Chapitre 1 - Repérage et configurations du plan

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1 - Repérage et configurations du plan"

Transcription

1 nde hapitre 1 - Repérage et configurations du plan hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur une droite graduée d origine. Placer (b) Lire graphiquement : les coordonnées de, l ordonnée de D, l abscisse de E. E y D x. alculer (sans calculatrice) : (a) (6 3) (b) 6 3 (c) (d) 3 (e) 5 4 (f) (3 ) 3. (a) Reconnaître ces configurations particulières. Donner les hypothèses et la (ou les) conclusion(s) que l on peut en tirer. (b) Quelle est la nature du triangle : i. si appartient à la médiatrice de []? ii. si = 1 cm, = 9 cm, = 15 cm? -1-

2 nde hapitre 1 - Repérage et configurations du plan I Rappels I.1 Les triangles I.1.1 Droites remarquables dans un triangle Définition 1 La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui perpendiculaire à ce segment. La médiatrice d un segment est l axe de symétrie de ce segment. La médiatrice du segment [] est l ensemble des points M équidistants de et de (c est à dire tels que M = M). Les médiatrices des côtés d un triangle sont concourantes en un point qui est le centre du cercle circonscrit à ce triangle. --

3 nde hapitre 1 - Repérage et configurations du plan Définition La bissectrice d un angle est la demi-droite qui partage l angle en deux angles adjacents de même mesure. Tout point de la bissectrice de l angle est équidistant des côtés () et (). Les bissectrices des trois angles d un triangle sont concourantes en un point I qui est le centre du cercle inscrit dans le triangle. I Définition 3 Dans un triangle la médiane issue du sommet est la droite passant par et par le milieu I du côté opposé []. // // I -3-

4 nde hapitre 1 - Repérage et configurations du plan Définition 4 La hauteur issue du sommet du triangle est la perpendiculaire à () passant par. I.1. Proportionnalité dans le triangle. Théorème de Thalès Théorème (de Thalès : 67 et 547),, sont trois points du plan non alignés, M et N appartiennent respectivement aux droites () et (). Si les droites () et (MN) sont parallèles alors M = N = MN. Si M = et si les points,, M et,, N sont alignés dans le même ordre alors les N droites () et (MN) sont parallèles. N M M N Théorème (des milieux) n se place dans un triangle quelconque. La droite passant par les milieux de deux des côtés est parallèle au troisième côté Si une droite passe par le milieu d un premier côté et est parallèle au second côté alors elle passe par le milieu du troisième côté. -4-

5 nde hapitre 1 - Repérage et configurations du plan E on a : D milieu de [] E milieu de [] D alors : (DE) () et DE = 1 I.1.3 Triangle rectangle Définition 5 Un triangle rectangle est un triangle qui a un angle droit. Théorème (de Pythagore : 580, 500) Si le triangle est rectangle en alors = +. K Le centre du cercle circonscrit au triangle est le milieu de [] on a : K = K = K cos côté adjacent = hypoténuse = sin côté opposé = hypoténuse = tan côté opposé = côté adjacent = -5-

6 nde hapitre 1 - Repérage et configurations du plan I.1.4 Triangle isocèle Définition 6 Un triangle isocèle est un triangle qui a deux côtés de la même longueur. K Si est un triangle isocèle en alors : La médiane issue de est aussi médiatrice de [], hauteur issue de, bissectrice de Â. ette droite est un axe de symétrie du triangle donc = Ĉ. I.1.5 Triangle équilatéral Définition 7 Un triangle équilatéral est un triangle qui a ses trois côtés de la même longueur. Si est équilatéral alors : Les médianes sont aussi hauteurs, médiatrices, bissectrices des angles et axes de symétrie du triangle. Â = = Ĉ =

7 nde hapitre 1 - Repérage et configurations du plan I. Le cercle Définition 8 Le cercle de centre et de rayon r (r > 0) est l ensemble des points M du plan tels que M = r. I.3 Le parallélogramme Définition 9 Un parallélogramme est un quadrilatère dont les côtés sont parallèles deux à deux. D Si D est un parallélogramme alors : Les diagonales ont le même milieu. e milieu est le centre de symétrie du parallélogramme. D a ses côtés opposés de même longueur et ses angles opposé de même longueur. I.4 Rectangle, losange, carré I.4.1 Rectangle Définition 10 Un rectangle est quadrilatère qui a quatre angles droits. D -7-

8 nde hapitre 1 - Repérage et configurations du plan Si D est un rectangle alors : D est un parallélogramme (donc il en a toutes les propriétés). Ses diagonales ont la même longueur. I.4. Losange Définition 11 Un losange est un quadrilatère qui a ses côtés de la même longueur. D Si D est un losange alors : D est un parallélogramme. Ses diagonales sont perpendiculaires. I.4.3 arré Définition 1 Un carré est un quadrilatère qui a ses côtés de la même longueur et quatre angles droits. Un carré est à la fois un rectangle et un losange (donc il a les mêmes propriétés). -8-

9 nde hapitre 1 - Repérage et configurations du plan II oordonnées dans le plan Définition 13 Définir un repère du plan, c est choisir 3 points non alignés dans un ordre précis :, I, J. n note ce repère (, I, J), et : le point est l origine du repère ; la droite (I) est l axe des abscisses et le point I donne l unité sur cet axe ; la droite (J) est l axe des ordonnées et le point J donne l unité sur cet axe. Remarque L axe des abscisses est souvent horizontal mais ce n est pas une obligation. Si le triangle IJ est rectangle en alors le repère (, I, J) est dit orthogonal. Les axes du repère sont perpendiculaires. Si le triangle IJ est rectangle et isocèle en alors le repère (, I, J) est dit orthonormé. Les axes du repère sont perpendiculaires et l unité est la même sur les deux axes. Définition 14 n considère un repère (, I, J) du plan et un point quelconque M. En traçant la parallèle à la droite (J) passant par M, on obtient sur l axe (I) l abscisse x M du point M. En traçant la parallèle à la droite (I) passant par M, on obtient sur l axe (J) l ordonnée y M du point M. Le couple de réels (x M ; y M ) est le couple des coordonnées du point M dans le repère (, I, J). y M M J I x M -9-

10 nde hapitre 1 - Repérage et configurations du plan III alcul de distances dans un repère orthonormé TD : n considère le plan muni d un repère orthonormé (, I, J). 1. Placer les points (; 5) et (6; ).. Tracer la droite parallèle à (J) passant par le point et la droite parallèle à (I) passant par le point. Elles se coupent en. 3. Déterminer la longueur et la longueur. 4. Déterminer la nature du triangle. En déduire la longueur. n considère dans le plan muni d un repère orthonormé (, I, J) les points (x ; y ) et (x ; y ). La distance entre les points et est : = (x x ) + (y y ) l unité de longueur étant l unité commune aux deux axes. Remarque Dans la formule ci-dessus (x x ) peut être remplacé par (x x ), car les nombres x x et x x sont opposés et ont par conséquent le même carré. De même pour le terme en y. Démonstration : n raisonne dans le cas x < x et y > y. n place le point ayant même abscisse que et même ordonnée que. Les axes du repère étant perpendiculaires, le triangle est rectangle en. y J x I x y D après le théorème de Pythagore, = +. r = x x et = y y. D où : = (x x ) + (y y ). Une distance étant positive, on obtient : = (x x ) + (y y ). -10-

11 nde hapitre 1 - Repérage et configurations du plan lgorithme : calcul de distance entre deux points Variables : x, y, x, y, d sont cinq nombres réels Initialisation, entrées : Saisir x Saisir y Saisir x Saisir y Traitement : d prend la valeur (x x ) + (y y ) Sortie : fficher la valeur de d IV oordonnées du milieu d un segment TD : Le plan est muni d un repère. n donne les coordonnées des points et dans le tableau ci-dessous. K est le milieu du segment []. cas n 1 cas n cas n 3 cas n 4 ( ; 0) (- ; 1) (-6 ; -4) (1,5 ; 4) (4 ; 6) ( ; -3) (10 ; -3) ( ; 3) K 1. Placer et puis K et compléter le tableau.. Proposer une formule qui permet de calculer l abscisse de K à partir de celles de et. Et pour l ordonnée de K? (dmise) n considère dans le plan muni d un repère (, I, J) les points (x ; y ) et (x ; y ). lors le milieu du segment [] a pour coordonnées ( x + x ; y + y ). lgorithme : calcul des coordonnées du milieu d un segment Variables : x, y, x, y, x, y sont six nombres réels Initialisation, entrées : Saisir x Saisir y Saisir x Saisir y Traitement : x prend la valeur x + x y prend la valeur y + y Sortie : fficher la valeur de x fficher la valeur de y -11-

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE DISTNE D UN PINT UNE DRITE TNGENTE UN ERLE ISSETRIE I) édiatrice d un segment : Soit et deux points distincts du plan. La médiatrice du segment [] est la droite perpendiculaire au segment [] passant par

Plus en détail

Repères dans le plan - configurations planes

Repères dans le plan - configurations planes Repères dans le plan - configurations planes ) Repères dans le plan : a) notion de repère dans un plan : Définition : Un repère est constitué d'un point origine, de deux droites orientées et graduées (axes).

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Milieux, parallèles et triangles

Milieux, parallèles et triangles hapitre. Milieux, parallèles et triangles.théorème de la droite des milieux Dans un triangle, la droite qui passe par les milieux de deux cotés dans le socle est le milieu de [] llustration: Dans, est

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

Sommaire. 1 Rappels. 2

Sommaire. 1 Rappels. 2 Sommaire 1 Rappels. 2 2 Triangle rectangle et cercle circonscrit. 7 2.1 Propriété n 1............................. 7 2.2 Exemple d utilisation de la propriété n 1.............. 8 2.3 Propriété n 2.............................

Plus en détail

2. Repère du plan Coordonnées d un. point Configurations planes

2. Repère du plan Coordonnées d un. point Configurations planes . Repère du plan oordonnées d un point onfigurations planes ctivité introductive : Démonter avec les milieu D est le trapèze ci-contre telle que ( D )//() D et sont les milieu respectifs des segments []

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

Quelques théorèmes de géométrie du triangle

Quelques théorèmes de géométrie du triangle Quelques théorèmes de géométrie du triangle Z, auctore 1 er novembre 2005 1 Propriété des angles Théorème 1 Dans un triangle, la somme des trois angles vaut 180. Précisément, pour un triangle, on a la

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle.

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle. MISE U POINT ES NOTIONS E GEOMETRIE I. Triangles : 1. roites remarquables : a. Médiatrices d un triangle : Médiatrice d un segment : La médiatrice d un segment est la droite perpendiculaire à ce segment

Plus en détail

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI..

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI.. Fiche d'exercices EXERCICES Exercice 1 a) Rappeler la définition de la bissectrice d un angle. b) Construire et faire la liste des données de la figure suivante : BAC est un triangle rectangle en A. La

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Géométrie analytique et équation de droite

Géométrie analytique et équation de droite Géométrie analtique et équation de droite ) Géométrie analtique.. Généralités. Définitions : Dire que ( ; ) sont les coordonnées du point M dans le repère (O ; i ; j ) signifie que : OM = i + j et on note

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations ERNIÈRE IMPRESSIN LE 11 mars 015 à 1:17 Rappels de géométrie euclidienne. Les configurations Table des matières 1 Rappels de géométrie euclidienne 1.1 Euclide................................... 1. Éléments

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE Sommaire Comment démontrer qu un triangle est rectangle?... 2 Comment démontrer que deux droites sont parallèles?... 4 Comment calculer une longueur?... 6 Comment démontrer que deux

Plus en détail

4 e Révisions Triangles

4 e Révisions Triangles 4 e Révisions Triangles vant de commencer ces exercices, il faut connaître les définitions et propriétés du cours. xercice 1 Tracer les médianes et le centre de gravité G du Tracer les médiatrices et le

Plus en détail

Nombres complexes : Forme Trigonométrique

Nombres complexes : Forme Trigonométrique Nombres complexes : Forme Trigonométrique I) Module et argument d un nombre complexe 1) Définitions Soit le nombre complexe On note M le point d affixe dans le repère orthonormé ;, ) On appelle module

Plus en détail

Géométrie analytique. Exercices 2MS - 3MS

Géométrie analytique. Exercices 2MS - 3MS Géométrie analytique Exercices 2MS - 3MS Géométrie analytique 2MS - 3MS 1 Table des matières 1 Exercices 2 2 Solutions 10 Géométrie analytique 2MS - 3MS 2 1 Exercices 1 La droite 1.1 Lespointsci-dessousappartiennent-ilsàladroited

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

Le Centre d education en math ematiques et en informatique Ateliers en ligne Euclide Atelier no 3 G eom etrie analytique c 2014 UNIVERSITY OF WATERLOO

Le Centre d education en math ematiques et en informatique Ateliers en ligne Euclide Atelier no 3 G eom etrie analytique c 2014 UNIVERSITY OF WATERLOO Le Centre d éducation en mathématiques et en informatique Ateliers en ligne Euclide Atelier n o 3 Géométrie analytique c 014 UNIVERSITY OF WATERLOO BOÎTE À OUTILS Voici quelques formules et équations utiles

Plus en détail

H - RELATIONS METRIQUES DANS LE TRIANGLE

H - RELATIONS METRIQUES DANS LE TRIANGLE Triangle rectangle H - RELTIONS METRIQUES DNS LE TRINGLE Soit B un triangle rectangle en et H le pied de la hauteur issue de. B H Les triangles B, HB et H sont semblables. On en déduit les égalités suivantes

Plus en détail

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10)

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Problème 1, les baguettes de bois Jean et Cécile forment chacun une ligne en mettant bout à bout des baguettes de bois. Toutes les baguettes utilisées

Plus en détail

Cosinus d un angle aigu (trigonométrie) Exercices corrigés

Cosinus d un angle aigu (trigonométrie) Exercices corrigés Cosinus d un angle aigu (trigonométrie) Exercices corrigés Sont abordés dans cette fiche : Exercices 1 et 2 : calcul de la longueur d un côté adjacent à un angle aigu Exercice 3 : calcul de la longueur

Plus en détail

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES Thème N 13: SYMTR ( 3 ) - PRLLLOGRMM (2) - MONSTRTON (2) - QURLTRS - NGLS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TVT 1: O 1 er PROPRT: n utilisant

Plus en détail

Exercices supplémentaires : trigonométrie

Exercices supplémentaires : trigonométrie xercices supplémentaires : trigonométrie xercice 1 1 epérer dans un triangle rectangle epasser en couleur les côtés demandés. a. Le côté adjacent à l'angle. b. Le côté opposé à l'angle ON. 2 Nommer dans

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d.

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d. I. Définition : M M' N M est le point symétrique de M par rapport à la droite d signifie que : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 2012 Enoncés On demandait de résoudre trois questions

Plus en détail

Minimisation d une somme de distances, points de Fermat

Minimisation d une somme de distances, points de Fermat Minimisation d une somme de distances, points de Fermat Arnaud de Saint Julien 26 décembre 2004 Table des matières 1 Présentation du problème 2 1.1 Définitions et objectifs..................................

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

Exercice 1 1/ Calculer en détaillant et donner le résultat sous la forme d'une fraction irréductible : A = 2 5 2 15 4

Exercice 1 1/ Calculer en détaillant et donner le résultat sous la forme d'une fraction irréductible : A = 2 5 2 15 4 Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé conformément à la circulaire n 99-186 du 16 novembre 1999. PREMIÈRE PRTIE : TIVITÉS

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

EXERCICE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle

EXERCICE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle EXERIE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle Savoir la formule du cosinus d'un angle aigu Identifier pour chaque triangle le côté adjacent à l angle marqué

Plus en détail

TRIANGLE RECTANGLE ET CERCLE

TRIANGLE RECTANGLE ET CERCLE THEME : TRIANGLE RECTANGLE ET CERCLE Exercice 1 : Brevet des Collèges Groupe Est - 2005 Tracer un segment [EF] de 10 cm de longueur puis un demi-cercle de diamètre [EF]. Placer le point G sur ce demi-cercle,

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

I. Le théorème de Thalès

I. Le théorème de Thalès lasse de 3ème hapitre 3 Le théorème de Thalès et sa réciproque I. Le théorème de Thalès 1 ère configuration : dans le triangle (4 e ) 1 ère configuration : Nœud papillon A N M M N A (MN) // (B) B B Théorème

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Classe de 3ème. Chapitre 5 Trigonométrie dans le triangle rectangle

Classe de 3ème. Chapitre 5 Trigonométrie dans le triangle rectangle Classe de 3ème Chapitre Trigonométrie dans le triangle rectangle I. Introduction Trigonométrie, définition du Larousse : (du grec trigônon, triangle) nom féminin MATHÉMATIQUES Étude des propriétés des

Plus en détail

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1 Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. Exercice n 1 : Partie numérique

Plus en détail

Chapitre 03 : THÉORÈME DE THALÈS

Chapitre 03 : THÉORÈME DE THALÈS hapitre 03 : THÉORÈME DE THALÈS I) Activité d'introduction 1 : Utilisation de la propriété de vue en 4ème + limite Nécessité d'étendre la propriété. II) : 1) Théorème : : (Admis) Soient et deux droites

Plus en détail

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14 Collège Jules Ferry Génelard Correction du Brevet Blanc n 1 année 200-2007 Activités numériques (12 points) Mathématiques Exercice 1 : On donne A = 7 5 + 3 5 x 11 = 7 5 + 11 10 = 14 10 + 11 10 = 25 10

Plus en détail

VII. Lieux géométriques.

VII. Lieux géométriques. VII. Lieux géométriques.. Généralités. Définition. Un lieu géométrique est un ensemble de points qui vérifient une propriété géométrique déterminée.. Méthodes. Pour déterminer un lieu géométriques, différentes

Plus en détail

,=L'ESPACE=AU=BAC=2015fe

,=L'ESPACE=AU=BAC=2015fe 31 France métropolitaine Asie juin 005 septembre 014 35 points ans l espace muni d un repère orthonormé (O; i, j, k), on considère le tétraèdre ABC dont les sommets ont pour coordonnées : ; A 1 ; 3 ; 0

Plus en détail

Livret. d'entraînement 3 2009-2010 2010-2011

Livret. d'entraînement 3 2009-2010 2010-2011 3 e Livret e d'entraînement 3 2009-2010 2010-2011 - Les nombres naturels - Les nombres naturels Savoir.1 : éterminer un ordre de grandeur.1.1 onne un ordre de grandeur des nombres suivants : = 8 706 =

Plus en détail

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I.

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I. Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5 I) Rappels sur les configurations du plan COURS pages 248 et 249 du manuel Exercice 2 page 268 (utiliser la rotation de centre C et d angle 60 ) Exercices

Plus en détail

Chapitre 1. Droites. Nos objectifs. Activités et applications. Chapitre 1. 2. Équations de droites. 1. Coefficient directeur

Chapitre 1. Droites. Nos objectifs. Activités et applications. Chapitre 1. 2. Équations de droites. 1. Coefficient directeur hapitre Droites Nos objectifs Beaucoup d élèves ont des difficultés avec les droites et la résolution de sstèmes d équations linéres est pourquoi nous avons choisi de regrouper dans un chapitre «à part»

Plus en détail

1 ère S Les angles orientés (2)

1 ère S Les angles orientés (2) ère S Les angles orientés () Dans tout le chapitre, le plan est orienté. I. esure principale d un angle orienté ) Définition Plan du chapitre : I. esure principale d un angle orienté La mesure principale

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : ours, Techniques et Exercices Denis LE FUR ollège Zéphir, ayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques et

Plus en détail

Géométrie analytique ( En seconde )

Géométrie analytique ( En seconde ) Géométrie analytique ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

Chapitre 6 Géométrie vectorielle

Chapitre 6 Géométrie vectorielle 6. Translation et vecteurs 6.. Définition DÉFINITIN n considère et deux points distincts du plan. hapitre 6 Géométrie vectorielle. n appelle translation qui transforme en la transformation qui à tout point

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

La translation dans le plan

La translation dans le plan La translation dans le plan Définitions: Une translation plane qui transforme le point A en le point B est un déplacement rectiligne dans le plan (glissement) qui amène le point A sur le point B. Le point

Plus en détail

Groupe seconde chance Feuille d exercices numéro 5

Groupe seconde chance Feuille d exercices numéro 5 Groupe seconde chance Feuille d exercices numéro 5 Exercice Ecrire chacun des nombres ci-dessous sous forme d une puissance d un nombre entier. On laissera visible les étapes du calcul. = 2 0 x 4 3 = 3

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Chapitre 2 Triangle rectangle - Cours -

Chapitre 2 Triangle rectangle - Cours - - Cours - Définition : Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse. C'est le côté le plus long. I. Cercle circonscrit à un triangle rectangle Rappel : Le cercle circonscrit

Plus en détail

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999 Volume 2 RESUME DE OURS DE MTHEMTIQUES. opyright en. Troisième Programme 1999 introduction : e résumé, second du nom, a été conçu en tant qu'assistant pour les élèves de quatrième et de troisième. Il regroupe

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Terminale S - Exercices corrigés de géométrie

Terminale S - Exercices corrigés de géométrie Terminale S - xercices corrigés de géométrie noncés 1 On considère la pyramide S, où est un parallélogramme de centre I ompléter le plus précisément possible 1 L intersection des plans (S) et (S) est L

Plus en détail

THEME 14 (bis) : TRIANGLE RECTANGLE (2) CERCLE CIRCONSCRIT - MEDIANE

THEME 14 (bis) : TRIANGLE RECTANGLE (2) CERCLE CIRCONSCRIT - MEDIANE THEME 14 (bis) : TRINGLE RETNGLE (2) ERLE IRNSRIT - MEINE Exercice n 1 : onstruis le triangle NMP rectangle en N, ainsi que son cercle circonscrit, sachant que MN = et PN = 4 cm. M Si un triangle est rectangle

Plus en détail

Annales de géométrie dans l espace - Corrigé

Annales de géométrie dans l espace - Corrigé Annales de géométrie dans l espace - Corrigé Pondichéry Avril 2013 (4 points) Pour chacune des questions, quatre propositions de réponse sont données dont une seule est exacte. Pour chacune des questions

Plus en détail

THEOREME DE THALES (1) EQUATION (2)

THEOREME DE THALES (1) EQUATION (2) - M THM N 2 : THORM THLS () QUTION (2) xercice n : x 7 8 x 7 8 x 2 x 2 x x 2 2 x x 2 x 2 2 x 0 x x 7 x 7 7 x x 2 x 2 2 2 x 2 2 x 2 x 4, x 4 89 89 x x 89 x x 89 x + 2 0 ( x + ) 2 0 x + 20 x 20 x x 4 2 x

Plus en détail

Classe de 4ème. Les théorèmes de la droite des milieux Théorème de Thalès

Classe de 4ème. Les théorèmes de la droite des milieux Théorème de Thalès lasse de 4ème hapitre 4 Les théorèmes de la droite des milieux Théorème de Thalès. Milieu d un segment Définition : Le point est le milieu du segment [] signifie que les points, et sont alignés dans cet

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

cours de mathématiques en seconde

cours de mathématiques en seconde cours de mathématiques en seconde Vecteurs, translations et coordonnées dans le plan 0 Point de vue historique : Le mot «vecteur» vient du latin «vehere» (conduire, transporter) La notion de vecteur est

Plus en détail

Collège Sainte-Croix. Programme de mathématiques niveau standard

Collège Sainte-Croix. Programme de mathématiques niveau standard Programme de mathématiques niveau standard Mathématiques niveau standard 1/5 Juin 2015 Première année Algèbre Notions de base : ensembles de nombres, opérations sur les ensembles, intervalles, fractions

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

Cercle et constructions aux compas (triangles, milieu)

Cercle et constructions aux compas (triangles, milieu) ercle et constructions aux compas (triangles, milieu) I. Le cercle 1/ L'essentiel ctivités Placer un point puis construire, à la règle, le plus de points possibles situés à 2,3 cm de. Que remarque-t-on?

Plus en détail

Réponse BC² = AB² + AC. Réponse

Réponse BC² = AB² + AC. Réponse 1 Théorème de Pythagore Si un triangle est rectangle alors le carré de son hypoténuse est égal à la somme des carrés des côtés de l angle droit. Si un triangle est rectangle alors le carré de son hypoténuse

Plus en détail

BREVET BLANC. Épreuve de MATHÉMATIQUE. Durée : 2 heures

BREVET BLANC. Épreuve de MATHÉMATIQUE. Durée : 2 heures REVET LAN Épreuve de MATHÉMATIQUE Durée : heures Année scolaire 008 009 Mercredi 8 avril 009 Exercice 1 PREMIÈRE PARTIE ATIVITÉS NUMÉRIQUES (1 points) es trois exercices sont indépendants. Rédigez avec

Plus en détail

Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel)

Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel) Le théorème de Pythagore et le cercle circonscrit au triangle rectangle (Rappel) I) Le théorème de Pythagore 1) Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse.

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ].

Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ]. I. La symétrie axiale : Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ]. Par conséquent, d est perpendiculaire à

Plus en détail

GEOMETRIE ANALYTIQUE DANS L ESPACE EXERCICES CORRIGES

GEOMETRIE ANALYTIQUE DANS L ESPACE EXERCICES CORRIGES EMETRIE NLYTIQUE NS L ESPE EXERIES RRIES Exercice n. Un cube EFH est représenté ci-contre : Les quadruplets de points suivants déterminent-ils un repère de l'espace? e repère est-il orthonormal? ) a) (,,,H)

Plus en détail

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées Les Dérivées exercice 1 Trouver la (ou les) réponse(s) exacte(s) : Le plan est muni d'un repère (O,, ); C 3 f désigne la courbe représentative de la fonction f dans ce repère : f la fonction définie par

Plus en détail

Symétrie axiale Symétrie par rapport à une droite Cours

Symétrie axiale Symétrie par rapport à une droite Cours Symétrie axiale Symétrie par rapport à une droite Cours Sont abordés dans ce cours : (cliquez sur le chapitre pour un accès direct) CHAPITRE 1 : symétrie axiale et figures symétriques par rapport à une

Plus en détail

Exercice 5 Seconde/Géométrie-analytique/exo-020/texte

Exercice 5 Seconde/Géométrie-analytique/exo-020/texte åò ÓäÒ ê Exercice 1 /Géométrie-analytique/exo-00/texte ans un repère orthonormé (O, I, ), on considère les points (; 8), B ( ; ) et (x; 7). 1. alculer x pour que le triangle B soit rectangle en B.. alculer

Plus en détail

COURS : LA SYMÉTRIE AXIALE

COURS : LA SYMÉTRIE AXIALE HPTRE 7 OURS : L SYMÉTRE XLE Extrait du programme de la classe de Sixième : ONTENU Symétrie orthogonale par rapport à une droite (symétrie axiale) OMPÉTENES EXGLES -onstruire le symétrique d un point,

Plus en détail

Calculs dans le triangle rectangle

Calculs dans le triangle rectangle alculs dans le triangle rectangle 10 De nombreuses situations de la vie professionnelle nécessitent le calcul de longueurs ou d angles. itons par exemple : pour une charpente, le calcul de la longueur

Plus en détail

I. Se repérer sur le cercle trigonométrique (2 nde )

I. Se repérer sur le cercle trigonométrique (2 nde ) ère S FCHE n Trigonométrie. Se repérer sur le cercle trigonométrique ( nde ) L idée + d n enroule la droite d autour d un cercle de centre et de rayon comme ci-dessus. A chaque point d abscisse sur la

Plus en détail

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

SÉRIE TRIANGLES : CHAPITRE G2. 1 Calcule la mesure de l'angle manquant. A

SÉRIE TRIANGLES : CHAPITRE G2. 1 Calcule la mesure de l'angle manquant. A ÉI 1 : ÉI D 1 alcule la mesure de l'angle manquant. 4 es figures suivantes sont tracées à main levée. our chacune d'elles, indique si elles sont 80 a... constructibles ou non. Justifie ta réponse.... a....

Plus en détail

Ces quelques formules sont censées être sues à la fin de la classe de quatrième!

Ces quelques formules sont censées être sues à la fin de la classe de quatrième! Ces quelques formules sont censées être sues à la fin de la classe de quatrième! I. Multiplication et division de nombres relatifs Le produit (ou le quotient) de deux nombres de même signe est positif.

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires TABLE DES MATIÈRES Fonctions carrée et inverse. Autres fonctions élémentaires Paul Milan LMA Seconde le 6 février 200 Table des matières La fonction carrée 2. Fonction paire................................

Plus en détail

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE

DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION. ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE DIRECTION DE L ÉVALUATION ET DE LA PROSPECTIVE SOUS - DIRECTION DE L ÉVALUATION K ÉVALUATION À L ENTRÉE EN 5 e MATHÉMATIQUES CAHIER DE L ÉLÈVE NOM DE L ÉLÈVE... PRÉNOM DE L ÉLÈVE... N DE LA CLASSE... 2003

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail