- Rappels sur la résolution d une équation de la forme. " oeuil "

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "- Rappels sur la résolution d une équation de la forme. " oeuil ""

Transcription

1 - EE Thème N 6 : TRIGONOETRIE Equation () e que je dois savoir à la fin du thème : - Rappels sur la résolution d une équation de la forme a ou b b a - onnaître et utiliser dans le triangle rectangle des relations entre le cosinus, le sinus ou la tangente d un angle aigu et les longueurs de côtés du triangle. - Utiliser la calculatrice pour déterminer des valeurs approchées : - du sinus, du cosinus et de la tangente d un angle aigu donné. de l angle aigu dont on connaît le sinus, le cosinus ou la tangente. «our prendre un bon départ» Trouve dans chacun des cas suivants : 9 6 9, 0 0 0,, 0, 9, 78 0,5 0,75 7 0, , , TIVITE : - " Revoir la définition du cosinus d'un angle aigu " ) Le triangle est rectangle en.,,, 9,, , , 0 Hypoténuse ôté opposé à l'angle " oeuil " ôté adjacent à l'angle a) omplète les encadrés en choisissant parmi le vocabulaire suivant: opposé - hypoténuse - adjacent. b) Rappel: - Deu angles sont complémentaires si la somme de leurs angles ( en degrés) vaut 90.

2 - Deu angles sont supplémentaires si la somme de leurs angles vaut 80. Que peu-tu dire des angles et : Ils sont complémentaires Eprime l'angle en fonction de : 90 - ) a) esure les longueurs et ( au mm près ): 8 mm et 97 mm côté adjacent à 8 b) omplète: cos 0, 8 ( ) Hypoténuse 97 Donner les notations de longueurs c) Tape valeur ( ) puis INV OS ( ou SHIFT OS ou OS - ) : On a: ( TTENTION: Vérifier que tu es en mode degré ) d) Vérifie en mesurant à l'aide de ton rapporteur la mesure de l'angle : - Deu nouvelles relations trigonométriques our les trois figures ci-dessous, est un triangle rectangle en. figure figure figure ) omplète le tableau ci-dessous: our calculer sin et tan, on utilisera les touches SIN et TN de ta calculatrice figure figure figure (mm) ( ) sin tan (mm) (mm) ,7 0, ,6 0,9 0,6 0, ,8, 0,8,

3 ) En observant le tableau, complète les deu égalités: sin et tan En généralisant, complète en remplaçant par: " côté opposé à l'angle " ; " côté adjacent à l'angle " ; " hypoténuse " côté cos adjacent à Hypoténuse ; côté opposé à sin Hypoténuse ; côté tan côté opposé adjacent à à ) Vérification de la mesure de l'angle de la figure. Tape valeur puis INV SIN ( ou SHIFT SIN ou SIN - ) : On a: 5 ou bien Tape valeur puis INV TN ( ou SHIFT TN ou TN - ) : On a: 5 alculs de longueurs Eercice n : Le triangle est rectangle en ; l'unité de longueur est le centimètre. l'aide des indications données, calculer une valeur approchée de la longueur des deu autres côtés. a) 8 et 5 ; b) et 9 ; c) 68 et d ) 5 et, 5 ; e) 50 et ; f ) 68 et 0 5 cm 8 a) alcul de Dans le triangle rectangle en : cos donc donc 5 cos8 d où 5,6 cm cos cm b)alcul de Dans le triangle rectangle en : sin donc donc 9 sin d où 6,98 cm sin 9 alcul de Dans le triangle rectangle en : tan donc donc 5 tan8 d où,6 cm. tan8 5 alcul de Dans le triangle rectangle en : tan donc donc 9 tan d où,0 cm. tan 9

4 68 cm,5 cm 5 c) alcul de Dans le triangle rectangle en : cos donc cos68 donc cos68 d où,50 cm alcul de Dans le triangle rectangle en : sin donc sin 68 donc sin 68 d où, cm. d) alcul de Dans le triangle rectangle en :,5 sin donc sin 5,5 donc sin 5 d où 8,8 cm alcul de Dans le triangle rectangle en :,5 tan donc tan 5,5 donc tan 5 d où 7,5 cm. 0 cm cm e)alcul de Dans le triangle rectangle en : cos donc cos 50 donc cos50 d où 6, cm alcul de Dans le triangle rectangle en : tan donc tan50 donc tan50 d où,77 cm. f)alcul de Dans le triangle rectangle en : cos donc cos68 0 donc 0 cos68 d où,75 cm alcul de b) Dans le triangle rectangle en : sin donc sin 68 0 donc 0 sin 68 d où 9,7 cm. Eercice n : Sur les berges de la rivière, deu points remarquables et se font face.

5 Dans le triangle rectangle en : tan donc tan 50 donc 50 tan d où 9,9 onclusion : La largeur de la rivière mesure environ 9, m Eercice n : Un observateur placé à 50 m d'une falaise voit le sommet de celle-ci sous un angle de 5, et la bas sous un angle de 0. alculer la hauteur de la falaise, à 0 cm près. 50 m m 5 0 D alcul de Dans le triangle D rectangle en : tan D donc tan 5 D 50 donc 50 tan5 d où 50 alcul de Dans le triangle D rectangle en : tan D donc tan 0 D 50 donc 50 tan0 d où 8,87 alcul de : On a : ,87 78,87 onclusion : La hauteur de la falaise mesure environ 78,9 m 785,5 m alcul de SH Dans le triangle HS rectangle en H : SH SH cos S donc cos6,7 S 785,5 donc SH 785,5 cos6, 7 d où SH 75 m S 6,7 H Eercice n : De puis le point, un géomètre mesure S ( avec un géomètre à laser) et HS : S 785,5 m; mes (HS ) 6,7. alculer SH et H alcul de H b) Dans le triangle HS rectangle en H : H H sin H donc sin6,7 SH 785,5 donc H 785,5 sin 6,7 d où H,7 m.

6 Eercice n 5: Le vainqueur V est en vue. V De part et d'autre de l'entrée V du port, deu observateurs munis de goniomètres mesurent chacun un angle: mes( V ) 70 ; mes( V ) 90. a) Sachant que 60 m, 70 calculer V. b) En déduire la distance qui sépare V du milieu de []. ( rrondir les résultats au mètre le plus proche). 60 m a) alcul de V Dans le triangle rectangle en V V tan V donc tan donc V 60 tan70 d où V 65 m b) alcul de V Dans le triangle rectangle en, d après le théorème de ythagore, on a : V + V V V V V V V + 65 V 67,7 onclusion : La longueur V mesure environ 68 m Eercice n 6 : alcule la longueur H puis l aire de. alcul de H Dans le triangle H rectangle en H : H H sin donc sin 7, donc H, sin 7 d où H,05 cm, cm alcul de l aire du triangle H 7,,05 On a ire, soit ire 7, 8 onclusion : L aire du triangle est environ 7,8 cm² 7 H 7, cm Eercice n 7 : our un maimum de sécurité, une échelle doit former avec un mur un angle de 0. vec une échelle de 9 m, jusqu à quelle hauteur de mur peut on monter (au cm près) alcul de H Dans le triangle H rectangle en, H H on a : cos H soit cos 0 H 9 donc H 9 cos0 d où H 8,6 m 0 H Il peut donc monter à une hauteur de 8,6 m environ

7 Eercice n 8 : Quelle est la hauteur h de la tour S alcul de S Dans le triangle S rectangle en, S on a : tan S soit tan 5 donc S 5 tan5 d où S m S 5 5,50 m 5 m D h alcul de h : On a h D + S,50 +,50 onclusion : La hauteur de la tour mesure environ,50 m alculs d'angles Eercice n 9: a) N 7 et, ; b) N et N 7 ; c) 0, 5 et N d ) 5, et N 5, ; e) N et N 0 alculer au degré près la mesure des angles aigus. a) N 7 et, b) N et N 7, 0 cm 0 cm 7 l angle N Dans le triangle N rectangle en : N cos N N d où N N 55 7, 68 7 N alcul de alcul de l angle N Dans le triangle N rectangle en : N cos N N d où N alcul de l angle Sachant que dans un triangle rectangle, les angles aigus sont complémentaires, alors : d où 5 alcul de l angle Sachant que dans un triangle rectangle, les angles aigus sont complémentaires, alors : d où 8

8 c) 0,5 et N d) 5, et N,5 0 cm 0,5 0 cm 5, N 68 alcul de l angle N Dans le triangle N rectangle en : 68 N,5 alcul de l angle N Dans le triangle N rectangle en : sin N N 0,5 N tan N N 5,,5 d où N 7 d où N 50 alcul de l angle Sachant que dans un triangle rectangle, les angles aigus sont complémentaires, alors : d où 8 alcul de l angle Sachant que dans un triangle rectangle, les angles aigus sont complémentaires, alors : d où 0 e) N et N cm 68 N alcul de l angle N Dans le triangle N rectangle en : N cos N N d où N 66 0 alcul de l angle Sachant que dans un triangle rectangle, les angles aigus sont complémentaires, alors : d où

9 Eercice n 0 : Sur un terrain de foot, le point de penalty est situé à m de ligne de but (). Les buts ont une largeur de 7, m. alcule (au degré près) l angle de tir d un footballeur lorsqu il tire un penalty. (conseil : calcule d abord O dans le triangle O, en epliquant pourquoi ce triangle est rectangle). O la m O 7, m alcul de O omme est un triangle isocèle, alors La bissectrice de est aussi la hauteur issue du sommet principal donc [O] est perpendiculaire à [] mais aussi la médiane issue de donc O O 7, :,66. insi le triangle O est rectangle en O avec O,66m. O,66 On a : tan O O D où O 8, omme [O) est une bissectrice, alors : O 8, 6,8 onclusion : L angle de tir est environ 7 Eercice n : Le sommet de la tour de ise s écarte de la verticale d environ 5 m et se trouve à environ 55 m du sol. alcule (au degré près) l angle que fait la tour avec la verticale. 55 m 5 m Dans le triangle rectangle en, on a : D où : 5 5 tan 55 Eercice n : Dans le trapèze SEU, calculer à 0,0 près, la mesure de l'angle. 7 cm O cm S U S cm 7 cm U cm cm E cm Soit la perpendiculaire à [SU] passant par, elle coupe [SU] en O. alcul de OU : On a OU SU SO 7 OU cm alcul de O SEO est un quadrilatère à angles droits, donc SOE est un rectangle, d où : SE O cm alcul de la mesure de l angle OU Dans le triangle OU rectangle en O, on a : O tan U soit U 5 OU onclusion : la mesure de l angle OU est 5 E cm TIVITE : " Relations entre cosinus, sinus et tangente "

10 ) - l'aide d'une calculatrice, complète le tableau suivant sachant que est un triangle rectangle en. Remarque: ar convention, on écrira cos au lieu de (cos )² cos 0,98 0,9 0,87 0,7 0,5 0 cos 0,97 0,88 0,75 0,5 0,5 0 sin 0 0,7 0, 0,5 0,7 0,87 sin 0 0,0 0, 0,5 0,5 0,75 cos + sin Que remarques-tu : cos + sin. - Démonstration: Soit un triangle rectangle en. On a: cos et sin. Eprime ² en fonction de ² et cos : ² Eprime ² en fonction de ² et sin : ² cos sin On sait que est un triangle rectangle en, on peut donc utiliser quelle propriété : ropriété de ythagore omplète: ² cos + sin ² ² ( cos + sin ) D'où : cos + sin ) - l'aide d'une calculatrice, complète le tableau suivant sachant que est un triangle rectangle en. ngle en degré cos 0,98 0,9 0,87 0,7 0,5 0 sin 0,98 0,9 0,87 0,7 0,5 0 sin 0 0,7 0, 0,5 0,7 0,87 tan 0 0,7 0,6 0,58,7 X ompare cos et sin : cos sin ; tan et sin : tan sin cos cos - Démonstration: Dans le triangle rectangle en, on a: cos sin et et sin ; sin cos d' où cos sin. tan

11 Eercice n : Enoncé : cos 8 0,95. Déduis-en l arrondi au millième de : a) sin 8 ; b) tan 8 ; c) sin 7. Solution : a) cos 8 + sin 8 0,95 + sin 8 sin 8 0,95 0, Donc sin 8 0, ,09. b) tan 8 sin8 cos8 0,09 0,95 0,5. c) 8 et 7 sont des angles complémentaires, donc : sin 7 cos8 0,95 Eercice n : est la mesure d un angle aigu dans un triangle rectangle. Sans calculatrice, calcule la valeur manquante dans chaque cas : a) sin 0,6 ; cos 0,8 ; tan 0,75 b) sin ; cos ; tan c) sin 5 7 ; cos 6 ; tan 5 8 d) sin 0 6 ; cos ; tan 0. Eercice n 5: Soit la mesure d un angle aigu d un triangle rectangle, démontre en développant le carré que : (sin + cos ) + sin cos. (sin + cos ) (sin + cos ) (sin + cos ) sin + sin cos + sin cos + cos sin + cos + sin cos + sin cos

12 Eercice n 6: Des angles particulier a) cos 5, déduis-en les valeurs eactes de sin 5 et de tan 5. sin 5 sin 5 car le triangle est isocèle ; tan 5 cos 5 soit tan 5 b) sin 0, déduis-en les valeurs eactes de cos 0 et de tan 0. cos 0 sin 0 et tan 0 cos0 c) Sachant que sin 0, déduis-en les valeurs eactes de cos 60, sin 60 et de tan 60. sin 0 cos 60 ; cos 0 sin 60 ( d après b) ) ; sin 60 tan 60 cos60

Thème N 4 : TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE. Calculs de longueurs

Thème N 4 : TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE. Calculs de longueurs 3- EE Thème : TRIGOOETRIE D LE TRIGLE RETGLE la fin du thème, tu dois savoir : onnaitre les relations trigonométriques. alculer une longueur avec une formule trigonométrique. alculer la mesure d un angle

Plus en détail

Thème N 12: EQUATION (2) TRIANGLE RECTANGLE (2) ( le cosinus ) - ESPACE (2) ( le cône )

Thème N 12: EQUATION (2) TRIANGLE RECTANGLE (2) ( le cosinus ) - ESPACE (2) ( le cône ) - 1 9 1 126 9 10 10 0, 0, 1 1 12 1 728 12 3 3 0,25 0,75 0,25-25 25 5 5 5 72 72 8 9 8 1 1 12 12 12 36 36 9 Thème N 12: EQUTION (2) TRINGLE RETNGLE (2) ( le cosinus ) - EPE (2) ( le cône ) Résoudre des équations

Plus en détail

Calculs dans le triangle rectangle

Calculs dans le triangle rectangle alculs dans le triangle rectangle 10 De nombreuses situations de la vie professionnelle nécessitent le calcul de longueurs ou d angles. itons par exemple : pour une charpente, le calcul de la longueur

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Nombres et calculs. Ex 1 Assimilons un fil de cuivre à un cylindre de diamètre d et de longueur l.

Nombres et calculs. Ex 1 Assimilons un fil de cuivre à un cylindre de diamètre d et de longueur l. Nombres et calculs Objectifs : u travers de quelques exercices nous allons évoquer les nombres et leurs propriétés. - quels ensembles particuliers appartiennent -ils? - Quelles sont les différentes formes

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE TD TRIGNMETRIE DNS LE TRINGLE RETNGLE 1. Je me souviens 1. Dans le triangle TM rectangle en T : [T] est le côté adjacent à l angle TM? [M] est le côté adjacent à l angle TM? ou [T] est l hypoténuse? 2.

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

Sommaire de la séquence 5

Sommaire de la séquence 5 Sommaire de la séquence 5 Séance 1.................................................................................................... 111 Je revois et j enrichis mon vocabulaire sur les angles.............................................

Plus en détail

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)²

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)² ème Fiches Révisions revet lanc 1/8 Puissances, Fractions : Effectuer les calculs suivants (donner l écriture scientifique de et écrire sous forme d un entier ou d une fraction). 1 = 15 x 10- x (10 ) 4

Plus en détail

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième :

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième : HPITRE 4 URS: TRIGNMÉTRIE Etrait du programme de la classe de troisième : NTENU MPÉTENES EXIGILES MMENTIRES Triangle rectangle : relations trigonométriques onnaître et utiliser dans le triangle rectangle

Plus en détail

ENSEIGNEMENT A DISTANCE

ENSEIGNEMENT A DISTANCE ours 269 Série 06 Mathématiques (2 ème degré) GEMETRIE ommunauté française de elgique ENSEIGNEMENT ISTNE (reproduction interdite sans autorisation) Plan de la série 06 Leçon 11 : Trois lieux géométriques

Plus en détail

antécédent image antécédent image 12 est l image de 7, 7 est l antécédent de 12 par la fonction f. x 1 3 4 6

antécédent image antécédent image 12 est l image de 7, 7 est l antécédent de 12 par la fonction f. x 1 3 4 6 3 ème VOULIR T NOTTIONS DS FONTIONS F1 Une fonction f est un procédé mathématique qui à un nombre x fait correspondre un autre nombre, noté f(x). On écrit f : x f(x). Le nombre associé f(x) est appelé

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : ours, Techniques et Exercices Denis LE FUR ollège Zéphir, ayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques et

Plus en détail

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités DES NGLES Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités Les deux droites sont sécantes en O... Deux droites sont parallèles...... est un triangle

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Trigonométrie : le cosinus

Trigonométrie : le cosinus Trigonométrie : le cosinus I. Rappels 1/ Vocabulaire des triangles rectangles Définition Un triangle rectangle est un triangle qui possède un angle droit. Vocabulaire Le côté situé en face de l'angle droit

Plus en détail

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs.

1 S Le produit scalaire Exercices. Diverses expressions du produit scalaire et calcul de grandeurs. S e produit scalaire Eercices Diverses epressions du produit scalaire et calcul de grandeurs. Eercice. est un triangle et I est le milieu de []. Données : I 6, I I et I. alculer : ) (introduire le point

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

C3T11 Trigonométrie Exercices 1/5

C3T11 Trigonométrie Exercices 1/5 3T11 Trigonométrie xercices 1/ Relations trigonométriques 1 e bon triangle n se place dans le triangle K rectangle en K. Quelle est son hypoténuse? J K Quels rapports? est un triangle rectangle en. Que

Plus en détail

COURS DE MATHÉMATIQUES Seconde

COURS DE MATHÉMATIQUES Seconde OURS DE MTHÉMTIQUES Seconde Valère ONNET (postmaster@mathsaulycee.info) 20 décembre 2006 Lycée PONTUS DE TYRD 13 rue des Gaillardons 71100 HLON SUR SÔNE Tél. : (33) 03 85 46 85 40 Fax : (33) 03 85 46 85

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Correction du brevet blanc. Partie 1 : Activités numériques (12 points)

Correction du brevet blanc. Partie 1 : Activités numériques (12 points) Correction du brevet blanc Eercice 1 (5 points) 3 Quelle est l'epression 1 5 développée de (5 3)? ( )( ) L'équation + 5 0 a pour solutions : Quelle est la valeur eacte de : 0+ 80? Quelle est la forme factorisée

Plus en détail

Compléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés.

Compléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés. TIVITES Soit 3 triangles rectangles avec le même angle ompléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés. 1 5 1 2 les les les /.... 10 e nombre environ 0,41 caractérise

Plus en détail

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999

Volume RESUME DE COURS DE MATHEMATIQUES. Copyright Ben. Troisième. Programme 1999 Volume 2 RESUME DE OURS DE MTHEMTIQUES. opyright en. Troisième Programme 1999 introduction : e résumé, second du nom, a été conçu en tant qu'assistant pour les élèves de quatrième et de troisième. Il regroupe

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Activité 1 : Du rectangle au parallélogramme

Activité 1 : Du rectangle au parallélogramme ctivités ctivité 1 : u rectangle au parallélogramme a. onstruis, sur une feuille, un rectangle de 10 cm de long sur 4 cm de large. Repasse en rouge les longueurs et en vert les largeurs. alcule l'aire

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3 ompétences: Identités remarquables Equations alculs-racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace Le / 02 / 2008 classe : Devoir de mathématiques n 6. (sujet ) Durée 2h calculatrice

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

THEOREME DE PYTHAGORE

THEOREME DE PYTHAGORE 1 FHE 9 THEOREME DE PYTHGORE Dans ce chapitre, - nous découvrirons le théorème de Pythagore - nous apprendrons à calculer la mesure de l un des côtés d un triangle connaissant les deux autres - nous apprendrons

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be.

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be. xercices résolus de mathématiques. TRI 0 XTRI000 XTRI009 http://www.matheux.be.tf Jacques ollot 30 juillet 03 www.matheux.be.tf - TRI 0 - - XTRI00 Liège, septembre 000. éterminer la distance entre les

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Correction du «Brevet Blanc» de mathématiques Lundi 26 mars 2012

Correction du «Brevet Blanc» de mathématiques Lundi 26 mars 2012 orrection du «revet lanc» de athéatiques Lundi 26 ars 2012 TIVITÉS NUMÉRIQUES (12 points) Exercice 1 Pour chaque ligne du tableau ci-dessous, choisir et entourer la bonne réponse pari les trois proposées.

Plus en détail

3ème Chapitre 2 Trigonométrie

3ème Chapitre 2 Trigonométrie 3ème Chapitre Trigonométrie Dans tout le chapitre, on travaillera dans un triangle rectangle. I_ Vocabulaire, notations et définitions A. Vocabulaire hypoténuse du triangle rectangle Côté adjacent à l'angle

Plus en détail

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72

3 ème DNB 2001 NICE PARTIE NUMERIQUE CORRIGE. Exercice 1. 1. Donner l'égalité traduisant la division euclidienne de 1 512 par 21 1 512 = 21 72 3 ème DNB 001 NICE PARTIE NUMERIQUE CORRIGE Exercice 1 1. Donner l'égalité traduisant la division euclidienne de 1 51 par 1 1 51 = 1 7. Rendre irréductible la fraction 70 1 51 70 1 51 = 7 10 7 1 donc 70

Plus en détail

Théorème de Pythagore Exercices corrigés

Théorème de Pythagore Exercices corrigés Théorème de Pythagore Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calcul de la longueur de l hypoténuse Exercice 2 : calcul de la longueur d un côté adjacent à l angle droit Exercice

Plus en détail

b. Explique précisément comment tu as placé le point H sur ton schéma.

b. Explique précisément comment tu as placé le point H sur ton schéma. ctivité 1 : Trouve le plus court chemin 1. Conjecture a. De la rive gauche d'un fleuve, lexia crie à amid qui est assis de l'autre côté du fleuve qu'elle ne sait pas nager. Trop éloigné d'elle, amid l'entend

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Trigonométrie dans un triangle rectangle

Trigonométrie dans un triangle rectangle Trigonométrie dans un triangle rectangle Définitions A est un triangle rectangle en. On s intéresse à l angle A. Le côté opposé à l angle A est. Le côté adjacent à l angle A est A. Propriétés (démonstrations

Plus en détail

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

1 Des formules utiles

1 Des formules utiles 4 Trigonométrie TD Troisième 1 Des formules utiles ctivité n 1 : osinus d un angle aigu.... 1. Soit un triangle rectangle en avec 3 cm et  60. Déterminer la longueur de l hypoténuse. 2. EFG est un triangle

Plus en détail

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de

Un cercle trigonométrique est un cercle de rayon 1 sur lequel on définit un sens de Première S Chapitre 7 : Angles orientés. Trigonométrie. Année scolaire 01/013 I) Rappels de seconde : 1) Définition d'un cercle trigonométrique Un cercle trigonométrique est un cercle de rayon 1 sur lequel

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP Seconde Triangles isométriques, triangles semblables I. Triangles isométriques. Définition. Deux triangles sont isométriques ou superposables, si l un est l image de l autre par une isométrie ou la composée

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

2 10 Devoir surveillé n 3 Vendredi 23 novembre 2005

2 10 Devoir surveillé n 3 Vendredi 23 novembre 2005 2 0 Devoir surveillé n 3 Vendredi 23 novembre 2005 onstruire un triangle isocèle tel que : = = 4 cm, et l'angle ait pour mesure 40. La médiatrice de [] coupe la droite () en D. On trace la droite (D) et

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème INQUIEME PRTIE L SYMETRIE ENTRLE SYMETRIQUE D'UN PINT 120 FIGURES SYMETRIQUES 121 MPRER LES DEUX SYMETRIES 122 SYMETRIQUES DES DRITES 126 SEGMENTS SYMETRIQUES; LE PRLLELGRMME 128 ENTRE DE SYMETRIE D'UNE

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent.

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent. 1 Symétrie par rapport à une droite JETIF 1 ÉFINITIN ire que deux figures sont symétriques par rapport à une droite signifie que, en effectuant un pliage le long de la droite, les figures se superposent.

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE Le triangle A est rectangle en A. C hypoténuse côté opposé à l'angle A B côté adjacent à l'angle A est un triangle donc : B + A + B = 80. A est un triangle

Plus en détail

Angles IJ = Exercice : (Rennes 99)

Angles IJ = Exercice : (Rennes 99) Angles Exercice : (Lyon 96) 1) Construire un triangle IJK tel que : JK 8 cm ; IJ 4,8 cm ; KI 6,4 cm. 2) Démontrer que le triangle IJK est un triangle rectangle. 3) Calculer la mesure en degrés de l'angle

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com THEOREE DE THLES Emilien Suquet, suquet@automaths.com I Le théorème de Thalès? Thalès est un mathématicien grec qui aurait vécu au VI ème siècle avant Jésus hrist. ous ne le connaissons qu à travers les

Plus en détail

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane Brevet des collèges, correction 27 juin 201 Métropole La Réunion Antilles-Guyane Exercice 1 4 points Avec un logiciel : on a construit un carré ABD, de côté 4 cm. on a placé un point M mobile sur [AB]

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES

Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 1 LES IRES «Les Mathématiques ne sont pas une marche prudente sur une voix bien tracée, mais un voyage dans un territoire étrange et sauvage, où les

Plus en détail

TRAVAUX NUMERIQUES ( T.N. )

TRAVAUX NUMERIQUES ( T.N. ) TRAVAUX NUMERIQUES ( T.N. ) Unité T.N.1 : LES NOMBRES RELATIFS VOCABULAIRE ET DEFINITION E1 E2 E3 E4 E5 E6 E7 T N 1 0 1 Trouver l'opposé d'un nombre relatif T N 1 0 2 Trouver l'inverse d'un nombre relatif

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail