FIN1003 Économétrie financière
|
|
|
- Laure Gilbert
- il y a 8 ans
- Total affichages :
Transcription
1 FIN1003 Économétrie financière Sébastien Blais Département des sciences administratives, UQO 23 novembre 2016
2 Vocabulaire de la semaine dernière valeur retardée d ordre j (j-ième retard) première différence, première différence logarithmique j-ième autocovariance et autocorrélation autorégression d ordre 1 (AR(1)) prévision et erreur de prévision autorégression d ordre p (AR(p)) modèle auto-régressif à retards échelonnés (ARE(p,q)) racine de l erreur quadratique moyenne de prévision (REQMP)
3 Aujourd hui 1 Intervalle de prévision 2 REQMP hors échantillon 3 Causalité de Granger 4 Choix de modèle 5 Propriétés de l estimateur des MCO des paramètres d un mod Ruptures Tendances
4 Intervalle de prévision On peut estimer l EQMP hors échantillon, ou à l aide de l estimation des paramètres du modèle. L erreur de prévision est la différence entre la valeur observée (Y T+1 ) et la valeur prédite (Ŷ T+1 T ). Pour un ARE(1,1), Y T+1 Ŷ T+1 T = [β 0 +β 1 Y T +δ 1 X T + u T+1 ] [ˆβ0 + ˆβ 1 Y T + ˆδ ] 1 X T [ (YT+1 ) 2 ] EQMP = E Ŷ T+1 T = Var[u T+1 ] + Var [(ˆβ0 β 0 ) + ) ) ] (ˆβ1 β 1 Y T + (ˆδ1 δ 1 X T. Le premier terme (Var[u T+1 ]) peut être estimé par SER 2. Le second, où F est la statistique de test associée à H 0 : β 0 +β 1 Y T +δ 1 X T = 0. par ŶT+1 T 2 F
5 Aujourd hui 1 Intervalle de prévision 2 REQMP hors échantillon 3 Causalité de Granger 4 Choix de modèle 5 Propriétés de l estimateur des MCO des paramètres d un mod Ruptures Tendances
6 REQMP hors échantillon Comparons, hors échantillon, les prévisions de l inflation produites par un AR(1) et un AR(4). Échantillon d estimation: 1961Q1-1995Q4 (140 observations) Échantillon de validation: 1996q1-2005Q1 (37 observations) On obtient un REQMP de 1,351 pour l AR(1) et de 1,354 pour l AR(4): selon ce critère, on préfère l AR(1).
7 Aujourd hui 1 Intervalle de prévision 2 REQMP hors échantillon 3 Causalité de Granger 4 Choix de modèle 5 Propriétés de l estimateur des MCO des paramètres d un mod Ruptures Tendances
8 Causalité de Granger On dit que X cause Y au sens de Granger si les retards de X aident à prévoir Y. En d autres terme, X cause Y si les coefficients associés aux retards de X sont significatifs: on fait un test F.
9 Aujourd hui 1 Intervalle de prévision 2 REQMP hors échantillon 3 Causalité de Granger 4 Choix de modèle 5 Propriétés de l estimateur des MCO des paramètres d un mod Ruptures Tendances
10 Sélection de l ordre des retards - section 10.5 Comment choisir p (ou p et q) dans un modèle AR(p) (ou un ARE(p,q))? 2 approches 1 Séquence de tests t 2 Critères d information Remarque: Ces procédures définissent en fait des estimateurs de p (ou de p et q), ˆp (ou ˆp et ˆq).
11 Séquence de tests t La procédure est la suivante: 1 On choisit une valeur assez grande de p. Par exemple, p=6. 2 On estime le modèle AR(6) et on test H 0 : β 6 = 0. 3 Si on rejette la nulle, on garde p=6 et on arrête la procédure. 4 Si on ne rejette pas la nulle, on reprend l étape 2 avec p=5. La procédure s arrête donc lorsque le dernier coefficient est significatif. Comme on l a souligné au chapitre 4, on ne connaît pas vraiment la probabilité de rejeter la nulle lorsqu on fait une séquence de tests corrélés. Exercice: Estimation de p pour un modèle AR(p) du taux de variation de l inflation.
12 Critère d information Un critère d information est une mesure du pouvoir explicatif qui permet de comparer des modèles. Nous en présentons deux: 1 Critère d information bayésien (BIC) ( ) SCR BIC = ln +(p+1) ln(t) T T 2 Critère d information d Akaike (AIC) ( ) SCR AIC = ln +(p+1) 2 T T Remarques: On préfère le BIC parce qu il donne un estimateur consistant de p. L AIC tend à surestimer p. Exercice: Estimation de p pour un modèle AR(p) du taux de variation de l inflation.
13 Aujourd hui 1 Intervalle de prévision 2 REQMP hors échantillon 3 Causalité de Granger 4 Choix de modèle 5 Propriétés de l estimateur des MCO des paramètres d un mod Ruptures Tendances
14 Hypothèses classiques Jusqu à présent, nous nous sommes appuyés sur 3 hypothèses pour obtenir les propriétés de l estimateur des MCO 1 E[u X] = 0 2 u i indépendamment distribués 3 u i identiquement distribués Est-ce que ces hypothèses sont satisfaites lorsqu on analyse des séries temporelles?
15 1. E[u X] = 0 ] Cette hypothèse garantit que E[ˆβ = β On doit la lire comme E[u t Y 1, Y 2,..., Y T ] = 0 pour tout t = 1,..., T Elle est violée dans les modèles autorégressifs. Par exemple Y t = β 0 +β 1 Y t 1 + u t implique que Y t et u t sont corrélés et donc quee[u t Y t ] 0. L estimateur des MCO est donc biaisé (vers 0) lorsqu on l utilise pour estimer les paramètres d un modèle autorégressif. Heureusement, 1 ˆβ demeure consistant 2 Ŷ t t 1 est la meilleure prévision de Y t lorsque E[u t Y 1, Y 2,..., Y t 1 ] = 0 en termes de REQMP.
16 2. u i indépendamment distribués Cette hypothèse simplifie le calcul de l erreur-type de l estimateur, ˆσˆβ. Elle est violée dès qu on omet un régresseur autocorrélé (le terme d erreur est alors autocorrélé et n est donc pas indépendamment distribué) Exemple: Supposons que Inf t = β 0 +β 1 Inf t 1 +δ 1 Chom t 1 + u t mais qu on estime le modèle Inf t = β 0 +β 1 Inf t 1 + v t. On a alors v t = δ 1 Chom t 1 + u t et v t est autocorrélé si le chômage l est. La section 11.4 présente un estimateur de l erreur-type de ˆβ qui est robuste à l hétéroscédasticité et à l autocorrélation. On devrait toujours utiliser cet estimateur lorsqu on analyse des séries temporelles.
17 3. (u i ) identiquement distribués On se demande ici si la distribution Y t (et donc celle de u t ) est la même pour tout t. Si c est le cas, on dit que Y t est stationnaire. Nous présentons 2 types de non-stationnarité: 1 les tendances (intuitivement, lorsque les évènements passés s accumulent pour constituer le présent) tendances déterministes: une variable qui croît à une certain taux à chaque période. Exemple: Y t = β 0 +αt+u t. Calculez E[Y t ] et E[Y t Y t 1 ]. tendance stochastique: une variable aléatoire s ajoute à chaque période. Exemple (marche aléatoire): Y t = Y t 1 + u t. 2 les ruptures (intuitivement, les paramètres ne sont pas les mêmes après un événement économique) Exemple: Y t = β 0 +β 1 Y t 1 + u t avant l ALENA et Y t = β 2 +β 3 Y t 1 + u t après.
18 Questions Pour chaque type de non-stationnarité, 1 Quelles sont les propriétés de l estimateur des MCO? 2 Comment les détecter (tests)?
19 Ruptures Une rupture est un changement de valeur de certains (ou tous) coefficients à un certain moment. On la modélise à l aide d un régresseur binaire, par exemple { 0, avant la rupture; D t = 1, après la rupture. Pour un AR(1), on aurait donc Y t = β 0 +β 1 Y t 1 +γ 0 D t +γ 1 Y t 1 D t + u t. Autrement dit, on a Y t = β 0 +β 1 Y t 1 + u t avant la rupture et Y t = (β 0 +γ 0 )+(β 1 +γ 1 ) Y t 1 + u t après. Exercice: Modéliser une rupture au premier trimestre de 1982 pour les coefficients associés au chômage dans un ARE(4,4).
20 Tester la présence d une rupture On présente deux cas 1 Lorsque le moment de la rupture est connu: test de Chow 2 Lorsque le moment de la rupture n est pas connu: test du rapport de vraisemblance de Quandt (test du RVQ)
21 1. Test de Chow Lorsque la date de rupture est connue, il suffit de tester la nulle d absence de rupture avec une statistique F. Exemple: Pour on teste Y t = β 0 +β 1 Y t 1 +γ 0 D t +γ 1 Y t 1 D t + u t. H 0 : γ 0 = γ 1 = 0. Exercice: Tester la présence d une rupture au premier trimestre de 1982 pour les coefficients associés au chômage dans un ARE(4,4).
22 Lorsque la date de rupture n est pas connue, on calcule la statistique F d un test de Chow pour toutes les dates raisonnables et on prend la plus grande. On choisit d abord l intervalle de dates raisonnables. Exemple: entre 0,15T et 0,85T (70% de l échantillon) On calcule la statistique F pour chaque période et on prend la plus grande, qu on note RVQ. (si T=100, on doit estimer 70 régressions et calculer 70 statistiques F) Pour calculer la p-valeur, on doit connaître la distribution de RVQ. Ce n est pas une distribution standard Les valeurs critiques dépendent du nombre de contraintes (q) et de la taille de l intervalle de dates Le tableau 10.6 présente les valeurs critiques pour un intervalle de 70% de l échantillon Exercice: Tester la présence d une rupture pour les coefficients associés au chômage dans un ARE(4,4). 2. Test du RVQ
23
24 Tendances stochastiques Une marche aléatoire Y t = Y t 1 + u t est un exemple de tendance stochastique. Une marche aléatoire avec dérive Y t = β 0 + Y t 1 + u t en est un autre. On peut facilement montrer que ce ne sont pas des processus stationnaires en calculant leur variance, Var(Y t ) = Var(Y t 1 )+Var(u t ). Si Y t était stationnaire, on aurait Var(Y t ) = Var(Y t 1 ), ce qui impliquerait que Var(u t ) = 0. C est impossible, puisqu une variance est toujours positive. Y t ne peut donc pas être stationnaire.
25 Une autre manière de comprendre qu une marche aléatoire n est pas un processus stationnaire en calculant sa variance consiste à écrire Y t de la manière suivante, à partir d une valeur Y 0 : Y 1 = Y 0 + u 1 Y 2 = Y 1 + u 2 = Y 0 + u 1 + u 2 Y t = Y 0 + u 1 + u u t Si les u t sont i.i.d. de variance σ 2, on a Var[Y t ] = Var[Y 0 ]+tσ 2. La variance dépend donc de t: elle n est pas la même pour toutes les observations.
26 Vocabulaire de la semaine critère d information, AIC, BIC processus stationnaire rupture tests de Chow et du RVQ tendance déterministe et stochastique marche aléatoire, avec et sans dérive
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS
Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
Séries temporelles : régression, et modélisation ARIMA(p,d,q)
Séries temporelles : régression, et modélisation ARIMA(p,d,q) 2 décembre 2012 Enseignant : Florin Avram Objectif : La prédiction des phénomènes spatio-temporaux est une des preoccupations principales dans
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
MODELES DE DUREE DE VIE
MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d
Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste
IBM SPSS Forecasting. Créez des prévisions d'expert en un clin d'œil. Points clés. IBM Software Business Analytics
IBM SPSS Statistics 19 IBM SPSS Forecasting Créez des prévisions d'expert en un clin d'œil Points clés Développer des prévisions fiables rapidement Réduire les erreurs de prévision Mettre à jour et gérer
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
Modélisation des risques
2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Calculating Greeks by Monte Carlo simulation
Calculating Greeks by Monte Carlo simulation Filière mathématiques financières Projet de spécialité Basile Voisin, Xavier Milhaud Encadré par Mme Ying Jiao ENSIMAG - Mai-Juin 27 able des matières 1 Remerciements
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion [email protected],
Dans une année, il y a 12 mois. Dans une année, il y a 52 semaines. Dans une année, il y a 4 trimestres. Dans une année, il y a 365 jours.
Dans un siècle, il y a 100 ans. Dans une année, il y a 12 mois. Dans une année, il y a 52 semaines. Dans une année, il y a 4 trimestres. Dans une année, il y a 365 jours. Dans un trimestre, il y a 3 mois.
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
2 TABLE DES MATIÈRES. I.8.2 Exemple... 38
Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Les mathématiques de la finance Université d été de Sourdun Olivier Bardou [email protected] 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des
Chapitre 2. Les Processus Aléatoires Non Stationnaires 1. Chapitre 2. Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires
Chapitre 2. Les Processus Aléatoires Non Stationnaires 1 Chapitre 2 Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires Chapitre 2. Les Processus Aléatoires Non Stationnaires 2 Dans le
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Raisonnement probabiliste
Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :
Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Modélisation du risque opérationnel Approche Bâle avancée
Modélisation du risque opérationnel Approche Bâle avancée Université Laval Conférence LABIFUL Département de Finance et Assurance 1 Mars, 2013. Ridha Mahfoudhi, Ph.D. Senior Manager Quantitative Analytics,
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Les incitations fiscales aux dons sont-elles efficaces?
ÉCONOMIE Les incitations fiscales aux dons sont-elles efficaces? Gabrielle Fack* et Camille Landais** Cet article est consacré à l estimation de l effet des incitations fiscales en faveur des dons aux
Le stress testing du risque de crédit appliqué au portefeuille de clients de Finéa Maroc
Projet supervisé 06-004- 08 Le stress testing du risque de crédit appliqué au portefeuille de clients de Finéa Maroc Par : Mohamed Othmane Belmamoun 11095029 Directeur de projet : M. Georges Dionne Janvier
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Résumé non technique
Résumé non technique Constats : selon le FMI, l indexation et l ajustement biennal du salaire social minimum sont des facteurs déterminants à la fois du différentiel d inflation et de l inflation au Luxembourg
Méthodes d apprentissage statistique «Machine Learning»
Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
1.1 Codage de source et test d hypothèse
Théorie de l information et codage 200/20 Cours 8février20 Enseignant: Marc Lelarge Scribe: Marc Lelarge Pour information Page webdu cours http://www.di.ens.fr/~lelarge/info.html Notations Pour des variables
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Mesure et gestion des risques d assurance
Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND [email protected]
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Un modèle stochastique du taux d intérêt implicite en microcrédit
Un modèle stochastique du taux d intérêt implicite en microcrédit PHEAKDEI MAUK, MARC DIENER LABORATOIRE J.A. DIEUDONNÉ Dixième colloque des jeunes probabilistes et statisticiens CIRM Marseille 16-20 avril
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle
CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
