CHAPITRE 2 SUITES NUMÉRIQUES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 2 SUITES NUMÉRIQUES"

Transcription

1 CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ), ou (u n ) n N. Remarque :. Dans certains cas on ne prend qu une partie de N. 2. Si l ensemble d arrivée est C, (u n ) sera dite suite complexe. 3. Tous les résultats donnés feront référence à des suites réelles. Les résultats cependant valables pour les suites complexes, et dont les démonstrations ne subissent aucunes modifications suite aux différences entre la valeur absolue et le module, seront indiqués par une astérisque. 2. Suites monotones Définition 2.. Soit (u n ) une suite de nombres réels. On dit que (u n ) est croissante (resp. décroissante) si n N, u n+ u n (resp. u n+ u n ). De plus, (u n ) est dite monotone si elle est croissante ou décroissante. Enfin, l adverbe strictement s applique si ce sont les inégalités strictes qui sont vérifiées. Remarques : On peut définir la monotonie à partir d un certain rang, ce qui peut s avérer très pratique par exemple dans l étude des limites ; Pour étudier la monotonie d une suite (u n ), on peut :. étudier le signe de u n+ u n pour tout n, 2. comparer le quotient u n+ pas de termes nuls, u n à (pour tout n), à condition que la suite (u n ) ne comporte 3. étudier les variations de la fonction f s il existe f telle que f(n) = u n. Exemples :

2 2 CHAPITRE 2. SUITES NUMÉRIQUES. Soit (u n ) n N la suite de terme général u n = n 2. Pour tout n N, u n+ u n = (n + ) 2 n 2 = (n + n)(n + + n) = 2n + > 0 u n+ > u n. La suite (u n ) est donc strictement croissante. Pour tout n N, ( ) 2 ( u n+ (n + )2 n + = = = + 2 > u n n 2 n n) u n+ > u n. 2. Soit (u n ) n N la suite de terme général u n = ln n n 2. Soit f la fonction définie sur R + par f(x) = ln x ln x, sa dérivée vaut (2 ln x) x2 x. Cette 2 fonction est strictement décroissante ( ) sur l intervalle ] e 2, + [, (e 2 7, ). Par ln n conséquent, la suite (u n ) = est strictement décroissante pour n 8. n 2 (Remarque : la suite est strictement décroissante pour n 7 ). 2.2 Suites bornées. Une suite (u n ) est dite majorée, s il existe M R tel que n N, u n M. 2. Une suite (u n ) est dite minorée, s il existe m R tel que n N, u n m. n Exemple Soit la suite (u n ) définie par u n = p(p + ), on a : u n = = p= n p(p + ) = n(n + ) ( p= ) ( ) ( n ) n + = n + Finallement, n N, 2 u n, notre suite est minorée par et c est un minimum 2 puisque u = 2 et elle est croissante, car u n+ u n = (n + )(n + 2) > 0. La suite est majorée par et ce n est pas un maximum, car u n = n + = Définition 2.2. * Soit (u n ) une suite de nombres réels. On dit que (u n ) est bornée si n N, M > 0 / u n < M.. n n +. La suite (u n ) définie par u n = sin n + cos n est bornée, en effet on a n N, u n 2. Montrer que l ensemble A = {u n, n N}, a pour bornes supérieure et inférieure ± 2 mais n a ni maximum ni minimum.

3 2.3. SUITES PÉRIODIQUES Suites périodiques Définition 2.3. * Une suite (u n ) est dite périodique, s il existe un nombre p N tel que n N, u n+p = u n. Exemples :. Soit (u n ) la suite de terme général u n = ( ) n, on a n N, u n+2 = ( ) n+2 = ( ) n ( ) 2 = u n. La suite u n est périodique de période égale à La suite u n de terme général u n = sin n, n a pas de période, car dans R la fonction sin x a pour période p = 2π; or 2π n est pas un entier. Remarques : Une suite de période p, ne prend qu un nombre fini de valeurs à savoir u 0, u,..., u p. La réciproque est fausse, par exemple u 0 = 3, u =, u 2 = 4, u 3 =, u 4 = 5,..., u 32 = 0,... où u n est le n ème chiffre après la virgule dans l écriture décimale du nombre π. (π 3, ) La suite ne prend évidemment que les nombres {0,, 2, 3, 4, 5, 6, 7, 8, 9}. Pour les nombres rationnels, à partir d un certain rang la suite est périodique. Elle sera considérée comme suite périodique. Pour les décimales du nombre , la suite est périodique de période 8 qu à partir de la quatrième décimale, on a n 4, u n = u n = 0, = 0, Convergence des suites numériques Définition * existe l R tel que Une suite (u n ) est dite convergente, et admettant pour limite l R s il ε > 0, N N / n N, u n l < ε. On dit alors que «(u n ) tend (ou converge) vers l», et l on note lim n u n = l ou u n n l. Une suite non convergente est dite divergente. Proposition 2.3. * Si une telle limite existe, alors elle est unique. Supposons qu une suite (u n ) converge vers deux éléments l, l 2 R distincts. On se donne ε > 0. Par hypothèse, on a alors l existence de deux entiers N, N 2 de N tels que n N, u n l < ε/2 et n N 2, u n l 2 < ε/2. Alors, pour tout entier n max(n, N 2 ), on aura l l 2 = l u n + u n l 2 l u n + u n l 2 < ε. Avec ε = l l 2 > 0, on aboutit à la contradiction l l 2 < l l 2, donc l = l 2. Remarque 2 : (u n ) l u n l 0. n n Exemples :

4 4 CHAPITRE 2. SUITES NUMÉRIQUES. Les suites de termes généraux u n = /n et v n = / n (n N ) convergent vers La suite de terme général u n = sin(n π ) (n N) est divergente. 2 Supposons que (u n ) admette pour limite l R. Soit ε = /4. On aurait alors l existence d un entier N N tel que tout n N vérifie u n l < /4. Or tout n N vérifie aussi u n+ u n = (n + )π sin sin n 2 2 π = u n+ l + l u n = /2, ce qui est absurde. Donc (u n ) est bien divergente. Proposition : (i) Toute suite convergente est bornée ; (ii) Toute suite croissante et majorée (resp. décroissante et minorée) est convergente ; (iii) (*) Si (u n ) converge vers l K, alors ( u n ) converge vers l R. (i) Soit ε > 0. Supposons que (u n ) converge vers l R. Alors par définition, il existe N N tel que n N, u n l < ε, c est-à-dire l ε < u n < l + ε. Ainsi, la suite (u n ) prend les valeurs u 0, u,..., u N et des valeurs dans l intervalle ]l ε, l + ε[. Or, puisque l ε et l + ε sont deux réels inférieurs à l + ε (inégalité triangulaire), il vient que pour tout n N, u n sup{ u 0, u,..., u N, l + ε}, et (u n ) est bornée. (ii) Notons M un majorant de (u n ). Soient ε > 0, K = {u n, n N} et l R tel que l = sup(k). K étant non vide et majoré par M, l existe par l axiome de la borne supérieure dans R. Il vient qu il existe un entier n N tel que l ε < u n l < l + ε, soit u n l < ε, et la suite (u n ) converge. (iii) Découle immédiatement de la relation a b a b. Ou encore, découle du théorème 3 vu plus loin, étant donné que l application x x définie sur R y est continue, en particulier au point l. Remarque 2 : La réciproque de la proposition précédente est fausse. En effet, la suite de terme général u n = ( ) n (n N) contredit les trois points : elle n est pas convergente (raisonner par l absurde), mais est bornée (par ), sa valeur absolue converge vers et la sous-suite (u 2n ) converge vers. pour les suites divergentes, nous en distinguerons Définition Une suite (u n ) tend vers + (resp. )si, A > 0, N N / n N, u n > A (resp. u n < A). On dit alors que «(u n ) tend vers +», et l on note lim u n = + ou u n + (resp. n n lim u n = ou u n.) n n

5 2.4. PREMIERS RÉSULTATS IMPORTANTS Premiers résultats importants 2.4. Opérations algébriques Théorème 2.4. (*) : Soient (u n ) et (v n ) deux suites qui convergent respectivement dans R vers l et l, et λ R. Alors : (i) (u n + v n ) converge vers l + l ; (ii) (λu n ) converge vers λl ; (iii) (u n v n ) converge vers ll ; (iv) Si l 0 et s il existe N N tel que n N, v n 0, alors (u n /v n ) converge vers l/l. Il suffit pour chacun des cas de revenir à la définition. Explicitions par exemple (iii). On se donne ε > 0. Notons que la proposition 2 (i) implique en particulier qu il existe un réel M tel que v n M pour tout n N. Par hypothèse, il existe aussi N, N N tels que n N, u n l < ε M + l On a ainsi que pour tout n max(n, N ) et n N, v n l < ε M + l. u n v n ll = u n v n lv n + lv n ll v n u n l + l v n l ε < ( M + l ) M + l = ε, et la suite (u n v n ) converge bien vers la produit ll. Remarque 3 : Les assertions (i) et (ii) traduisent la fait que l ensemble des suites numériques convergentes est un espace vectoriel sur R, et l application qui à toute suite (u n ) associe sa limite est linéaire. 2.5 Limites et relation d ordre Théorème 2.5. (d encadrement) : Soient (u n ), (v n ) et (w n ) trois suites telles que u n v n w n à partir d un certain rang. Si (u n ) et (w n ) convergent vers une limite commune l R, alors (v n ) converge aussi vers l. Soit ε > 0. Il existe trois entiers N, N, N N tels que n N, u n l < ε, n N, w n l < ε et n N, u n v n w n. Alors pour tout n max(n, N, N ), on a que ε u n l v n l w n l < ε, d où la convergence de (v n ) vers l. Proposition 2.5. Soient (u n ) et (v n ) deux suites qui convergent respectivement vers deux réels l et l.. Si u n v n à partir d un certain rang, alors l l. 2. Si l < l alors, à partir d un certain rang u n < v n.

6 6 CHAPITRE 2. SUITES NUMÉRIQUES. Supposons que l > l. Alors à partir d un certain rang, on aurait l > l v n l < v n l u n l v n l < v n l. Les membres de gauche et de droite tendent vers 0, donc par le théorème précédent, (v n ) converge vers l, ce qui est absurde par unicité de la limite, donc l l. 2. Si l < l, alors en prenant ε = 2 (l l) > 0, les intervalles ]l ε, l + ε[ et ]l ε, l + ε[ sont disjoints, et tout élément du premier est strictement inférieur à tout élément du second. Par définition, u n ]l ε, l + ε[ et v n ]l ε, l + ε[ à partir d un certain rang, soit u n < v n. 2.6 Suites adjacentes Définition 2.6. Deux suites réelles (u n ) et (v n ) sont dites adjacentes si l une est croissante, l autre décroissante et si leur différence converge vers 0. Lemme 2.6. : Supposons que (u n ) soit une suite croissante adjacente à (v n ), une suite décroissante. Alors n N, u n v n. Par hypothèse, on a pour tout n que u n u n+ et v n v n+. Alors, toujours pour tout n, (v n+ u n+ ) (v n u n ) (v n u n ) (v n u n ) = 0 v n+ u n+ v n u n, donc la suite (v n u n ) est décroissante et tend vers 0, donc elle est à termes positifs (conséquence de la démonstration précédente), ce qui signifie que pour tout n, v n u n. Théorème 2.6. : Deux suites adjacentes sont convergentes et convergent vers la même limite. Supposons, quitte à échanger les rôles de (u n ) et (v n ), que (u n ) est croissante et (v n ) décroissante. Puisque ces suites sont adjacentes, (u n ) est majorée par v 0 et (v n ) par u 0, ce qui rend ces deux suites convergentes. Notons l et l leurs limites respectives, que l on suppose différentes, de sorte que ε > 0, N N n N u n l < ε ; ε > 0, N N n N v n l < ε. On remarque alors que pour tout n max(n, N ), on a (u n v n ) (l l ) u n l v n l < ε + ε. En posant alors N = max(n, N ) et ε = ε + ε, on a la convergence de (u n v n ) vers l l. Or lim n u n v n = 0 = l l l = l.

7 2.6. SUITES ADJACENTES 7 Remarque 2 : Si (u n ) et (v n ) sont deux suites adjacentes qui convergent vers une limite l R, alors u n et v n sont des valeurs approchées de l respectivement par défaut et par excès (en supposant (u n ) croissante et (v n ) décroissante), avec une erreur inférieure à ε n = v n u n. Exercice : Soit (u n ) n N et (v n ) n N deux suites de terme général u n = n k=0 k! et v n = u n + n n!. Montrer que ces suites sont adjacentes, déterminer leur limite commune et donner un encadrement de cette limite à 0 3 près. Solution : Pour tout n N, on a u n+ u n = n+ k=0 et v n+ v n = u n+ + De plus, pour tout n N, n k! k=0 k! = (n + )! > 0 (n + ) (n + )! un n n! = (n + )! (n + ) 2 n n(n + ) (n + )! = n(n + ) (n + )2 + n n(n + ) (n + )! = n2 + 2n (n + ) 2 n(n + ) (n + )! v n u n = n n! n 0. D après ces trois calculs, les suites (u n) et (v n) sont bien adjacentes. Il vient directement que lim n un = lim vn = l. n = n(n + ) (n + )! < 0. Enfin, puisqu un encadrement de e est donné par v n u n, il suffit de déterminer n tel que v n u n 0 3. Or v n u n 0 3 n n! 0 3. Déterminons cette quantité pour les premières valeurs de n (en effet, vu la croissance fulgurante de la fonction factorielle, nous n aurons certainement pas besoin de calculer cette quantité pour plus de 5 valeurs de n). Enfin, on calcule u 6 et v 6 : Finalement, 2, 7806 l 2, Pour la limite, rappelons un résultat d analyse ( voir cours sur les développements limités), n N, +! + 2! + 3! + n! < e < +! + 2! + 3! + n! + 3 (n + )!. D où l = e, et donc e = 2, Nous venons de déterminer une valeur approchée d un nombre réel non rationnel grâce à une suite de nombres rationnels Suites extraites Définition *Toute suite (u ϕ(n) ) où ϕ : N N est une application strictement croissante, est appelée suite extraite (ou sous-suite) de (u n ).

8 8 CHAPITRE 2. SUITES NUMÉRIQUES Proposition 2.6. :* Toute suite extraite d une suite (u n ) convergente converge vers la même limite. ϕ étant strictement croissante, on a que pour tout entier naturel n, ϕ(n) n. Soit ε > 0. Alors il existe N N tel que u n l < ε. Or ϕ(n) n N, donc on a aussi u ϕ(n) l < ε, d où le résultat. Proposition :(*) Soient (u n ) une suite et l K. Pour que (u n ) converge vers l, il faut et il suffit que les deux sous suites (u 2n ) et (u 2n+ ) convergent vers l. La condition est nécessaire (proposition précédente). Montrons qu elle est suffisante : donnonsnous ε > 0. Il existe alors deux entiers N, N N tels que n N, u 2n l < ε et n N, u 2n+ l < ε. Par suite, si n 2 max(n, N ), alors u n l < ε (il suffit de distinguer le cas n pair et n impair), donc (u n ) converge vers l. 2.7 Composition par une fonction continue Théorème 2.7. : Si f est une fonction continue en l, limite d une suite (u n ), alors la composée f(u n ) converge vers f(l). Soit ε > 0. La continuité de l application f en l nous amène à écrire qu il existe η > 0 tel que u n l < η f(u n ) f(l) < ε. De plus, la convergence de (u n ) vers l se traduit par ε > 0, N N n N = u n l < ε. En particulier, avec ε = η, on aboutit à l implication n N f(u n ) f(l) < ε, ce qui prouve bien que ( f(u n ) ) converge vers f(l). Proposition 2.7. :(*) Soient I R, f : I R une application et (u n ) une suite définie par récurrence par u 0 I et u n+ = f(u n ) pour tout n N et convergeant vers l R. Si f est continue en l, alors l est point fixe de f. La convergence de (u n ) vers l implique deux choses : la première est que la suite (u n+ ) converge aussi vers l (proposition 4), et la seconde est que f(u n ) converge vers f(l) (théorème précédent) par continuité de f en l. Or u n+ = f(u n ), et on en déduit par unicité de la limite que l = f(l). Exemple : Soit (u n ) la suite définie par récurrence par u 0 = et u n+ = 2 + u n = f(u n ) pour tout n N. f est continue sur [ 2, + [, et l on montre par récurrence que pour tout n N, 0 < u n 2. Or u n+ u n = 2 + u n u n = (2 u n)( + u n ) 2 + un + u n > 0, donc (u n ) est croissante et majorée, donc convergente (proposition 2 (ii)) vers une limite l [0, 2] qui vérifie f(l) = l par la proposition précédente. Nécessairement, l = 2.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Chapitre 7 Suites de nombres réels et complexes

Chapitre 7 Suites de nombres réels et complexes Chapitre 7 Suites de nombres réels et complexes I - Généralités sur les suites réelles I.1 - Dénition et Structure Définition 1 (Suite). Une suite réelle u est une application de N dans R. Pour tout n

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 3 : Suites numériques Équipe de Mathématiques Appliquées UTC Juillet 2014 suivant Chapitre 3 Suites numériques 3.1 Définition, convergence, propriétés......................

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Suites et séries numériques.

Suites et séries numériques. Licence MIEE, Module AN2 Suites et séries numériques. L - 200-20 - S2/S4 Résumé de cours Chapitre Premières propriétés des nombres réels.. Introduction Vous avez déjà rencontré des ensembles de nombres

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

u n = u n 1 + u n 2, (1)

u n = u n 1 + u n 2, (1) Chapitre II Suites II.a. Introduction Définition 21 (suite) Une suite est une fonction (cf. déf. 35) u de N dans un ensemble E. Notation Pour mettre en évidence le fait que l ensemble de départ est N,

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Chapitre 4. Suites réelles

Chapitre 4. Suites réelles Département de mathématiques et informatique L1S1, module A ou B Chapitre 4 Suites réelles Emmanuel Royer emmanuel.royer@math.univ-bpclermont.fr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

Corrigés d exercices pour le TD 5

Corrigés d exercices pour le TD 5 Corrigés d exercices pour le TD 5 Compacts? Les ensembles suivants sont-ils compacts? Justifier la réponse. 1. Z, dans l espace métrique R muni de la distance discrète. 2. {0, 1}, dans l espace métrique

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

Math 104 ANALYSE (première partie) Université Paris Sud Orsay

Math 104 ANALYSE (première partie) Université Paris Sud Orsay Math 104 ANALYSE (première partie) Université Paris Sud Orsay 2015 2016 Notes de cours de José Montesinos préparées à partir du précédent Polycopié de Math 104 de Thierry Ramond Table des matières 1 La

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui Rappels de cours M1 Enseignement, Analyse M71 Rachid Regbaoui 2 Chapitre 1 Rappels sur les suites et séries numériques 1.1 Suites numériques 1.1.1 Généralités Dans la suite K désignera le corps des réels

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Limites et Continuité

Limites et Continuité Voisinages, Points adhèrents Limites Fonctions continues Les grands théorèmes sur les fonctions continues Département de Mathématiques, Faculté des Sciences de Fès. Octobre 2013 Voisinages, Points adhèrents

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

3 Limites de suites. Manuel Repères p.12.

3 Limites de suites. Manuel Repères p.12. 3 Limites de suites Manuel Repères p.12. Objectifs : Comprendre les notions de suites divergentes, convergentes Savoir déterminer un rang à partir duquel les termes d une suite dépassent un certain seuil

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n )

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n ) EXERCICES SUR LES SUITES VERIFIANT 1. Soit la fonction f définie sur R par f(x) = 1 2 (1+x2 ). Montrer que la suite (u n ) n 0 définie par la relation de récurrence est croissante quel que soit u 0 réel.

Plus en détail

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B EXERCICES 1 Soit E l ensemble des rationnels inférieurs à 2. 1 - Montrer que E admet une borne supérieure M dans R. 2 - Montrer que M = 2 (on pourra raisonner par l absurde). 3 - E est-il une partie fermée

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014 Chapitre 8 : Suites PTSI B Lycée Eiffel janvier 4 Toute la suite des hommes doit être considérée comme un même homme. Blaise Pascal. Deux suites adjacentes décident d aller s éclater dans une soirée «no

Plus en détail

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle DOCUMENT 36 Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle Une propriété importante des fonctions exponentielles est qu elles sont solutions de

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

LIMITES À PARTIR DES SUITES DE RÉFÉRENCE

LIMITES À PARTIR DES SUITES DE RÉFÉRENCE LIMITES À PARTIR DES SUITES DE RÉFÉRENCE Marc JAMBON Université de la Réunion 1. Introduction Après une période d une vingtaine d années (1960 à 1980) où l on a connu une formalisation de l enseignement

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Formule de Taylor-Lagrange

Formule de Taylor-Lagrange Formule de Taylor-Lagrange Exercice. Soit x un réel strictement positif et f une fonction sur [0, x].. Quelles sont les hypothèses qui permettent d écrire la formule de Taylor-Lagrange pour f sur [0, x]

Plus en détail

Corrigés d exercices pour les TD 1 et 2

Corrigés d exercices pour les TD 1 et 2 Corrigés d exercices pour les TD et 2 Soit E = C 0 ([0, ]; R) et A = {f E; f(x) 0 pour tout x [0, ]}.. Montrer que les applications qui à tout élément (f, g) E 2 associent respectivement d (f, g) = définissent

Plus en détail

valeurs dans un espace normé de dimension finie

valeurs dans un espace normé de dimension finie Séries numériques, ou séries à valeurs dans un espace normé de dimension finie Définitions. Dans ce chapitre K représente indifférement le corps des réels R, ou le corps des complexes C. Le symbole E représente

Plus en détail

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme.

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme. Séries numériques I) Définitions - Notions essentielles.) Séries numériques Définition Soit une suite numérique. On appelle série de terme général la suite dont les termes successifs sont : ₀ ₀ ₁ ₀ ₁ ₂

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques Université Denis Diderot - Paris 7 Année 2013-2014 L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri Suites numériques 1. Limites de suites complexes Définition 1. Une suite complexe est une application

Plus en détail

Pour remettre un peu d ordre dans R

Pour remettre un peu d ordre dans R Arnaud de Saint Julien - MPSI Lycée La Merci 016-017 1 1 Relation d ordre sur R 1.1 Vocabulaire Pour remettre un peu d ordre dans R Sur R, on dispose de la relation de comparaison. On dit que c est une

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc.

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc. 1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière SMIA : Exercices avec Corrigés Analyse 1 : Par BENAZZOUZ HANA Série1

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Orsay IFIPS S2 Mathématiques (M160). Table des matières. 1. Suites numériques.

Orsay IFIPS S2 Mathématiques (M160). Table des matières. 1. Suites numériques. Orsay 2008-2009 IFIPS S2 Mathématiques (M60). COURS DE MATHÉMATIQUES : SUITES NUMÉRIQUES. Table des matières. Suites numériques... Définition..2. Opérations sur les suites. 3.3. Suites majorées, minorées,

Plus en détail

III Somme de deux séries entières, produit par un scalaire 5

III Somme de deux séries entières, produit par un scalaire 5 Séries entières I Généralités I.A Définition........................................... I.B Lemme d Abel........................................ 2 I.C Rayon de convergence d une série entière..........................

Plus en détail

3.1. Le corps des nombres réels Borne supérieure, borne inférieure Généralités sur les suites

3.1. Le corps des nombres réels Borne supérieure, borne inférieure Généralités sur les suites 3. Nombres réels, suites numériques 3.1. Le corps des nombres réels 3.1.1. Le groupe (IR, +) 3.1.2. L anneau (IR, +, ) 3.1.3. Le corps (IR, +, ) 3.1.4. Nombres rationnels ou irrationnels 3.1.5. Relation

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Suites réelles. 1 Introduction, généralités Définitions fondamentales, vocabulaire Structure Premières définitions...

Suites réelles. 1 Introduction, généralités Définitions fondamentales, vocabulaire Structure Premières définitions... Suites réelles Mickaël Péchaud 2008 Table des matières 1 Introduction, généralités 4 1.1 Définitions fondamentales, vocabulaire.......................... 4 1.2 Structure..........................................

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail