent Pourquoi POO Conception abstraction sur les types
DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES
Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
Création d'un Portail partagé sur l'offre de formation en région Languedoc-Roussillon
Création d'un Portail partagé sur l'offre de formation en région Languedoc-Roussillon Retours des entretiens téléphoniques 1. Présentation du contexte : Atout Métiers LR Offre de formation L association
NOUVEAU CODE ICC 2011 sur les pratiques de publicité et de communication commerciale
NOUVEAU CODE ICC 2011 sur les pratiques de publicité et de communication commerciale Historique du Code ICC 1 ère version du Code sur les pratiques de publicité a été publiée en 1937 Il a depuis été régulièrement
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Prélèvement/préparation p des échantillons et analyse des reliquats d azote
Prélèvement/préparation p des échantillons et analyse des reliquats d azote Matthias CARRIERE Plan de l intervention Introduction : I. méthodes et outils de prélèvement. 11. Les normes d échantillonnage
Gestion de Portefeuille. Mesures de Performance Ajustées du Risque
Gestion de Portefeuille Mesures de Performance Ajustées du Risque Le Ratio de Sharpe La mesure de performance (ajustée du risque) la plus utilisée Rappel: Propriétés du ratio de Sharpe Mesure de la stratégie:
STRICTEMENT CONFIDENTIEL
MOIS / ANNEE ETUDE DE VALORISATION Société «EDIVAL» STRICTEMENT CONFIDENTIEL BUREAUX 31, Rue de Brest 69002 LYON Tél : +33 (0)8 71 55 11 98 SIÈGE SOCIAL 94, Rue Saint Lazare 75009 PARIS Tél : +33 (0)1
Gestion répartie de données - 1
Gestion répartie de données - 1 Sacha Krakowiak Université Joseph Fourier Projet Sardes (INRIA et IMAG-LSR) http://sardes.inrialpes.fr/~krakowia Gestion répartie de données Plan de la présentation Introduction
Rappel massif, quand SCM rime avec gestion de crise...
Le rappel de produits de grande consommation s est grandement accru depuis plusieurs années, et particulièrement de ceux provenant de Chine Produits alimentaires, cosmétiques, pharmaceutiques et bien d
Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie
Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même
COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES
J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus
SAS de base : gestion des données et procédures élémentaires
1 SAS de base : gestion des données et procédures élémentaires SAS de base : gestion des données et procédures élémentaires Résumé Description des commandes (module SAS de base) les plus utiles de l étape
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Quatrième partie IV. Test. Test 15 février 2008 1 / 71
Quatrième partie IV Test Test 15 février 2008 1 / 71 Outline Introduction 1 Introduction 2 Analyse statique 3 Test dynamique Test fonctionnel et structurel Test structurel Test fonctionnel 4 Conclusion
Stage Intra Entreprise Personnalisé. Tarif : Intra-entreprise : 1200 / groupe Inter-entreprise : 200 / stagiaire
SVE1 Stage Intra Entreprise Personnalisé LES VINS EFFERVESCENTS LE TIRAGE ) Maîtriser tous les points clés de l étape de tirage des vins effervescents. ) Préparation des vins de base ) Elaboration d un
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
Dérivés Financiers Contrats à terme
Dérivés Financiers Contrats à terme Mécanique des marchés à terme 1) Supposons que vous prenez une position courte sur un contrat à terme, pour vendre de l argent en juillet à 10,20 par once, sur le New
Équivalence et Non-infériorité
Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.
6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses
6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Les dates SAS expliquées à ma fille
Les dates SAS expliquées à ma fille Eternel sujet de questionnements, les dates SAS ont un fonctionnement qui a tout pour surprendre. Petite série d explications avant qu il vous prenne l envie de passer
Présentation d Epicard
IAM Valais Implémentation d IAM réalisée à l Etat du Valais et concordance avec les normes ech et perspectives de développement futur en rapport avec TrustIAM Présentation d Epicard Epicard SA Société
Les recommandations de recherche de l expertise INSERM sur la RdR. Patrizia Carrieri INSERM U912 - ORSPACA
Les recommandations de recherche de l expertise INSERM sur la RdR Patrizia Carrieri INSERM U912 - ORSPACA Plan de la présentation Recommandations de recherche de l expertise INSERM Etat d avancement des
Propagation sur réseau statique et dynamique
Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
