Le Théorème de Bayes
|
|
|
- Christelle Dupont
- il y a 8 ans
- Total affichages :
Transcription
1 Le Théorème de Bayes Cours Interprétation de la preuve (4) Le processus du raisonnement robabilités a priori Autres informations (dossier, enquête, etc.) se combinent avec Rapport de vraisemblance Données analytiques robabilités a posteriori Décision sur l hypothèse
2 La théorie de Bayes La théorie de Bayes est le fondement d une partie de la théorie de la décision. robabilités a posteriori ( ) ( H E,I) H E,I robabilités a priori ( ) ( ) H I H I (, I) ( E H, E H Rapport devraisemblance Un exemple pratique our illustrer l importance de ce théorème en termes de modélisation du diagnostic : supposons que A soit l événement atteint de la maladie M. supposons que B soit l événement positif pour le test diagnostic D. Le théorème de Bayes permet de calculer la probabilité pour qu un patient positif pour le test diagnostic D soit atteint de la M, en fonction de la probabilité de la maladie M dans la population.
3 Théorème de Bayes Le théorème de Bayes vise à calculer les probabilités a posteriori d un événement en fonction des probabilités a priori de cet événement. A priori et a posteriori s entendent par rapport à la connaissance d une information. L exemple typique est celui du diagnostic : a priori on juge que le patient a une telle probabilité d avoir la maladie M. Que devient a posteriori cette probabilité lorsque l on apprend le résultat de tel examen clinique ou biologique? Théorème de Bayes Ce théorème est un outil de modélisation de la démarche diagnostique (en sens large). L idée de base du théorème de Bayes est de calculer les probabilité a posteriori d un événement A, sachant qu un autre événement B s est produit, en fonction de sa probabilité a priori : on veut donc exprimer (A B) en fonction de (A).
4 Théorème de Bayes Tout d abord, si A et B sont indépendants, on vient de voir que (A B) (A), puisque B n apporte pas d information sur A. Que se passe-t-il si B apporte une information? Dans un tel cas, on a : ( A B) ( A B) La probabilité de A sera différente selon que l on a l information que B s est produit, ou que B ne s est pas produit. Théorème de Bayes On peut écrire : ( A B) ( A B) ( A et B) ( B) ( B A) ( A) ( B)
5 Théorème de Bayes La clé de démonstration c est d écrire que : B (B et A) ou (B et non-a) Cette égalité rappelle que les événements élémentaires qui définissent B peuvent être classés en deux catégories : ceux qui réalisent A (ils forment B et A), ceux qui ne le réalisent pas (ils forment B et non- A. De plus, (B et A) est incompatible avec (B et non- A) parce que A et non-a le sont. Théorème de Bayes On peut donc écrire : ( A B) On a de plus : ( B A) ( A) ( B et A) + ( B et A) ( B et A) ( B A) ( A) ( B et A) ( B A) ( A)
6 Théorème de Bayes Le théorème de Bayes s écrit : ( A B) ( B A) ( A) ( B A) ( A) + ( B A) ( A) Intuition - le jeu des trois cartes On considère 3 cartes à jouer de même forme. Cependant, les deux faces de la première carte ont été colorées en noir, les deux faces de la deuxième carte en rouge tandis que la troisième porte une face noire et l autre rouge. On mélange les trois carte au fond d un chapeau puis une carte tirée au hasard en est extraite et placée au sol. Si la face apparente est rouge, quelle est la probabilité que l autre soit noire?
7 Intuition - le jeu des trois cartes Soient RR, NN et RN respectivement les événements, la carte choisie est entièrement rouge, entièrement noire et bicolore. Soit encore R l événement, la face apparente de la carte tirée est rouge. Intuition - le jeu des trois cartes On aura : ( ) RN R ( ) RN R ( R) ( R) RN ( R RN) ( RN) ( ) ( ) + ( ) ( ) + ( ) ( ) R RN RN R RR RR R NN NN ( ) RN R ( ) ( 3) ( ) ( 3) + ( ) ( 3) + ( 0) ( 3) 3
8 Exemple du diagnostic Supposons que : A soit l événement atteint de la maladie M, et B soit l événement positif pour le test diagnostic D. Le théorème de Bayes permet de calculer la probabilité pour qu un patient positif pour le test diagnostique D soit atteint de M, en fonction de la probabilité (ou fréquence) de maladie M dans la population. + ( M D ) + ( D M ) ( M ) + + ( D M ) ( M ) + ( D M) ( M) Sensibilité et spécificité our chaque individu examiné, nous nous intéressons aux caractères : M avoir la maladie non-m ne pas avoir la maladie T avoir un résultats positif (+) au test non-t avoir un résultat négatif (-) au test Dans une phase d évaluation, le test est appliqué à un groupe M et à un groupe non-m. Les groupes sont formés à l aide d un test de référence (gold standard) dont le résultat est considéré comme sûr.
9 Sensibilité et spécificité On détermine les fréquences des quatre résultats possibles indiqués par n, n, n, n TM T M T M TM M M Total T n TM n T M n T T n T M n TM n T Total n M n M n Sensibilité et spécificité M M Total T n TM n T M n T T n T M n TM n T Total n M n M n n Sensibilité n TM M proportion de + parmi les malades.
10 Sensibilité et spécificité M M Total T n TM n TM n T T n TM n TM n T Total n M n M n n Spécificité n TM M proportion de - parmi les sains. Des valeurs élevées de sensibilité et de spécificité indiquent clairement une bonne qualité du test. Sensibilité et spécificité - exemple M M Total T T Total ntm 950 Sensibilité 95% n 000 M ntm 990 Spécificité 99% n 000 M
11 Les autres mesures d efficacité d un test La sensibilité et la spécificité du test ne sont pas des informations directement utiles à l individu (le patient) auquel le test est administré. En effet, supposons que la sensibilité et la spécificité d un certain test soient : sensibilité 95% spécificité 99% Supposons aussi que le médecin applique ce test à un patient et obtient un résultat positif (+). Les autres mesures d efficacité d un test Il s agit de répondre à la question : Quelle est la probabilité que le patient soit réellement malade? our répondre il nous faut une information supplémentaire concernant la fréquence de la maladie M dans la population, c est-à-dire la prévalence de la maladie. Supposons par exemple, qu il y ait seul malade par habitants (prévalence de M /0 000).
12 remière solution La prévalence de /0 000 nous permet d affirmer que dans une population hypothétique de d individus, on peut s attendre à 00 malades et sains. Le test dépiste 95 cas positifs et 5 cas négatifs parmi les malades, car la sensibilité est de 95%. Le test trouve aussi résultats positifs et résultats négatifs dans la partie saine de la population (voir schéma suivant). opulation '000'000 révalence / malades Sensibilité 95% sains Spécificité 99%
13 remière solution En conclusion, la proportion de malades parmi les cas positifs est de 95/0 094, ce qui indique que les chances qu un individu positif au test soit réellement malade sont seulement de (approximativement %). Solution avec la formule de Bayes (M T) robabilité que le patient soit malade donnée le résultat positif du test (sachant que le résultat du test est positif). ( ) M T sensibilité0.95 ( ) ( M) T M prévalence0.000 ( ) ( ) + ( ) ( ) T M M T M M -spécificité0.0 -prévalence0.9999
14 Solution avec la formule de Bayes (M T) robabilité que le patient soit malade donnée le résultat positif du test (sachant que le résultat du test est positif). ( ) M T ( ) M T Solution avec la formule de Bayes Remarque : Les valeurs de (T M) et (non-t non-m) dans la population sont inconnues. Nous utilisons leurs estimations 95%, respectivement 99%, obtenus dans la phase d évaluation à l aide d un échantillon de 000 malades et 000 sains.
15 Solution avec la formule de Bayes probabilité a priori 0.0 probabilité a posteriori Terminologie (T M) sensibilité du test (non-t non-m) spécificité du test (M T) valeur prédictive positive du test (non-m non-t) valeur prédictive négative du test (T non-m) taux de faux positifs ( -spécificité) Attention! pour certains auteurs : taux de faux positifs (non-m T).
16 Le rôle de la prévalence Il est souvent difficile de connaître la prévalence (M) avec précision. Il convient alors d examiner le test pour différentes valeurs de (M). ar exemple, si (T M)0.95 et (non-t non-m)0.99 ( M ) ( M T) ( M T) /' / / / / / / Le rôle de la prévalence Le taux de faux négatifs est bon : moins de 5 malades sur (~0.0005) échappent au test. ar contre, le taux de faux positifs est élevé : sur 00 individus positifs plus de 50 (~0.503) sont sains. La décision de maintenir un tel test dépendra de l importance de la maladie, des conséquences du test, des coûts des examens complémentaires et de l éventuel traitement, des chances de succès du traitement, ect. Il est important de savoir qu on peut réduire les taux d erreur en combinant (ou en répétant) deux ou plusieurs tests.
17 Combinaisons de deux ou plusieurs tests Notations : M le patient est malade T le premier test est positif T le deuxième test est positif non-m le patient n est pas malade non-t le premier test est négatif non-t le deuxième test est négatif Hypothèse : Les résultats des deux tests sont indépendants. Combinaisons de deux ou plusieurs tests Données : (M) prévalence 0% (T M) sensibilité du premier test 75% (non-t non- M) spécificité du premier test 80% (T M) sensibilité du deuxième test 90% (non-t non- M) spécificité du deuxième test 95% Valeur prédictive positive (probabilité a posteriori) du premier test, (M T )?
18 Combinaisons de deux ou plusieurs tests ( M T ) ( M T ) ( M ) ( M ) ( M ) ( M ) + ( M) ( M) T T ( M T) Valeur prédictive positive de la combinaison remière approche, grâce à l indépendance des résultats : ( et T M ) ( T M ) ( T M ) T ( et T M) ( M) ( T M) T et donc : ( M T et T ) ( et T M ) ( M ) ( et T M ) ( M ) + ( T et T M) ( M) T T ( M T et T ) 0. 88
19 Valeur prédictive positive de la combinaison Deuxième approche : ( M T ) ( T M ) ( M ) ( T ) ( ) ( ) ( ) M T M + T T M T M ( M T ) Valeur prédictive positive de la combinaison Deuxième approche : Après avoir obtenu le résultat T, nous interprétons (M)(M T ) comme prévalence de M parmi les résultats T ( M T ) ( T M ) ( M ) ( T M ) T ( M ) + T ( T M) T ( M) ( M T )
20 Valeur prédictive positive de la combinaison Deuxième approche : Après avoir obtenu le résultat T, nous interprétons (M)(M T ) comme prévalence de M parmi les résultats T ( M T ) ( T M ) ( M ) ( T M ) T ( M ) + T ( T M) T ( M) Grâce à l indépendance des résultats, (T M)(T M) ( M T ) Les affaires de paternité et la jurisprudence en Suisse Le théorème de Bayes est accepté. CC art. 54. Empreinte génétique. L analyse dite ADN est une méthode scientifique nouvelle, reconnue pour l essentiel, pour constater la paternité. Revue Suisse de Jurisprudence 88 (99) 4 :
21 La conclusion dans les affaires de paternité «Dans le trio X [enfant], Y [mère] et Z [père présumé], la probabilité de paternité selon Essen- Möller est très largement supérieure à %. L évaluation est donc : paternité pratiquement prouvée.» Le processus du raisonnement 50% % robabilités a priori Rapport de Autres informations (dossier) se combinent avec vraisemblance rofils génétiques de la M,E et robabilités a posteriori Décision sur la paternité
22 Le rôle de l expert Expert robabilités a se combinent avec priori Rapport de vraisemblance Le juge ou la Cour robabilités a posteriori Le juge ou la Cour La odds form du théorème de Bayes ( A B) ( B A) ( A) ( B) ( ) ( ) ( ) B A A A B ( A B) ( ) A B ( B) ( B A) ( A ) ( ) ( ) A A B
23 La odds form du théorème de Bayes Bayes factor ( A B) ( B A) ( A) ( B) ( ) ( ) ( ) B A A A B ( A B) ( ) A B ( B) ( B A) ( A ) ( ) ( ) A A B Likelihood ratio
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
DASES Réseau tuberculose 10 janvier 2006
DASES Réseau tuberculose 10 janvier 2006 Place des Nouveaux Tests de Dosage de L INTERFERON GAMMA dans le diagnostic de la Tuberculose Fadi ANTOUN, Cellule Tuberculose DASES Le Quotidien du Médecin 2005
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Chapitre 1 Evaluation des caractéristiques d un test diagnostique. José LABARERE
UE4 : Biostatistiques Chapitre 1 Evaluation des caractéristiques d un test diagnostique José LABARERE Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés. lan I.
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93
MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
F.Benabadji Alger 22.11.13
F.Benabadji Alger 22.11.13 ALLERGIE DANS LE MONDE 4ÉME RANG MONDIAL (OMS) PROBLÈME DE SANTÉ PUBLIQUE LES CAUSES Notre environnement (industriel, technologique, scientifique et climatique) * Allergènes
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Docteur José LABARERE
UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
Les tests génétiques à des fins médicales
Les tests génétiques à des fins médicales Les tests génétiques à des fins médicales Nous avons tous hérité d une combinaison unique de gènes de la part de nos parents. Cette constitution originale et l
www.gbo.com/bioscience 1 Culture Cellulaire Microplaques 2 HTS- 3 Immunologie/ HLA 4 Microbiologie/ Bactériologie Containers 5 Tubes/ 6 Pipetage
2 HTS 3 Immunologie / Immunologie Informations Techniques 3 I 2 ELISA 96 Puits 3 I 4 ELISA 96 Puits en Barrettes 3 I 6 en Barrettes de 8 Puits 3 I 7 en Barrettes de 12 Puits 3 I 8 en Barrettes de 16 Puits
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE
Partie 1, Chapitre 4 INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE Constat : à l'exception des jumeaux, chaque individu est unique. Ses caractères héréditaires dependent des info génétiques (allèles) portées
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
MERLIN GESTION PATRIMONIALE. Groupe GESTION PATRIMONIALE. Définition d un programme de renouvellement
Groupe MERLIN Une tradition d innovations au service des hommes GESTION PATRIMONIALE GESTION PATRIMONIALE Définition d un programme de renouvellement Indépendance - Expériences - Expertises - Proximité
Montréal, 24 mars 2015. David Levine Président et chef de la direction DL Strategic Consulting. DL Consulting Strategies in Healthcare
Montréal, 24 mars 2015 David Levine Président et chef de la direction DL Strategic Consulting 1 RSSPQ, 2013 2 MÉDECINE INDIVIDUALISÉE Médecine personnalisée Médecine de précision Biomarqueurs Génomique
Études épidémiologiques analytiques et biais
Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
CODES DE BONNE CONDUITE : QUAND LES SOCIETES JOUENT A L APPRENTI LEGISLATEUR
CODES DE BONNE CONDUITE : QUAND LES SOCIETES JOUENT A L APPRENTI LEGISLATEUR Marie Brac Allocataire de rechercheà l Université Paris-X Nanterre 1. Actuelement, un nombre important d entreprises 1 se dotent
Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1
UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Exercices de génétique classique partie II
Exercices de génétique classique partie II 1. L idiotie phénylpyruvique est une maladie héréditaire dont sont atteints plusieurs membres d une famille, dont voici l arbre généalogique : 3 4 5 6 7 8 9 10
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
LICENCE PHYSIQUE, CHIMIE EN L3 :
SCIENCES & TECHNOLOGIES - SANTÉ ET STAPS LICENCE EN L : - Parcours : «Chimie» (Dunkerque) - Parcours : «Physique, Sciences-Physiques, Electronique et Instrumentation» (Calais) www.univ-littoral.fr OBJECTIFS
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
Titre alcalimétrique et titre alcalimétrique complet
Titre alcalimétrique et titre alcalimétrique complet A Introduction : ) Définitions : Titre Alcalimétrique (T.A.) : F m / L T.A. T.A.C. Définition : C'est le volume d'acide (exprimé en ml) à 0,0 mol.l
Estimation des charges. «Le travail se dilate jusqu à remplir le temps disponible»
«Le travail se dilate jusqu à remplir le temps disponible» Le savoir faire du chef de projet Pas d excès d optimisme Retour sur expérience Toujours garder de la marge Identifier les points à risque Ne
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Migraine et Abus de Médicaments
Migraine et Abus de Médicaments Approches diagnostiques et thérapeutiques des Céphalées Chroniques Quotidiennes Pr D. DEPLANQUE Département de Pharmacologie médicale EA 1046, Institut de Médecine Prédictive
TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S
FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Molécules et Liaison chimique
Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R
Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :
SMARTPHONE - DUAL-CORE - NOIR 3483072425242 SMARTPHONE - DUAL-CORE - BLEU XXXX SMARTPHONE - DUAL-CORE - BLANC 3483072485246 SMARTPHONE - DUAL-CORE - ROSE 3483073704131 SMARTPHONE - DUAL-CORE - ROUGE XXXX
MASTER (LMD) INGENIERIE DE LA SANTE
MASTER (LMD) INGENIERIE DE LA SANTE RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : BIOLOGIE SANTE Spécialité : METIERS DE LA SANTE ASSOCIES
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Culture scientifique et technologique
Socle commun de connaissances et de compétences Collège Culture scientifique et technologique - Banque de situations d apprentissage et d évaluation - Ce document peut être utilisé librement dans le cadre
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Programme d assurance-invalidité de courte durée
Programme d assurance-invalidité de courte durée Votre trousse de six pages Aperçu Le Programme d assurance-invalidité de courte durée (PAICD) assure un traitement uniforme pour tous les employés lorsqu
Services Techniques de Boston Scientific - Tél. : 0 800 08 2000
Boston Scientific S.A.S 14, place Georges Pompidou BP 32 78184 Saint Quentin en Yvelines Cedex France Tel 33 (0)1 39 30 49 00 Fax 33 (0)1 39 30 49 01 www.bostonscientific.com Objet : Information sur les
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
1 Première section: La construction générale
AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994
1. Généralités FR.TBLZ242.140328
FR.TLZ242.140328 Instructions d'installation Sonde de temp. amb. TLZ1242, pour inst. e, IP20/ Sonde de temp. ext. TLZ1243, pour inst. extérieure, IP54 GOLD/OMPT 1. Généralités onçue pour un montage, la
COMPLICATIONS THROMBOTIQUES DES SYNDROMES MYÉLOPROLIFÉRATIFS: ÉVALUATION ET GESTION DU RISQUE
COMPLICATIONS THROMBOTIQUES DES SYNDROMES MYÉLOPROLIFÉRATIFS: ÉVALUATION ET GESTION DU RISQUE D APRES «THROMBOTIC COMPLICATIONS OF MYELOPROLIFERATIVE NEOPLASMS : RISK ASSESSMENT AND RISK-GUIDED MANAGEMENT
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Unité 2 Leçon 2 Les permutations et les combinaisons
Unité 2 Leçon 2 Les permutations et les combinaisons Qu'apprenons nous dans cette leçon? La différence entre un arrangement ordonné (une permutation) et un arrangement nonordonné (une combinaison). La
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
Forest Stewardship Council. Guide simplifié d utilisation des marques à l intention des titulaires de certificats
Forest Stewardship Council Guide simplifié d utilisation des marques à l intention des titulaires de certificats A propos des marques FSC et de ce guide simplifié Les marques FSC sont l outil de communication
Migraine et céphalées de tension: diagnostic différentiel et enjeux thérapeutiques
Migraine et céphalées de tension: diagnostic différentiel et enjeux thérapeutiques Dr Solène de Gaalon Service de neurologie- CHU Nantes Société française des migraines et céphalées Céphalées de tension
MIEUX VIVRE AVEC SON HEMIPLEGIE
Comment aider un hémiplégique COMMENT AIDER UNE PERSONNE HÉMIPLÉGIQUE... - La sortie du lit - Le transfert - Au fauteuil - La marche en deux temps Chaque personne a gardé des capacités et des possibilités
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
APPROCHE DE MODELISATION DE LA PROPAGATION DE L INCENDIE DANS UN EDIFICE ET SON INTEGRATION DANS UN SYSTEME DECISIONNEL
APPRCHE DE MDELISATIN DE LA PRPAGATIN DE L INCENDIE DANS UN EDIFICE ET SN INTEGRATIN DANS UN SYSTEME DECISINNEL Sanae KHALI ISSA (*), Abdellah AZMANI (*), Karima ZEJLI (**) [email protected], [email protected],
où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test
ORTHOPHOS XG 3 DS. Systèmes de radiographie. ORTHOPHOS XG 3 l accès facile à la panoramique numérique.
ORTHOPHOS XG 3 DS Systèmes de radiographie l accès facile à la panoramique numérique. Conception clichés panoramiques avec technologie XG. technique et design en harmonie. fiable économique 1 Profitez
Diagnostic des Hépatites virales B et C. P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux
Diagnostic des Hépatites virales B et C P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux Diagnostic VHC Dépistage: pourquoi? Maladie fréquente (Ac anti VHC chez 0,84% de la population soit 367 055
MANUEL D ÉVALUATION DE COURS
MANUEL D ÉVALUATION DE COURS JANVIER 2008 Demande d évaluation, liste de vérifications, frais et guide de références Demande d évaluation de cours et de programmes pour l obtention d heures PEP et de crédits
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
ELASTICITE DE LA DEMANDE Calcul de l'elasticite & Applications Plan du cours I. L'elasticite de la demande & ses determinants II. Calcul de l'elasticite & pente de la courbe de demande III. Applications
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Dossier projet isn 2015 par Victor Gregoire
Dossier projet isn 2015 par Victor Gregoire Plan: I) But du projet: créer un jeu de blackjack fonctionnel et le poster sur une page web mise en ligne. Le jeu sera developpé en C++ a l'aide de code blocks.
[o] : o, au et eau. Leçon 2. olive radio sofa. fromage rose orange métro. On a déjà lu les mots
L eau de mer est salée. On a déjà lu les mots olive radio sofa Dans ces mots, la lettre o fait le son [o], comme dans le mot «vélo». Aussi comme dans les mots fromage rose orange métro 35 1 Encercler les
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Ray-grass anglais auto-regarnissant
Robuste COMME L ACIER Ray-grass anglais auto-regarnissant Une technologie révolutionnaire : auto-regarnissage et tolérance au jeu la plus élevée, même avec une tonte courte! RPR technology inside! RPR
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
La Dysplasie Ventriculaire Droite Arythmogène
1 La Dysplasie Ventriculaire Droite Arythmogène Document rédigé par l équipe pluridisciplinaire du centre de référence pour les maladies cardiaques héréditaires (Paris), en collaboration avec des patients
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Valencia (Spain) [email protected] - www.tigernuts.com. Valencia (Spain)
La «noix tigrées» et la pêche á la Carpe Valencia (Spain) 1 Tigernuts Trader S.L., est le leader mondial dans l exportation de noix tigrée et de ses dérivées La noix tigrée, est un tubercule d une exquise
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
