Etude de suites définies par différents types de récurrence

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Etude de suites définies par différents types de récurrence"

Transcription

1 Etude de suites définies par différents types de récurrence F.Gaudon 22 juillet 2005 Table des matières 1 Suites arithmétiques 2 2 Suites géométriques 2 3 Suites arithmético-géométriques 3 4 Suites récurrentes linéaires 3 5 Suites récurrentes Monotonie Etude de la convergence

2 Dans ce qui suit, on considère un corps K = RouC. 1 Suites arithmétiques Une suite arithmétique est donnée par son premier terme u 0 et sa raison r : { n N, un+1 = u n + r u 0 K n N, u n = u 0 + nr u 0 + u u n = (n + 1)u 0 + r n(n+1) = (n+1)(u 0+u n) 2 2 Par récurrence, les deux propriétés sont trivialement vraies au rang n = 0. Si elles sont vraies au rang n N, on a : u n+1 = u n + r = u 0 + nr + r = u 0 + (n + 1)r et u u n+1 = (n+1)u 0 +r n(n+1) +u 2 n+1 = (n+1)u 0 +r n(n+1) +u 2 0 +(n+1)r = (n + 2)u 0 + r n(n+1) + r 2(n+1) = (n + 2)u (n+1)(n+2) Donc les propriétés sont 2 vraies au rang n + 1 et par récurrence, elles sont donc vraies pour tout n N. 2 Suites géométriques Une suite géométrique est donnée par son premier terme u 0 et sa raison q (non nulle en général) : { n N, un+1 = qu n u 0 K 2

3 n N, u n = q n u 0 { (n + 1)u0 si q = 1 u 0 + u u n = 1 q u n+1 Cette somme converge si et 0 si q 1 1 q seulement si q < 1. La limite de la somme vaut alors u 0. 1 q Par récurrence. Les deux propriétés sont vraies au rang n = 0. Supposons qu elles sont vraies à un rang n N. On a alors u n+1 = qu n = qq n u 0 = q n+1 u 0 d une part. D autre part, si q = 1, on a u u n+1 = (n + 1)u 0 + u n+1 = (n + 1)u 0 + u 0 = (n + 2)u 0 et si q 1, 1 q on a u u n+1 = u n+1 1 q 0 + u 1 q n+1 = u n q n+1 u 1 q 0 = u 0 ( 1 qn+1 + (1 q)qn+1 1 q ) = u n+2 1 q 1 q 0. Les deux propriétés sont donc vraies au rang 1 q n + 2 et par récurrence elles sont vraies pour tout n N. 3 Suites arithmético-géométriques Une suite arithmético-géométrique est définie par : { n N, un+1 = au n + b u 0 K avec b 0 et a 1, sinon on retrouve les suites précédentes. Définition Une suite particulière est obtenue pour la suite constante l telle que l = al + b. Cette valeur l est d ailleurs la limite éventuelle de la suite si elle converge. Soit (v n ) n la suite auxiliaire définie par : n N, v n = u n l On a alors : n N, v n+1 = av n. Autrement dit, la suite (v n ) n est une suite géométriques de raison a. On a v n = a n v 0 et u n = l + a n (u 0 l). La suite converge donc ssi a < 1 ou u 0 = l. 4 Suites récurrentes linéaires 3

4 Une suite récurrente linéaire est définie par : n N, u n+2 = au n+1 + bu n u 1 K u 2 K avec b 0 Les suites géométriques r n non nulles solution de cette récurrence vérifient : r 2 = ar + b. Soit r solution (éventuellement complexe). Cherchons les autres solutions sous la forme : u n = v n r n. On obtient : v n+2 r 2 = arv n+1 + bv n v n+2 (ar + b) = arv n+1 + bv n (ar + b)(v n+2 v n+1 ) = b(v n+1 v n ) Donc la suite v n+2 v n+1 est une suite géométrique de raison b b ou ou ar+b r 2 enfin r /r si r est l autre racine. On a donc : v n v n 1 = C( r r )n, où C est une constante. On en déduit que : v n = C( r r )n + C( r r )n C( r ) + v r 0. Si r = r alors v n est de la forme αn + β et u n est combinaison des suites r n et nr n. Si r r alors v n est de la forme α( r r )n + β, et u n est combinaison de r n et de r n. proposition : Soit la relation de récurrence u n+2 = au n+1 + bu n. On associe à cette relation l équation caractéristique r 2 = ar + b. L ensemble des suites solutions forme un espace vectoriel de dimension 2 dont une base est : si le discriminant est non nul : (r n 1 ) n et (r n 2 ) n où r 1 et r 2 sont solutions de l équation caractéristique. Dans le cas d un discriminant négatif sur R, on prend (Im(r n 1 )) n et (Re(r n 1 )) n ; si le discriminant est nul : (r n ) n et (nr n ) n où r est racine double de l équation caractéristique. preuve : Posons S = {(u n ) n / n N, u n+2 = au n+1 + bu n } S est un sous-espace vectoriel de l espace vectoriel des suites. Cet espace est de dimension 2. En effet, considérons les deux suites particulières U et V éléments de S, définies par U 0 = 1 et U 1 = 0,V 0 = 0 et V 1 = 1. On prouve facilement par récurrence que toute suite u de S s écrit : u = u 0 U + u 1 V Cette décomposition est unique. Ceci 4

5 prouve que (U; V ) constitue une base de S. Cette base est malheureusement de peu d utilité car elle ne permet pas de calculer le terme général de la suite. Cherchons donc une autre base. Cherchons les éléments de S qui sont des suites géométriques (r n ) n. r doit alors vérifier : r 2 = ar + b Cette équation est appelée équation caractéristique associée à la suite. Plusieurs cas sont à considérer : sur C : si le discriminant est non nul, il y a deux suites différentes de raisons r 1 et r 2. Il n est pas difficile de montrer que ces deux suites forment un système libre et donc une base de S. Cette base permet de calculer le terme général de toute suite de S ; si le discriminant est nul, alors il y a une racine unique r, égale à a 2, et b = a2 4. Cherchons une autre suite sous la forme v nr n. On obtient alors : v n+2 r 2 = av n+1 r + bv n a 2 v n+2 4 = v a2 n+1 a 2 v n 2 4 v n+2 = 2v n+1 v n v n+2 v n+1 = v n+1 v n Ainsi v n+1 v n est constante. On peut prendre par exemple comme solution particulière v n+1 v n = 1 c est à dire v n = n. Les deux suites (r n ) n et (nr n ) n sont indépendantes. Elles forment une base de S sur R : si le discriminant est positif, c.f. ci-dessus ; si le discriminant est nul, c.f. ci-dessus ; si le discriminant est négatif, alors, en tant que sous espace vectoriel complexe, on peut prendre comme base les suites géomériques de raison r 1 et r 2, nécessairement conjuguées si a et b sont réels. Mais on peut prendre également Re(r n 1 ) et Im(r n 2 ) qui, étant combinaisons linéaires de r n 1 et r n 2 sont bien éléments de S, sont réelles, et engendrent S. Exemples : u n+2 = 3u n+1 2u n u n+2 = u n+1 + u n (suite de Fibonacci) 5

6 5 Suites récurrentes Une suite est dite récurrente si elle est définie par : u n+1 = f(u n ) pour tout n N et u 0 I où I est un intervalle de R et f est une fonction définie et continue sur I. De façon que la suite soit définie pour tout n, nous supposerons que f(i) est inclus dans I. Dans la suite, on se donne une suite (u n ) n définie par : { u0 I u n+1 = f(u n ) si n 0 où f est une fonction définie sur une partie I de R et à valeurs dans I. 5.1 Monotonie Si f est croissante sur I alors (u n ) n est monotone : (u n ) n est croissante si f(u 0 ) > u 0 (u n ) n est décroissante si f(u 0 ) < u 0 Montrons par récurrence que pour tout n N, u ( n + 1) u n est du signe de u 1 u 0. C est vrai pour n = 0 de manière évidente, supposons la propriété vraie pour un rang n. On a alors : u n+2 u n+1 = f(u n+1 ) f(u n ) qui est du signe de u n+1 u n puisque f est croissante. Par hypothèse de récurrence u n+1 u n est du signe de u 1 u 0 donc u n+1 u n est du signe de u 1 u 0. Si f est décroissante, alors les deux suites extraites (u 2n ) n et (u 2n+1 ) n sont monotones de sens opposé. 6

7 preuve : Si f est décroissante, f f est croissante donc par la proposition précédente (u 2n ) n et (u 2n+1 ) n sont monotones. On a en outre u 2n+2 u 2n qui est du même signe que u 2 u 0 et u 2n+1 u 2n 1 de même signe que u 3 u 1. Si f f(u 0 ) > u 0 alors u 2 u 0 > 0 et f f(f(u 0 )) < f(u 0 ) donc u 3 u 1 < 0 donc (u 2n+1 ) n est croissante et (u 2n ) n est décroissante. Si f f(u 0 ) < u 0, (u 2n ) n est décroissante et u 2n+1 ) n est croissante. 5.2 Etude de la convergence On suppose dans la suite que f est continue d un intervalle I fermé dans lui-même. Si (u n ) n converge vers l, alors l [a; b] et f(l) = l.l est donc un point fixe de f. Par continuité de f, si (u n ) n converge vers l, alors (f(u n ) n ) converge vers f(l), Mais f(u n ) = u n+1 donc par unicité de la limite l = f(l). Conséquence : Si f n a pas de point fixe, (u n ) n diverge. Remarques : Une fonction continue peut avoir un seul point fixe et la suite (u n ) n peut diverger. En effet, par exemple, f : x x sur [0; 1] admet 0 pour unique point fixe et la suite (u n ) n associée diverge. Si I = [a; b] alors f admet au moins un point fixe. Soit g : I R définie par x I g(x) = f(x) x. On a g(a) = f(a) a 0, g(b) = f(b) b 0 et g est continue sur I donc par la théorème des valeurs intermédiaires, il existe c [a; b] tel que g(c) = 0 c est à dire f(c) = c Dans la suite, on supposera I fermé borné, i.e. I = [a; b] avec a < b. On suppose f croissante sur I : u 0 I, (u n ) n est monotone et converge vers l un des points fixes de f. 7

8 On a vu que f admet au moins un point fixe, que (u n ) n est monotone. Comme elle est bornée, elle admet donc une limite qui ne peut-être qu un point fixe de f. Remarque : Si f est strictement décroissante, f admet un unique point fixe, envisager la convergence de la suite (u n ) n. On a vu que f admet un point fixe. Montrons qu il est unique. Si l 1 et l 2 sont deux points fixes distincts, on peut supposer l 1 < l 2 et on a alors f(l 1 ) > f(l 2 ) puisque f est strictement décroissante. Or pour i {1; 2}, f(l i ) = l i donc l 1 > l 2 ce qui est absurde et montre l unicité. On suppose f k-contractante sur I, c est à dire (x; y) I 2 f(x) f(y) x y. Alors f admet un unique point fixe l et u 0 I, (u n ) n converge vers l. preuve : Sous réserve d existence, montrons d abord l unicité. Si l 1 et l 2 sont deux points fixes pour f on a donc f(l 1 ) = l 1 et f(l 2 ) = l 2. Par suite l 1 l 2 = f(l 1 ) f(l 2 ) k l 1 l 2 donc (1 k) l 1 l 2 0 ce qui impose l 1 l 2 = 0 d où l unicité. Pour l existence, soit (u n ) n la suite définie précédemment. Montrons qu elle est de Cauchy. Soient donc n et p entiers : u n u p = p 1 l=0 u n+l+1 u n+l p 1 l=0 u n+l+1 u n+l = p 1 l=0 f(u n+l) f(u n+l 1 ) k p 1 l=0 u n+l u n+l 1... p 1 l=0 kn+l 1 u 1 u 0 = k n 1 p 1 l=0 kl u 1 u 0 n 1 1 kp = k u 1 k 1 u 0 kn 1 u 1 k 1 u 0 quantité qui tend visiblement vers 0 quand n tend vers indépendamment de p. Donc la suite (u n ) n est de Cauchy dans I complet et par conséquent elle converge vers une limite l. On a : n N l f(l) = l u n+1 + f(u n ) f(l) l u n+1 + f(u n ) f (l) l u n+1 + k u n f(l). Comme (u n ) n converge vers l, cette quantité peut donc être rendue aussi petite que l on veut et par conséquent l = f(l). 8

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

Cours de Terminale S / Suites. E. Dostal

Cours de Terminale S / Suites. E. Dostal Cours de Terminale S / Suites E. Dostal juillet 204 Table des matières Suites 2. Notion de Suites......................................... 2.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Cours d analyse 1ère année. Rhodes Rémi

Cours d analyse 1ère année. Rhodes Rémi Cours d analyse 1ère année Rhodes Rémi 10 décembre 2008 2 Table des matières 1 Propriétés des nombres réels 5 1.1 Sous-ensembles remarquables de R........................ 5 1.2 Relations d ordre..................................

Plus en détail

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé Baccalauréat S Nouvelle-Calédonie //0 Corrigé. P. M. E. P. EXERCICE Commun à tous les candidats Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + x.. Étude d une fonction

Plus en détail

Cours 1 : Points fixes de fonctions monotones

Cours 1 : Points fixes de fonctions monotones Université Bordeaux 1 INF569 Master d informatique Logique et Langages (2 - partie 2) Cours 1 : Points fixes de fonctions monotones Anne Dicky 7 novembre 2009 Table des matières 1 Exemples de points fixes

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Suites Limite de suite réelle Exercices corrigés

Suites Limite de suite réelle Exercices corrigés Suites Limite de suite réelle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : conjecture de la limite d une suite définie par une formule explicite

Plus en détail

Espaces euclidiens. Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme

Espaces euclidiens. Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme Espaces euclidiens 1 Bases orthonormées Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme d habitude : < x, y >, ou (x, y) ou < x y > On note < x, x >= x 2, x est

Plus en détail

ROC (Restitution organisée des connaissances)

ROC (Restitution organisée des connaissances) TS 2015/2016 Les Suites ROC (Restitution organisée des connaissances) ROC N 1:Théorèmes de comparaison Théorèmes de comparaison Soit trois suites, et. L désigne un nombre réel. Si à partir d un certain

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Suites : Calcul et comportement asymptotique.

Suites : Calcul et comportement asymptotique. 4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - notion de suite, représentation graphique, suites arithmétiques, suites géométriques : toutes sections - somme de termes, limite de suites arithmétique et

Plus en détail

Calcul des limites de Suites numériques

Calcul des limites de Suites numériques Fiche BAC 02 Calcul des ites de Suites numériques Exercice n 1 Calculer les ites des suites suivantes lorsqu'elles existent. Justifier votre réponse. Pour tout entier n : 1 ) u n =n 2 n+5 2 ) v n = 2n2

Plus en détail

Chapitre 4. Quelques types de raisonnement

Chapitre 4. Quelques types de raisonnement Chapitre 4 Quelques types de raisonnement 1. Aide à la rédaction d un raisonnement 1.1. Analyse du problème La première chose est de distinguer les hypothèses (= propositions vraies) de la question (=proposition

Plus en détail

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) APPLICATIONS LINÉAIRES ET MATRICES Résumé de cours d algèbre linéaire L de B. Calmès, Université d Artois (version du er février 206). Applications linéaires Soient E et F des espaces vectoriels sur K...

Plus en détail

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5 Licence L3 Mathématiques Année 008/009 Analyse Numérique Corrigé du TD 5 EXERCICE 1 Méthode des approximations successives, ordre de convergence Soient I un intervalle fermé de R, g : I I une fonction

Plus en détail

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Tableaux de variations et tableaux de signes Les exercices 1 et se réfèrent au graphique

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Ó Ø Ó Ö ¾¼½ PSI Aurélien Monteillet ii Ce document contient les notes d un cours de mathématiques pour la classe de PSI. Les démonstrations non exigibles ou hors programme sont explicitement

Plus en détail

Corrigé : EM Lyon 2006

Corrigé : EM Lyon 2006 Corrigé : EM Lyon 26 Option économique Exercice 1: 1. a) Comme A est une matrice triangulaire, on peut lire ses valeurs propres sur sa diagonale. Les valeurs propres de A sont et 1. b) Aadmet deux valeurspropresdistinctes

Plus en détail

Chapitre 1. Logique et ensembles. 1.1 Rudiments de logique. Logique, tables de vérité. Quantificateurs

Chapitre 1. Logique et ensembles. 1.1 Rudiments de logique. Logique, tables de vérité. Quantificateurs Document créé le 29 octobre 2015 Lien vers les solutions des exercices Lien vers le cours de ce chapitre Chapitre 1 Logique et ensembles 1.1 Rudiments de logique Logique, tables de vérité Exercice 1.1.1

Plus en détail

Etude de fonctions polynômes, cours, terminale STMG

Etude de fonctions polynômes, cours, terminale STMG Etude de fonctions polynômes, cours, terminale STMG F.Gaudon 8 juillet 2015 Table des matières 1 Fonction dérivée 2 2 Opérations sur les fonctions dérivables 2 2.1 Somme..............................................

Plus en détail

Terminale ES Chapitre III Suites numériques.

Terminale ES Chapitre III Suites numériques. Terminale ES Chapitre III Suites numériques. I- Généralités. 1) Vocabulaire. Voici une liste de nombres : 1 3 6 10 15 21 (termes) On peut les numéroter : n 0 n 1 n 2 n 3 n 4 n 5 (rangs) Ainsi, le terme

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

L inégalité des accroissements finis. Applications.

L inégalité des accroissements finis. Applications. DOCUMENT 31 L inégalité des accroissements finis. Applications. 1. Introduction La fonction x ]0, 1[ sin 1 x est bornée mais il n en est pas de même de sa fonction dérivée x 1 x 2 cos 1. Dans ce document

Plus en détail

DERIVATION. PLAN I : Dérivée

DERIVATION. PLAN I : Dérivée 203 - Gérard Lavau - http://lavau.pagesperso-orange.fr/index.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreux ou

Plus en détail

Chapitre 5 : Application - Forces Centrales

Chapitre 5 : Application - Forces Centrales Cours de Mécanique du Point matériel Chapitre 5: Application - Forces Centrales SMPC Chapitre 5 : Application - Forces Centrales I Force Centrale I.)- Définition Un point matériel est soumis à une force

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES CHAPITRE SUITES RÉELLES ET COMPLEXES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autres sciences. Nous verrons dans ce cours et les travaux

Plus en détail

Chapitre 2 : Etude de fonctions

Chapitre 2 : Etude de fonctions Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 :

Plus en détail

Exercices fondamentaux

Exercices fondamentaux Université de Nantes Département de Mathématiques DEUG MIAS - Module M2 Algèbre Année 2002/2003 Liste d exercices n 1 Exercices fondamentaux Espaces vectoriels, sous-espaces vectoriels 1. Montrer que l

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

Séries numériques. Exercice 1. Etudier la convergence des séries suivantes : Allez à : Correction exercice 1

Séries numériques. Exercice 1. Etudier la convergence des séries suivantes : Allez à : Correction exercice 1 Séries numériques Exercice 1. Etudier la convergence des séries suivantes : 1. 2. Allez à : Correction exercice 1 Exercice 2. Etudier la convergence des séries suivantes : Allez à : Correction exercice

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Dérivabilité Etudier la dérivabilité de la fonction : 1 en 1. On considère la fonction définie sur 1; par 1 1 Etudier la dérivabilité de en 1.

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation grapique 1) Taux de variation d une fonction en un point. Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Séries entières. Exercice 2. Déterminer le rayon de convergence des séries entières suivantes : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Séries entières. Exercice 2. Déterminer le rayon de convergence des séries entières suivantes : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Séries entières Exercice 1. Soit Une série entière. On suppose qu elle diverge pour et qu elle converge pour. Quel est son rayon de convergence? Allez à : Correction exercice 1 Exercice 2. Déterminer le

Plus en détail

fonctions homographiques

fonctions homographiques fonctions homographiques Table des matières 1 aspect numérique et algébrique 3 1.1 activités.................................................. 3 1.1.1 activité 1 : différentes écritures.................................

Plus en détail

1 Exercices fondamentaux

1 Exercices fondamentaux Université de Nantes Licence Math L3 Département de Mathématiques Année 2009-2010 Topologie et calculs différentiel Liste n 3 1 Exercices fondamentaux Applications Linéaires Exercice 1. Calculer la norme

Plus en détail

COURS COMMUN L1 MI & MIAGE

COURS COMMUN L1 MI & MIAGE COURS COMMUN L MI & MIAGE 5 janvier 03 Table des matières Propriétés du corps des nombres réels 3. A propos du corps des réels R.......................... 3.. Notion de corps..............................

Plus en détail

1 Somme de sous-espaces vectoriels

1 Somme de sous-espaces vectoriels Compléments d algèbre linéaire 1 Somme de sous-espaces vectoriels 1.1 Somme de 2 sevs Soient E 1 et E 2 deux sous-espaces vectoriels de E. On appelle somme de E 1 et E 2 l ensemble noté E 1 + E 2 et défini

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Fiche BAC 01 Terminale S Raisonnement par récurrence Suites numériques Exercice n 1. [RÉSOLU] On considère la suite définie par : { u = 1 0 u n+1 = u n +2,n 0 1 ) A la calculatrice ou avec un tableur :

Plus en détail

L espace de probabilités (Ω,A,P )

L espace de probabilités (Ω,A,P ) L espace de probabilités (Ω,A,P ) 1 Introduction Le calcul des probabilités est la science qui modélise les phénomènes aléatoires. Une modélisation implique donc certainement une simplification des phénomènes,

Plus en détail

Université de Brest UFR Droit, Economie, Gestion, AES. Cours de mathématiques S2 Licence AES 2015-2016

Université de Brest UFR Droit, Economie, Gestion, AES. Cours de mathématiques S2 Licence AES 2015-2016 Université de Brest UFR Droit, Economie, Gestion, AES Cours de mathématiques S2 Licence AES 2015-2016 Chapitre 4 - Quelques notions de mathématiques financières 1 Ce chapitre vise à présenter quelques

Plus en détail

Suites numériques Généralités Exercices corrigés

Suites numériques Généralités Exercices corrigés Suites numériques Généralités Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : définition d une suite, notion de rang et termes d une suite Exercice 2 : calcul avec les termes d une suite

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence CHAPITRE 2 Raisonnement par récurrence On veut démontrer une propriété qu ont tous les entiers naturels n, par exemple : «la somme de tous les entiers de 0 à n est égale à n(n 1)/2». Comme on considère

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

THEOREME DE LA CONVERGENCE MONOTONE

THEOREME DE LA CONVERGENCE MONOTONE THEOREME DE LA CONVERGENCE MONOTONE.1 Suite minorée, majorée, bornée Dénition 1 minorée par m : quel que soit n, u n m majorée par M : quel que soit n, u n M bornée = minorée + majorée Exemple de suite

Plus en détail

1 L algorithme du simplexe

1 L algorithme du simplexe 1 L algorithme du simplexe 1.1 Définition - Notations 1.1.1 Problème Le problème linéaire est le suivant: Trouver les x 1, x 2,...,x n qui optimisent la fonction économique: et vérifient les contraintes:

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

Changement de bases. 2. Rôle de Reprenons l'exemple précédent. La matrice est inversible et l'on a :

Changement de bases. 2. Rôle de Reprenons l'exemple précédent. La matrice est inversible et l'on a : Changement de bases. Position du problème On considère un espace vectoriel de dimension, dont on connaît une base,,,. On considère une famille de vecteurs de cet espace vectoriel,,,. ppelle la matrice

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

Probabilités. Céline Lacaux. 23 mars 2015. École des Mines de Nancy IECL. Notations/Hypothèses Rappels

Probabilités. Céline Lacaux. 23 mars 2015. École des Mines de Nancy IECL. Notations/Hypothèses Rappels Probabilités 3., Céline Lacaux École des Mines de Nancy IECL 23 mars 2015 1 / 25 Plan 1 Notations/Hypothèses 2 3 4 Définition Moments Existence d une densité? 2 / 25 Notations/Hypothèses (Ω,F,P) espace

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Corrigé de la première épreuve de mathématiques. Mines-Ponts 2009 - filière MP

Corrigé de la première épreuve de mathématiques. Mines-Ponts 2009 - filière MP Corrigé de la première épreuve de mathématiques Mines-Ponts 9 - filière MP A. Questions préliminaires Prouvons par récurrence sur n N la propriété P n : φ f est de classe C n sur et t, φ (n f (t = i n

Plus en détail

DIMENSION D'UN ESPACE VECTORIEL ADMETTANT UNE FAMILLE GÉNÉRATRICE FINIE RANG D'UNE APPLICATION LINÉAIRE

DIMENSION D'UN ESPACE VECTORIEL ADMETTANT UNE FAMILLE GÉNÉRATRICE FINIE RANG D'UNE APPLICATION LINÉAIRE DIMENSION D'UN ESPACE VECTORIEL ADMETTANT UNE FAMILLE GÉNÉRATRICE FINIE RANG D'UNE APPLICATION LINÉAIRE Notations : Dans tout l'exposé, on considérera, sauf mention contraire, que les familles sont constituées

Plus en détail

Minimisation d une somme de distances, points de Fermat

Minimisation d une somme de distances, points de Fermat Minimisation d une somme de distances, points de Fermat Arnaud de Saint Julien 26 décembre 2004 Table des matières 1 Présentation du problème 2 1.1 Définitions et objectifs..................................

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Suites : Rappels, récurrence et limites

Suites : Rappels, récurrence et limites Suites : Rappels, récurrence et limites Christophe ROSSIGNOL Année scolaire 015/01 Table des matières 1 Généralités sur les suites 1.1 Modes de génération d une suite....................................

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

RSA - bases mathématiques

RSA - bases mathématiques RSA - bases mathématiques Jang Schiltz Centre Universitaire de Luxembourg Séminaire de Mathématiques 162A, avenue de la Faïencerie L-1511 Luxembourg Luxembourg E-mail:schiltzj@cu.lu 1 Divisibilité Définition

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

Université de Poitiers Année 2012-2013 L1 M2IPC Algèbre linéaire. Algèbre linéaire. rédigé par. Anne Moreau

Université de Poitiers Année 2012-2013 L1 M2IPC Algèbre linéaire. Algèbre linéaire. rédigé par. Anne Moreau Université de Poitiers Année 2012-2013 L1 M2IPC Algèbre linéaire Algèbre linéaire rédigé par Anne Moreau 1 2 Table des matières 1 Espaces Vectoriels 5 11 Structure d espace vectoriel 5 111 Espaces vectoriels

Plus en détail

Mathématique -5SH - 3périodes/semaine.

Mathématique -5SH - 3périodes/semaine. Exemples : I. SUITES NUMÉRIQUES 1. Voici une suite de termes numériques : 3, 17, 87, 437, 2187, ou indice 0 1 2 3 4 5 termes Exemple 3 17 87 437 2187 p n-1 n A. DÉFINITION Intuitivement, une suite est

Plus en détail

Chapitre 6 : Tests d hypothèses

Chapitre 6 : Tests d hypothèses U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Chapitre 6 : Tests d hypothèses Les statistiques peuvent être une aide à la décision permettant de choisir entre deux hypothèses. Par exemple,

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement.

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement. LA DÉRIVÉE SECONDE Sommaire 1. Courbure Concavité et convexité... 2 2. Détermination de la nature d'un point stationnaire à l'aide de la dérivée seconde... 6 3. Optima absolus... 8 La rubrique précédente

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

La Décomposition en Valeurs Singulières Analyse numérique et Application à la Vision

La Décomposition en Valeurs Singulières Analyse numérique et Application à la Vision La Décomposition en Valeurs Singulières Analyse numérique et Application à la Vision Valérie Perrier, Roger Mohr Ensimag et Laboratoire Jean Kuntzmann Décomposition en valeurs Deux parties : singulières

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Etude des extrema d une fonction

Etude des extrema d une fonction CHAPITRE 3 Etude des extrema d une fonction 1. Extrema : Rappels sur les fonctions d une variable Dans cette section on veut généraliser à plusieurs variable la discussion suivante concernant les fonctions

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

Corrigé : EM Lyon 2008

Corrigé : EM Lyon 2008 Exercice 1: I. Étude d une fonction Corrigé : EM Lyon 28 Option économique 1. Les fonctions t t et t ln(t) sont continues sur ];+ [ donc par produit et différence de fonctions continues, f est continue

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence Raisonnement par récurrence V. Bansaye Niveau : Approfondir la Terminale S Diculté : Plutôt facile, un peu technique pour le second. Durée : 20 min pour le premier, une bonne demi heure pour le second.

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

BORNE SUPERIEURE. P. Pansu 15 février 2005

BORNE SUPERIEURE. P. Pansu 15 février 2005 BORNE SUPERIEURE P. Pansu 15 février 2005 1 Motivation Grandeur et misère de Q. 1.1 Propriétés de l ordre dans Q L ordre est compatible avec les opérations d addition et de multiplication (par exemple,

Plus en détail

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe de la ère S à la TS. Exercice n : On donne la fonction f définie sur R par : = x 4 + x +. On appelle Γ la courbe représentative de f dans un repère orthonormé (O; ı, j).. Étudier la parité de f.. Déterminer

Plus en détail

ED D ÉLECTROSTATIQUE PAES-APEMK

ED D ÉLECTROSTATIQUE PAES-APEMK ED D ÉLECTROSTATIQUE PAES-APEMK Professeur Tijani GHARBI tijani.gharbi@univ-fcomte.fr 1 Rappels 1.1 Notion de champs Nous revenons ici sur la notion de champ. Un champ associé à une grandeur physique représente

Plus en détail

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive.

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive. Chapitre 01 Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites géométriques. Reconnaître et exploiter une suite géométrique dans une situation donnée. Connaître la formule donnant 1 +

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Types de raisonnement

Types de raisonnement Types de raisonnement Christian Cyrille 19 août 013 "On résoud les problèmes qu on se pose et non les problèmes qui se posent" Henri Poincaré En sciences, deux façons de raisonner : - l induction - la

Plus en détail

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : donner la partie réelle et la partie

Plus en détail

Corrigé du Devoir Surveillé n 2

Corrigé du Devoir Surveillé n 2 Corrigé du Devoir Surveillé n Exercice : Autour de la fonction Arc cosinus Représentons la fonction définie par f(x) = Arccos (cosx) + Arccos (cos x). f est définie sur R, f est paire, f est π périodique

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Matrices symétriques réelles.

Matrices symétriques réelles. Université de Nice SL2M 2009-10 Algèbre 2 Matrices symétriques réelles. 4. Calcul matriciel 4.1. Application bilinéaire symétrique associée à une matrice symétrique. On considère une matrice symétrique

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro SUITES NUMERIQUES I. Présentation des suites numériques Une suite est un ensemble infini où chaque élément se voit attribuer un numéro Définition d'une suite. Une suite (u n ) est une fonction définie

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Matrices. 1,n a 2,1 a 2,2 a 2,j a 2,n. A = j-ième colonne

Matrices. 1,n a 2,1 a 2,2 a 2,j a 2,n. A = j-ième colonne Matrices I Matrices et opérations I1 definitions Définition 1 Soit n un entier naturel non nul Une matrice carrée d ordre n est un tableau de nombres réels comportant n lignes et n colonnes Le nombre placé

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail