Chapitre trois : Cinématique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre trois : Cinématique"

Transcription

1 Chapitre trois : Cinématique 3.1 Objet de la cinématique 3.2 Le temps et l espace 3.3 La trajectoire 3.4 Le vecteur-position et vecteur-vitesse 3.5 Le vecteur-accélération 3.6 Composantes du vecteur-vitesse et accélération en coordonnées cartésiennes 3.7 Composantes du vecteur-vitesse et accélération en coordonnées polaires 3.8 Composantes du vecteur-vitesse et accélération en coordonnées cylindriques 3.9 Composantes du vecteur-vitesse et accélération en coordonnées sphériques 3.10 Exemples de mouvements 3.1 Objet de la cinématique La cinématique : est l étude des mouvements d un corps indépendamment de toutes causes capables de le provoquer ou de le modifier. La dynamique établit les relations ente les causes du mouvement et leurs effets. 3.2 Le temps et l espace Un repère : c est un ensemble de points rigidement liés les uns aux autres permettant de définir un repérage de l espace Un référentiel (R) : il est composé d un repère et d une horloge permettant de définir un repérage des instants ou des durées 3.3 La trajectoire C est généralement une courbe et le mobile peut être repéré de différentes manières : par rapport à une origine fixe O par un vecteur-position (rayon-vecteur) 1/25

2 par rapport à un repère orthonormé quelconque Oxyz 2/25

3 3/25

4 4/25

5 3.4 Vecteur-position et vecteur-vitesse Déterminons la variation du rayon vecteur entre t et t. Le vecteur-vitesse moyenne est égale à la variation du vecteur OM divisé par l intervalle de temps (t -t) Si on fait tendre δt vers zéro, on obtient la vitesse instantanée. 5/25

6 [v] = LT -1 est tangent à la trajectoire si M tend vers M c'est-à-dire soit : Le vecteur vitesse est toujours tangent à la trajectoire. On peut donc écrire :, ( vecteur unitaire et tangent à la trajectoire). a même direction et sens que 3.5 Le vecteur-accélération 6/25

7 On définit le vecteur-accélération moyen par : et le vecteur-accélération instantanée par : C est la dérivée du vecteur vitesse. [a] = LT -2 Attention : Ne pas confondre dx 2 = dx. dx infiniment petit au carré : c est un carré, dimension de x au carré. d² x = d(dx) infiniment petit du 2 ordre : c est la dimension de x. d(x 2 )= 2x. dx dimension de x au carré. 3.6 Composantes des vecteurs-vitesse et accélération en coordonnées cartésiennes 7/25

8 Les coordonnées cartésiennes du point M sont (x,y,z) Vecteur position (rayon vecteur) Le vecteur-position est donnée par : La base est Les vecteurs de base ne changent pas de direction ni de sens, ni de norme au cours du temps. Leurs dérivées par rapport au temps sont nulles. Elément de longueur L élément de longueur peut s écrire : 8/25

9 9/25

10 Elément de volume L élément de volume est donné par : Calculons le volume d un parallélépipède de coté a, b et c en faisant varier x de 0 à a y de 0 à b et finalement z de 0 à c en utilisant l élément de volume on obtient alors : Vecteur-vitesse 10/25

11 Vecteur-accélération Le vecteur-accélération est donné par : 11/25

12 3.7 Composantes des vecteurs-vitesse et accélération en coordonnées polaires Les coordonnées polaires de M sont : Vecteur position (rayon vecteur) La base est : avec 12/25

13 ; ;, en général n est pas tangent à la trajectoire. La base est une base mobile, changent de direction au cours du temps. Passage en coordonnées cartésiennes Le passage des coordonnées polaires aux coordonnées cartésiennes se fait en projetant le point M sur les axes. On peut aussi passer des coordonnées cartésiennes aux coordonnées polaires. 13/25

14 Vecteur-vitesse Rappel mathématique : Comment dériver un vecteur unitaire tournant (variable)? Quand on dérive un vecteur unitaire par rapport à son angle polaireθ, on obtient un vecteur unitaire perpendiculaire au premier. 14/25

15 Vecteur-accélération Rappel mathématique : Comment dériver un produit de trois fonctions? 15/25

16 Elément de longueur Elément de surface 16/25

17 Calculons le volume d un disque de rayon R, en faisant varier r de 0 à R et θ de 0 à 2π. En utilisant l élément de volume on obtient alors : 3.8 Composantes des vecteurs-vitesse et accélération en coordonnées cylindriques Les coordonnées cylindriques du point M sont 17/25

18 Les trois coordonnées n ont pas la même dimension. La base est : mobile. sont des vecteurs variables ; ils varient au cours du temps suivant la position du est un vecteur constant, il conserve la même direction et le même sens quelque soit la position du mobile. Vecteur position (rayon vecteur) Si M subit une variation infiniment petite qui le fait passer de M à M, alors, respectivement de à + d ; de à + d et z à z + dz M(,,z) M ( + d, + d, z + dz) Déterminons le vecteur-vitesse. et z varient Vecteur-vitesse 18/25

19 Vecteur Accélération Passage en coordonnées cartésiennes 19/25

20 On peut alors déterminer les composantes cartésiennes de la vitesse en fonction des coordonnées cylindriques. Eléments de longueur 20/25

21 z z M M IPSA M. Bouguechal cours de Physique I 22 Elément de surface Elément de volume 21/25

22 Calculons le volume d un cylindre de rayon R et de hauteur h. En utilisant l élément de volume en intégrant ρ de 0 à R, z de 0 à h et θ de 0 à 2π, on balaie le cylindre de rayon a et de hauteur h. Exemple : (t) = R z=0 OM = Ru + 0u z du = du d = (-u ) du = du d = (-u ) dt d dt dt d dt V = R u = R u a = R u - R ²u accélération centripète normale accélération tangentielle si le mouvement est uniforme = = cst a = -R ²u = -R ²u = -v²/r (car v = R ) 22/25

23 formule de passage des coordonnées cylindrique ( ; ; z) aux coordonnées cartésiennes x = cos y = sin z = z z z=z M O k y = sin y x = cos i j x v x = dx = cos - dt v y = dy = sin + dt v z = z sin cos v = v x ² + v y ² + v z ² = ² + ( )² + z ² 3.9 Composantes des vecteurs-vitesse et accélération en coordonnées sphériques 23/25

24 M(r ; ; ) r base (U r ;U ;U ) dv=(rd )(dr)(rsin d ) dv = r²sin drd d soit une sphère de rayon R calculons son volume v v= R r=0 =0 2 =0 r²sin drd d v= R r=0 r²dr =0 sin d 2 =0 d v=[r 3 ] r 0 [-cos ] 0 [ ] 2 0 = R = 4 R 3 [ 3] 3 3 OM = ru r dl = MM = dru r + rd u +rsin d u élément de longueur en coordonnée sphérique vitesse v = dl = MM = dom dt dt dt v = r * u r + r * u + rsin * u (la dérivé de u r ne donne pas u car l angle polaire de u r n est pas connu et la variation de u r se fait dans l espace) 24/25

25 Relations avec les coordonnées cartésiennes x = rsin cos y = rsin sin z = rcos v x = r * sin cos + r * cos cos - r * sin sin v y = r * sin sin + r * cos sin + r * sin cos v z = r * cos - r * sin 3.10 Exemples de mouvements Un point M décrit une hélice circulaire d axe oz. Son mouvement est donné par : x = acos y = asin z =h a : rayon du cylindre de révolution sur lequel est tracé l hélice h : une constante z h=2 h /2 a a y x x=a x=0 x=a =0 y=0 = /2 y=a =2 y=0 z=0 z=h /2 z=2h à chaque tour on monte de 2 a) déterminer le vecteur position en coordonnée cylindrique OM = OH + HM = au r + h u z b) déterminer le vecteur vitesse et sa norme en coordonnée cylindrique v = a * u + h * u z v = ((a * u )² + (h * u z )²) 1/2 25/25

26 c) déterminer le vecteur accélération et sa norme en coordonnée cylindrique a = a ** u -a * ²u r + h ** u z a = -a * ²u r + a ** u + h ** u z d) Que deviennent les formules si le mouvement est uniforme? 26/25

27 Coordonnées cartésiennes Coordonnées d un point M M(x,y,z) x : abscisse y : ordonnée z : côte Vecteurs de base ( i, j, k ) ou ( u x, u y, u z ) Eléments de base dx dy Dz Eléments de surface ( 3 faces ) ds 1 ds 2 ds 3 dy.dz dx.dz dx.dy Variation élémentaire du vecteur position dl d OM MM ' OM ' Volume élémentaire : OM dv dx. dy. dz Vecteur position OM r 27/25

Chapitre II : Cinématique du point matériel Système de coordonnées

Chapitre II : Cinématique du point matériel Système de coordonnées MECANIQUE DU POINT MATERIEL Chapitre II : Cinématique du point matériel Système de coordonnées Pr Fatima BOUYAHIA 1 ère Année Cycle Préparatoire II1 Notations et définitions II Systèmes usuels de coordonnées

Plus en détail

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes.

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cinématique Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cette discipline de la mécanique fait appel à la géométrie analytique et au calcul infinitésimal.

Plus en détail

CINÉMATIQUE DU POINT

CINÉMATIQUE DU POINT CINÉATIQUE DU POINT La cinématique est la partie de la mécanique qui étudie les mouvements, indépendamment des causes qui les provoquent. 1. RAPPELS 1.1 Caractère relatif du mouvement a. Observations Considérons

Plus en détail

Cinématique du point

Cinématique du point Notes de Cours PS 91 Cinématique du point La cinématique du point est l étude du mouvement d un point matériel indépendamment des causes de ce mouvement. En pratique l approximation du point matériel peut

Plus en détail

PCSI Définition : la cinématique est l étude et la description des mouvements des corps sans préoccupation des causes qui les produisent.

PCSI Définition : la cinématique est l étude et la description des mouvements des corps sans préoccupation des causes qui les produisent. 1 PCS 2015 2016 Quelques notions de cinématique 1. bjet et cadre de l étude Définition : la cinématique est l étude et la description des mouvements des corps sans préoccupation des causes qui les produisent.

Plus en détail

Cinématique espace Chapitre 1 Plan du chapitre CHAPITRE 1. CINÉMATIQUE 7

Cinématique espace Chapitre 1 Plan du chapitre CHAPITRE 1. CINÉMATIQUE 7 CHAPITRE 1. CINÉMATIQUE 7 Chapitre 1 Cinématique Plan du chapitre La Cinématique est la partie de la Mécanique qui étudie la description des mouvements, sans se demander quelles en sont les causes (ce

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Afin de décrire le mouvement d un solide, il faut : Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 16 : Cinématique - Mouvement d un point au cours du temps. Comment décrire le

Plus en détail

Cinématique des solides

Cinématique des solides Cinématique des solides 1- Positions Définir une position n a un sens que si l on précise par rapport à quoi se réfère cette position. Le référent est un repère ou un solide. Pour définir une position

Plus en détail

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel Mécanique I 1TPC Exercice 1 Définitions 1. Qu est-ce qu un référentiel? Pourquoi doit-on le définir avant de parler de mouvement? Qu est-ce qui distingue un repère et un référentiel? 2. Définir une base,

Plus en détail

Chapitre 1. La Cinématique

Chapitre 1. La Cinématique Chapitre 1. La Cinématique La cinématique étudie le mouvement des corps sans se soucier des causes qui l ont produit (c est à dire des forces responsables de la mise en mouvement). 1.1. Référentiel d étude

Plus en détail

Intégrales curvilignes

Intégrales curvilignes IUT Orsay Mesures Physiques Intégrales curvilignes Cours du ème semestre A L intégrale curviligne de première espèce A-I Longueur d un élément différentiel de courbe 1 Le cas des équations paramétriques

Plus en détail

Mouvement Rectiligne

Mouvement Rectiligne Mouvement Rectiligne Etude cinématique dynamique Enoncés Exercice 1 (Etude du mouvement rectiligne d un point matériel) Un mobile M effectue un mouvement dans le plan (O, x, y) muni d un repère R (O, i,

Plus en détail

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques Résumé de Cours 18 Courbes et Coniques Ici, P est le plan euclidien rapporté à un repère orthonormé R := (O, i, j). I Etude affine Une courbe paramétrée est une application γ = M d un intervalle I dans

Plus en détail

Mécanique Chapitre 1 : Cinématique du point matériel

Mécanique Chapitre 1 : Cinématique du point matériel Lycée François Arago Perpignan M.P.S.I. 2012-2013 Mécanique Chapitre 1 : Cinématique du point matériel On se place dans le cadre de la mécanique classique (newtonienne) qui convient très bien pour expliquer

Plus en détail

Chapitre VI : Gradient d une fonction

Chapitre VI : Gradient d une fonction Chapitre VI : Gradient d une fonction de : Après une étude attentive de ce chapitre, vous serez capable donner la signification du vecteur grad f calculer le vecteur grad f lorsque f est donnée en cartésienne,

Plus en détail

Mécanique du point matériel TD1

Mécanique du point matériel TD1 UNIVERSITE CADI AYYAD CP 1 ère année 2015-2016 ENSA- MARRAKECH Mécanique du point matériel TD1 Questions de cours : On considère une courbe sur laquelle se déplace un point matériel d abscisse curviligne

Plus en détail

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace»

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace» Chapitre 9 truc Géométrie dans l espace Complément au chapitre «géométrie élémentaire du plan et de l espace» Prérequis On suppose ici connue toute la géométrie de collège et de lycée, en particulier les

Plus en détail

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente?

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente? Transition 1 ère S Terminale S 1] Trigonométrie Dans toute la suite on admettra que : cos ( π { 2 ) = 0 sin ( π 2 ) = 1 1) Déterminez la valeur de cos ( π 4 ), sin (π 4 ), cos (π 8 ) et sin (π 8 ). 2)

Plus en détail

Chap.1 Cinématique du point matériel

Chap.1 Cinématique du point matériel Chap.1 Cinématique du point matériel 1. Point matériel et relativité du mouvement 1.1. Notion de point matériel 1.2. Relativité du mouvement - Notion de référentiel 1.3. Trajectoire dans un référentiel

Plus en détail

Mouvement, vitesse et accélération

Mouvement, vitesse et accélération Mouvement, vitesse et accélération Notions et contenus Référentiels, trajectoires, vitesse, vitesse angulaire, accélération. Capacités exigibles - Mesurer des vitesses et des accélérations. - Écrire et

Plus en détail

I. Comment choisir le référentiel d étude?

I. Comment choisir le référentiel d étude? CHAPITRE N 1 PARTIE B LES OUTILS DE LA MECANIQUE CLASSIQUE TS Introduction Afin de décrire le mouement d un objet, il faut définir le système étudié et préciser le référentiel d étude. On se limitera à

Plus en détail

Cinématique des solides

Cinématique des solides MPSI Cours CI-4 : Prévoir les performances cinématiques des chaînes de solides Cinématique des solides Etude cinématique. Géométrie vectorielle.. Fonction vectorielle. On définit l espace vectoriel de

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v))

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v)) Surfaces. Généralités sur les surfaces a) Surfaces paramétrées. - Dé nition : Une surface paramétrée S de l espace R 3 est une application d une partie de R à valeurs dans R 3, (u; v) 7! M(u; v) = (x(u;

Plus en détail

CHAPITRE III : CINEMATIQUE

CHAPITRE III : CINEMATIQUE CHAPITRE III : CINEMATIQUE A- Généralités : La cinématique étudie le mouvement des corps indépendamment des forces qui les produisent. Elle permet de définir la géométrie et les dimensions des composants,

Plus en détail

Partie Mécanique. Cinématique. Chapitre I. I. Les Référentiels

Partie Mécanique. Cinématique. Chapitre I. I. Les Référentiels 1 Physique: Cinématique du point matériel Partie Mécanique Chapitre I Cinématique I. Les Référentiels En physique, un référentiel est un système de coordonnées de l'espacetemps lié à un observateur, composé

Plus en détail

Le mouvement & vitesse Situation problème Durant un voyage en train, un voyageur assis est-il en mouvement ou immobile?

Le mouvement & vitesse Situation problème Durant un voyage en train, un voyageur assis est-il en mouvement ou immobile? Le mouvement & vitesse Situation problème Durant un voyage en train, un voyageur assis est-il en mouvement ou immobile? Bilan: les deux! Cela dépend du point de vue de l observateur : pour un autre voyageur

Plus en détail

w = 0 si u et v sont colinéaires

w = 0 si u et v sont colinéaires IUT Orsay Mesures Physiques Géométrie et différentielle Cours du ème semestre A Rappel sur produit scalaire, produit vectoriel A-I Produit scalaire Définition : Si u et v sont des vecteurs du plan ou de

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Michel Henry Nicolas Delorme

Michel Henry Nicolas Delorme Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université

Plus en détail

Équilibre et Mouvement des solides simples

Équilibre et Mouvement des solides simples Équilibre et Mouvement des solides simples Bien comprendre la mécanique, ce n'est pas simplement déterminer si les objets sont immobiles ou en mouvement, mais c'est comprendre pourquoi lorsqu'ils se meuvent,

Plus en détail

Notions de géométrie

Notions de géométrie IUT Orsay Mesures Physiques Notions de géométrie Cours du 1 er semestre A. Les systèmes de coordonnées dans le plan A-I. Coordonnées cartésiennes Le plan étant muni d un repère orthonormé ( O, i, j) nombres

Plus en détail

MAGNESTOTATIQUE Le courant électrique. 2. Champ magnétique. 3. Exemples de calculs du champ magnétique. 4. Forces magnétiques

MAGNESTOTATIQUE Le courant électrique. 2. Champ magnétique. 3. Exemples de calculs du champ magnétique. 4. Forces magnétiques MAGNESTOTATQUE - 2 1. Le courant électrique 2. Champ magnétique 2.1. charge unique en mouvement 2.2. Circuit filiforme : Postulat de iot et Savard 2.3. distribution volumique de courants 3. Exemples de

Plus en détail

Cinématique et dynamique du point matériel. I. Relativité du mouvement et référentiel

Cinématique et dynamique du point matériel. I. Relativité du mouvement et référentiel Cinématique et dynamique du point matériel. I. Relativité du mouvement et référentiel I.A RELATIVITE DU MOUVEMENT/ Rappels de seconde: La description d'un mouvement est relative au choix d'un référentiel

Plus en détail

L objet de la cinématique est de décrire le mouvement d un corps, indépendamment des forces qui s exercent sur lui.

L objet de la cinématique est de décrire le mouvement d un corps, indépendamment des forces qui s exercent sur lui. Chapitre II CINÉMATIQUE DU POINT L obj de la cinématique est de décrire le mouvement d un corps, indépendamment des forces qui s exercent sur lui IIA Espace temps en physique Nous nous placerons dans ce

Plus en détail

MECANIQUE : VITESSE. Date : pour situer un événement dans le temps, on le "date" par rapport à une origine.

MECANIQUE : VITESSE. Date : pour situer un événement dans le temps, on le date par rapport à une origine. MENIQUE : VITESSE La vitesse caractérise la rapidité avec laquelle un mobile passe d une position à une autre : elle fait donc appel à la notion de position dans l espace, et à la notion de temps. 1 :

Plus en détail

Mécanique du point. I Cinématique. PC, Fabert (Metz) Mécanique n 1 PC, Fabert (Metz)

Mécanique du point. I Cinématique. PC, Fabert (Metz) Mécanique n 1 PC, Fabert (Metz) Mécanique du point Le déplacement élémentaire en coordonnées cartésiennes s écrit d r = dx u x +dy +dz dx dz d r dy I Cinématique En coordonnées cartésiennes le volume élémentaire s écrit dτ = dxdydz En

Plus en détail

Les équations de Maxwell

Les équations de Maxwell Chapitre 1 Les équations de Maxwell La lumière est une onde électromagnétique qui se propage dans le vide ou un milieu matériel. Nous allons donc rappeler dans ce premier chapitre les postulats de l électromagnétisme.

Plus en détail

Mécanique fondamentale

Mécanique fondamentale Chapitre 1 Mécanique fondamentale CURS Ce cours a pour objet de donner aux étudiants en PAES les outils indispensables àlaréussite de leurs concours. Nous avons donc privilégié systématiquement l aspect

Plus en détail

CINEMATIQUE DU POINT MATERIEL

CINEMATIQUE DU POINT MATERIEL MECANIQUE R.Duperray Lycée F.BUISSON PTSI CINEMATIQUE DU POINT MATERIEL I INTRODUCTION La cinématique s intéresse à la description du mouvement d un corps physique indépendamment de ses causes, alors que

Plus en détail

AOPÉRATEURSDIFFÉRENTIELS

AOPÉRATEURSDIFFÉRENTIELS AOPÉATEUSDIFFÉENTIELS Complément de cours sur ce qu il faut savoir à propos des opérateurs di érentiels utilisés en physique. Ce chapitre est disponible en ligne à l adresse : http://femto-physique.fr/mecanique_des_fluides/mecaflu_complement1.php

Plus en détail

Calcul vectoriel. Chapitre Vecteurs

Calcul vectoriel. Chapitre Vecteurs Chapitre Calcul vectoriel Il s agit ici de réviser certaines notions quand aux calculs avec des vecteurs et des champs de vecteurs. On commence par deux définitions : Scalaire : Un scalaire est une grandeur

Plus en détail

LE MOUVEMENT DES PLANÈTES ET DES SATELLITES

LE MOUVEMENT DES PLANÈTES ET DES SATELLITES Partie 4 L'OBSERVATION, LA CONQUÊTE ET LA COMPRÉHENSION DE L'ESPACE Chapitre 1 LE MOUVEMENT DES PLANÈTES ET DES SATELLITES sciences physiques et chimiques - Terminale S http://cedric.despax.free.fr/physique.chimie/

Plus en détail

La position du mobile est déterminée par la connaissance de l abscisse x du vecteur position OM. . ii) Sur le plan : si le mouvement est dans le plan

La position du mobile est déterminée par la connaissance de l abscisse x du vecteur position OM. . ii) Sur le plan : si le mouvement est dans le plan Le mouvement & vitesse Situation déclenchante Durant un voyage en train, un voyageur assis est-il en mouvement ou immobile? Bilan: les deux! Cela dépend du point de vue de l observateur : pour un autre

Plus en détail

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler TS 1 / 6 Term S Chap 06 - Applications des lois de Newton et des lois de Kepler I ) Mouvement d un projectile dans un champ de pesanteur uniforme : 1) Poids et champ de pesanteur terrestre: Le poids d'un

Plus en détail

PHYSIQUE I. Tube de champ

PHYSIQUE I. Tube de champ PHYSIQUE I La Terre est entourée de zones, appelées «ceintures de Van Allen», où des particules chargées, de haute énergie, sont piégées par le champ magnétique terrestre Dans ces zones, les trajectoires

Plus en détail

V- Magnétisme. 1) Généralités. 2) Champ magnétique. A) Champ magnétique créé par une seule charge en mouvement

V- Magnétisme. 1) Généralités. 2) Champ magnétique. A) Champ magnétique créé par une seule charge en mouvement V- Magnétisme 1) Généralités Les phénomènes physiques faisant intervenir des forces magnétiques sont connues depuis longtemps : - attraction et répulsion des aimants, - existence d'un champ magnétique

Plus en détail

Fonctions de R n dans R p et intégrales () 1 / 40

Fonctions de R n dans R p et intégrales () 1 / 40 Fonctions de R n dans R p et intégrales () 1 / 4 1 Applications de R n dans R p 2 Intégrales doubles 3 Intégrales triples () 2 / 4 ans tout ce cours, n et p seront des entiers. On rappelle que R n est

Plus en détail

I- Définition d un Vecteur:

I- Définition d un Vecteur: 1 I- Définition d un Vecteur: Un vecteur est une grandeur définie par trois paramètres: - Une direction : qui désigne le support du vecteur - Un sens : qui désigne l orientation du vecteur - un module

Plus en détail

M7 - Mécanique des solides indéformables. Mécanique. Chapitre 7 : Mécanique des solides indéformables

M7 - Mécanique des solides indéformables. Mécanique. Chapitre 7 : Mécanique des solides indéformables Mécanique Chapitre 7 : Mécanique des solides indéformables Sommaire 1 Cinématique des solides indéformables 1 1.1 Le solide indéformable............................................. 1 1.2 Mouvement de

Plus en détail

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x CH3 Géométrie : Trigonométrie 3 ème Maths Novembre 009 A. LAATAOUI 1 ) COSINUS ET SINUS D UN REEL Sauf contre indication, l unité utilisée est le radian. Le plan orienté est muni d un repère orthonormé

Plus en détail

A. CINEMATIQUE ET DYNAMIQUE

A. CINEMATIQUE ET DYNAMIQUE A. CINEMATIQUE ET DYNAMIQUE 1. Grandeurs cinématiques a. Rappels et définitions La cinématique étudie les mouvements sans se préoccuper de leurs causes (c est-à-dire des forces) Le mouvement est le changement

Plus en détail

mouvement de rotation autour d un axe fixe

mouvement de rotation autour d un axe fixe Etude du mouvement de rotation autour d un axe fixe Définition des repères Considérons le solide (S) en rotation autour d un axe par rapport au solide (S), plaçons les repères R et R liés aux solides (S)

Plus en détail

Cours de Mécanique des Fluides. 2 ème année

Cours de Mécanique des Fluides. 2 ème année Cours de Mécanique des Fluides 2 ème année Frédéric Murzyn (Cours et P) Gaëlle Pénelon(D) Responsable Pédagogique 3A Laval Email : frederic.murzyn@estaca.fr el : 02.43.59.47.15 1 Modalités : Cours, D,

Plus en détail

Chapitre II Mouvement d un point matériel. Cinématique.

Chapitre II Mouvement d un point matériel. Cinématique. Chapitre II ouvement d un point matériel. Cinématique. 1-Définitions 1.1 Sstème On a vu la nature discontinue de la matière à l échelle microscopique. Les différentes composantes élémentaires de la matière

Plus en détail

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1,

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1, Corrigé de la série n Dynamique et Statique 1/ le volume de la sphère est V = 4 πr et ρ = V m A.N : ρ = 1,7 10 17 Kg/m ρu a densité est d = ρ eau A.N : d = 1,7 10 14 ) es forces qui s exercent sur l ascenseur

Plus en détail

TD-3 : Cinématique du point matériel

TD-3 : Cinématique du point matériel TD-3 : Cinématique du point matériel François Konschelle Dated: October 5, 16) I. EXERCICE 5 On jette une balle verticalement en l air. Le problème est uni-dimensionnel, et on suppose l axe vertical ascendant

Plus en détail

Annexe A. Algèbre vectorielle

Annexe A. Algèbre vectorielle Annexe A Algèbre vectorielle Un vecteur est une quantité comportant plus d une dimension. Dans ce cours, un vecteur a une grandeur et une direction. Par exemple, le vecteur vitesse comporte une grandeur

Plus en détail

Chapitre 1- Compléments de mathématiques. ( ) dérivable et continue au voisinage d un point

Chapitre 1- Compléments de mathématiques. ( ) dérivable et continue au voisinage d un point Chapitre 1- Compléments de mathématiques Ce chapitre est consacré au notions de mathématiques indispensables pour l abord des chapitres suivants et qui ne sont pas au programmes des classes de première

Plus en détail

Opérateurs différentiels d un champ scalaire ou vectoriel

Opérateurs différentiels d un champ scalaire ou vectoriel UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE U.F.R. de Mathématiques Pures et Appliquées Département de Mécanique Opérateurs différentiels d un champ scalaire ou vectoriel 1 Gradient d une champ scalaire

Plus en détail

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155)

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) PARTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) Compétences exigibles : Connaître et exploiter les trois lois de Newton ; les mettre en

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Courbes planes parametrées et polaires

Courbes planes parametrées et polaires CPGE My Youssef, Rabat Õæ k QË@ á Ô g QË@ é

Plus en détail

PHY4 (Electromagnétisme 2) Formulaire. Scalaire: un scalaire est un nombre réel (élément de IR)

PHY4 (Electromagnétisme 2) Formulaire. Scalaire: un scalaire est un nombre réel (élément de IR) Formulaire I. Eléments de l analyse vectorielle 1. Quelques définitions: calaire: un scalaire est un nombre réel (élément de IR) Vecteur: un vecteur dans IR 3 est une quantité qui peut être représentée

Plus en détail

{ } définissent les repères naturels en chaque point.

{ } définissent les repères naturels en chaque point. 8. Métrique, géodésiques, symboles de Christoffel.. Métrique, repère local, repère naturel. Soit une variété V n de dimensions n et un voisinage V d un point M de V n. Soit un point M de V. M est dans

Plus en détail

Chapitre 2 : Cinématique du point matériel

Chapitre 2 : Cinématique du point matériel Cours de Mécanique du Point matériel Chapitre 2 : Cinématique SMPC1 Chapitre 2 : Cinématique du point matériel I - Définitions Générales I.1)- Cinématique La cinématique est l étude du mouvement en fonction

Plus en détail

CINEMATIQUE GENERALITES

CINEMATIQUE GENERALITES I ) Introduction La cinématique est la partie de la mécanique qui permet d étudier et de décrire les mouvements des corps, d un point de vue purement mathématique, indépendamment des causes qui les produisent.

Plus en détail

Table des matières. S.Boukaddid Mécanique Spé MP. Cinématique du solide et des solides en contact

Table des matières. S.Boukaddid Mécanique Spé MP. Cinématique du solide et des solides en contact Cinématique du solide et des solides en contact Table des matières 1 Champ des vitesses d'un solide 2 1.1 Modèle du solide.............................. 2 1.2 Formule de Varignon............................

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Cours d électromagnétisme

Cours d électromagnétisme Cours d électromagnétisme M12-Potentiel et énergie électrostatique Table des matières 1 Introduction 2 2 Circulation du champ électrostatique 2 2.1 Définition...................................... 2 2.2

Plus en détail

Systèmes de coordonnées

Systèmes de coordonnées 29 septembre 2009 Définition Dans( le plan ) muni d un repère orthonormal O ; i, j les coordonnées polaires d un point M(x, y) sont les nombres ρ et θ tels que : { ρ = ( OM θ = i, ) OM Théorème Si x 0

Plus en détail

TS - III.1 Bases de la mécanique newtonienne Synthèse

TS - III.1 Bases de la mécanique newtonienne Synthèse Bases de la mécanique newtonienne Sommaiire Introduction. ------------------------------------------------------------- -I- Raisonnement pour aborder une situation en mécanique. --------------------- 1.

Plus en détail

2. CINEMATIQUE DU POINT

2. CINEMATIQUE DU POINT 2. CINEMATIQUE DU POINT Cinématique Étude du mouvement d un corps en fonction du temps, indépendamment de toute cause pouvant le provoquer ou le modifier. Le mouvement s effectue le long d une trajectoire,

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

Lang Fred, prof. HEIG-VD 1

Lang Fred, prof. HEIG-VD 1 Courbes paramétrées Lang Fred, prof. HEIG-VD 1 our concrétiser ce cours, on utilisera le langage de la cinématique et le temps pour paramètre. Les résultats restent valables si le paramètre représente

Plus en détail

Vecteurs : Produit scalaire et produit vectoriel

Vecteurs : Produit scalaire et produit vectoriel Vecteurs : Produit scalaire et produit vectoriel Voir : http://www.uel.education.fr/consultation/reference/physique/outils_nancy/index.htm I Produit scalaire (de deux vecteurs!) Le produit scalaire de

Plus en détail

Daniela Cirigliano-Peschard & Assia Zellagui

Daniela Cirigliano-Peschard & Assia Zellagui Daniela Cirigliano-Peschard & Assia Zellagui MOTIVATIONS ET OBJECTIFS Les forces électromagnétiques ont été observées depuis plusieurs siècles Lois gouvernant ces forces XIXe Les forces électromagnétiques

Plus en détail

Fiche n 2 sur la projection de vecteurs

Fiche n 2 sur la projection de vecteurs Fiche n sur la projection de vecteurs I. Eléments de cours à connaître I.1 Définition du produit scalaire I. Conséquences / propriétés I.3 pplication : formule d l Kashi I.4 Projection d un vecteur I.5

Plus en détail

Leçon Mouvement d un projectile : une balle sans air

Leçon Mouvement d un projectile : une balle sans air Leçon Mouvement d un projectile : une balle sans air L applet montre une balle exécutant le mouvement d un projectile sans résistance de l air. Préalables L élève devrait posséder des habiletés élémentaires

Plus en détail

Michel Henry Maître de conférences à ESPE de l Académie de Nantes (Le Mans) Agrégé de physique

Michel Henry Maître de conférences à ESPE de l Académie de Nantes (Le Mans) Agrégé de physique Mécanique du point Cours + Eos Michel Henr Maître de conférences à ESPE de l Académie de Nantes (Le Mans) Agrégé de phsique Nicolas Delorme Maître de conférences à l université du Maine (Le Mans) 2 e édition

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

Intégrales multiples. V. Borrelli. Intégrale simple de Riemann. Vincent Borrelli. Intégrale double. Université de Lyon.

Intégrales multiples. V. Borrelli. Intégrale simple de Riemann. Vincent Borrelli. Intégrale double. Université de Lyon. s triple s Vincent Borrelli Université de Lyon s Le programme triple Partie I : Fonctions (6 semaines) CM 1. Coordonnées, topologie CM 2. Fonction, graphe, composition CM 3. Limite, différentielle CM 4.

Plus en détail

Math IV, analyse (L2) Fiche 10

Math IV, analyse (L2) Fiche 10 UNIVERSITÉ CLAUDE BERNARD LYON Cours: O. Kravchenko Institut Camille Jordan Travaux dirigés: T. Altınel, T. Eisenkölbl & S. Richard Math IV, analyse (L2) Fiche 9 mai 28 Exercice. Un astroïde est la courbe

Plus en détail

LES FORCES FICTIVES. Table des matières. 1. Vitesse dans un référentiel non inertiel

LES FORCES FICTIVES. Table des matières. 1. Vitesse dans un référentiel non inertiel LES FORCES FICTIVES OLIVIER CASTÉRA Résumé. Les forces d inertie d entraînement et de Coriolis sont des forces fictives, elles n apparaissent que dans des référentiels non inertiels. Table des matières

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0.

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0. Phsique générale I Mécanique EXERCICES Série 1 (6 7 Eercice 1.1 On considère une pierre de masse m à une hauteur h du sol, tombant sous la seule action de la gravitation. Eprimer son temps de chute T et

Plus en détail

Champs produits par des circuits simples

Champs produits par des circuits simples Champs produits par des circuits simples A. Symétries et notion de vecteur axial Comme en électrostatique l utilisation d éventuelles symétries et/ou invariances de la distribution de courants peut simplifier

Plus en détail

Cinématique généralités - Exercices d'application directe du cours :

Cinématique généralités - Exercices d'application directe du cours : Cinématique généralités - Exercices d'application directe du cours : Référentiel, repère Application n 1 : Un manège de chevaux de bois tourne en sens inverse des aiguilles d'une montre. Pierre et François

Plus en détail

Chapitre 2. Le champ électrostatique. 2.1 Loi de Coulomb Interaction entre deux charges ponctuelles Champ d une charge ponctuelle

Chapitre 2. Le champ électrostatique. 2.1 Loi de Coulomb Interaction entre deux charges ponctuelles Champ d une charge ponctuelle Chapitre 2 Le champ électrostatique 2.1 Loi de Coulomb 2.1.1 Interaction entre deux charges ponctuelles Deux charges ponctuelles q 1 et q 2, immobiles aux points M 1 et M 2, exercent l une sur l autre

Plus en détail

Formulation locale de l électrostatique

Formulation locale de l électrostatique Michel Fioc Électromagnétisme et électrocinétique (P01) UPM, 016/017 hapitre II Théorème de Gauss. Formulation locale de l électrostatique II.a. Angles solides 1. Rappel sur les angles plans L angle solide

Plus en détail

6.1 Circulation du champ magnétique, théorème

6.1 Circulation du champ magnétique, théorème Chapitre 6 Le théorème d Ampère 6.1 Circulation du champ magnétique, théorème d Ampère 6.1.1 Circulation sur un circuit fermé du champ B créé par un fil rectiligne infini parcouru par un courant i Considérons

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

On constate que l accélération est positive et donc le système monte bien.

On constate que l accélération est positive et donc le système monte bien. Université Cadi Ayyad Année Universitaire 05/06 Faculté des Sciences Semlalia-Marrakech Département de Physique Module de Mécanique du Point Matériel Corrigé de la série N 3 Filières SMA Corrigé : Peintre

Plus en détail

C est l ensemble des positions occupées par les objets au cours du mouvement. En reliant les positions successives, on reconstitue la trajectoire.

C est l ensemble des positions occupées par les objets au cours du mouvement. En reliant les positions successives, on reconstitue la trajectoire. Nom :.. Prénom :.. Classe :. ① Décrire le mouvement et la trajectoire d un mobile. Calculer une vitesse et une accélération. 1- Enregistrement d un mouvement La chronophotographie est une technique permettant

Plus en détail

Cinématique à deux et trois dimensions de la particule. Mouvements relatifs.

Cinématique à deux et trois dimensions de la particule. Mouvements relatifs. Physique Générale Cinématique à deux et trois dimensions de la particule. Mouements relatifs. TRAN Minh Tâm Table des matières Mouement à deux et trois dimensions 27 Référentiels, position et déplacement.................

Plus en détail

Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 ).

Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 ). Chapitre Courbes dans R n.1 Exercices Formules utiles. Cosinus de l angle d intersection ϑ [, π] des deux courbes regulières f : I 1 R n, g : I R n : cos ϑ = f (t 1 ), g (t ) f (t 1 ) g (t ), si f(t 1

Plus en détail

Brevet de technicien supérieur session 2015 Géomètre topographe

Brevet de technicien supérieur session 2015 Géomètre topographe Brevet de technicien supérieur session 015 Géomètre topographe A. P. M. E. P. Exercice 1 10 points Le plan est muni du repère orthonormé direct, ı, ) j. Tout point M du plan, distinct du point, peut être

Plus en détail

Lycée Blaise Pascal. Mathématiques supérieures et spéciales. GENERALITES Cours. Mathématiques supérieures

Lycée Blaise Pascal. Mathématiques supérieures et spéciales. GENERALITES Cours. Mathématiques supérieures Lycée Blaise Pascal Mathématiques supérieures et spéciales GENERALITES Cours Mathématiques supérieures Mme Sandré 1 A - ANALYSE DIMENSIONNELLE... 4 1 - LES DIMENSIONS DE BASE... 4 2 - LES GRANDEURS SECONDAIRES...

Plus en détail

Le dipôle électrostatique

Le dipôle électrostatique Cours d électromagnétisme 1 Définition, potentiel et champ créés 1.1 Définition du dipôle électrostatique On appelle dipôle électrostatique le système constitué de deux charges ponctuelles opposées et

Plus en détail