Utilitaires Scilab pour le calcul et l optimisation d enceintes bass-reflex. Jean Fourcade <audio@volucres.fr>

Dimension: px
Commencer à balayer dès la page:

Download "Utilitaires Scilab pour le calcul et l optimisation d enceintes bass-reflex. Jean Fourcade <audio@volucres.fr>"

Transcription

1 Utiitaires Sciab pour e cacu et optimisation d enceintes bass-refex Jean Fourcade <audio@voucres.fr> 18 juin 2016

2 Tabe des matières 1 Modéisation théorique Le Haut-Pareur Schéma equivaent acoustique Paramètres Débit du diaphragme Puissance acoustique rayonnée Rendement et niveau acoustique Eongation du diaphragme Schéma équivaent éectrique Synthèse Dimensionnement d un haut-pareur Mesure des paramètres du haut-pareur L enceinte cose Schéma équivaent acoustique Paramètres Schéma équivaent éectrique Synthèse avec un haut-pareur donné L enceinte à évent Schéma équivaent acoustique Paramètres Débit dans enceinte Puissance acoustique rayonnée Eongation du diaphragme Schéma équivaent éectrique Aignement Mesure de a courbe de réponse Synthèse avec un haut-pareur donné Utiitaires Sciab Le Haut-Pareur Simuation d un haut-pareur Identification des paramètres de Thiee et Sma d un hautpareur L enceinte cose Simuation d une enceinte cose Identification des paramètres d une enceinte cose

3 2.3 L enceinte à évent Aignement d une enceinte à évent Simuation d une enceinte à évent Identification des paramètres d une enceinte à évent Identification des paramètres avec un haut-pareur connu Identification des paramètres connaissent e Q mo Exempe : enceinte ONKEN Mesure des haut-pareurs Mesure des paramètres de enceinte Mesure et simuation de a courbe de réponse A Equations différentiees du Haut-Pareur B Variations de impédance d une enceinte à évent C Méthode des moindres carrés D Résutats Mape concernant e haut-pareur E Résutats Mape concernant enceinte à évent i v vii x xvii 2

4 Introduction Cette note décrit des utiitaires Sciab d optimisation des enceintes à évent. Sciab est un ogicie ibre de cacu numérique mutipateforme [1]. I est disponibe pour Window, Mac OS et inux. Ces utiitaires utiisent a mesure de a courbe d impédance et a pression sonore pour optimiser a courbe de réponse de enceinte. On réaisera ces mesures avec, par exempe, des ogicies comme ARTA [2] ou REW [3]. Pus précisément, es fonctionnaités qu offrent ces utiitaires Sciab sont es suivantes : simuation de a courbe de réponse, du temps de propagation de groupe, de éongation de a membrane et de impédance d un haut-pareur ou d une enceinte à évent ; identification des paramètres de Thiee et Sma d un haut-pareur ; identification des paramètres d une enceinte à évent ; cacu de a courbe de réponse à partir de a mesure de a pression sonore à intérieure de enceinte. La modéisation mathématique se base sur es travaux de R. H. Sma [5], [6]. La modéisation de enceinte incue es pertes par absorption Q a, par fuites Q i et par frottement dans évent Q p. L identification des paramètres fait appe à a méthode des moindres carrés. Cette note comprend trois parties : a première concerne a modéisation théorique du haut-pareur et de enceinte à évent ; a deuxième partie décrit es utiitaires Sciab ; a dernière partie expose un cas concret : optimisation de enceinte ONKEN 360 itres équipée du haut-pareur ALTEC 416-8A. Ce document comprend égaement pusieurs annexes : e déveoppement des équations différentiees qui régissent e mouvement de a membrane du hautpareur, es résutats du ogicie Mape utiisé pour déveopper es équations de a partie modéisation et enfin un bref rappe de a méthode d estimation par moindres carrés. Notations La modéisation des haut-pareurs et enceintes acoustiques faisant appe à un nombre importants de paramètres a convention de notation suivante a été adoptée afin d identifier faciement a signification d un paramètre : Le premier indice indique e type de modéisation : m : désigne un paramètre mécanique ; a : désigne équivaent acoustique d un paramètre éectrique ou mécanique ; e : désigne un paramètre éectrique ou équivaent éectrique d un paramètre mécanique. Le deuxième indice caractérise e composant modéisé : 3

5 s : désigne e haut-pareur (speaker) ; b : désigne un paramètre reatif à a boite de enceinte (box) ; p : désigne un paramètre d évent (port) ; o : désigne un paramètre d une enceinte à évent (open). Enfin un astérisque pacé en exposant d un paramètre de masse acoustique indique que ce paramètre prend en compte une ou pusieurs masses de rayonnement. 4

6 Chapitre 1 Modéisation théorique 1.1 Le Haut-Pareur Un haut-pareur éectrodynamique se compose : d un diaphragme constitué d une membrane suspendue d un coté par a suspension externe et de autre coté par e spider ; d une bobine mobie soidaire du diaphragme ; d un circuit magnétique ; d un saadier qui supporte ensembe des composants. Nous nous intéresserons à a modéisation du haut-pareur uniquement dans e domaine des basses fréquences, c est-à-dire autour de sa fréquence de résonance. On suppose que e diaphragme est infiniment rigide ce qui permet de définir son éongation ξ d identique en tout point et sa vitesse de dépacement v d définie par : v d = dξ d (1.1) dt Un haut-pareur se caractérise par es sept paramètres éectriques et mécaniques suivant : Masse du système mobie (kg) : Compiance mécanique de a suspension externe et du spider (m/n) : Resistance mécanique de pertes par frottements (N.s/m) : Produit du champs magnétique dans entrefer par a ongueur du fi de a bobine mobie (T.m) : Résistance de a bobine mobie (Ω) : Surface projetée du diaphragme (m 2 ) : M ms C ms R ms B R e S d 5

7 On définit e débit q d du diaphragme exprimé en m 3 /s par : q d = S d v d (1.2) On suppose que e haut-pareur est aimenté par un générateur de tension U g de résistance interne négigeabe Schéma equivaent acoustique L appication du principe fondamenta de a dynamique et de a oi d Ohm généraisée conduit à deux équations différentiees que on résoud en utiisant a transformée de Lapace ou de Fourrier (voir annexe A). En éiminant e courant éectrique on aboutit au schéma éectrique suivant qui modéise e comportement acoustique du haut pareur : Figure 1.1 Schema acoustique du haut-pareur Dans ce schéma, q d est a transformée de Lapace ou de Fourrier du débit du diaphragme et constitue e courant éectrique de ce circuit. La source de pression P g est a tension de ce circuit et s exprime par : P g = B S d R e U g (1.3) Les composants constituants ce schéma sont es suivants : 6

8 Résistance acoustique des pertes dues à a résistance de a bobine (Pa.s/m 3 ) : Résistance acoustique des pertes par frottement (Pa.s/m 3 ) : Masse acoustique de équipage mobie (kg/m 4 ) : Compiance acoustique de a suspension (m 3 /Pa) : Impédance de rayonnement de a face avant de a membrance (Pa.s/m 3 ) : Impédance de rayonnement de a face arrière de a membrance (Pa.s/m 3 ) : R ae = (B)2 S 2 d R e R as = R ms S 2 d M as = M ms S 2 d C as = S 2 d C ms Z ar1 Z ar2 Le cacu des impédances de rayonnement est reativement compexe et dépend des conditions de montage du haut-pareur (voir M. Rossi [4] paragraphes et ). Dans e cas d un haut-pareur pacé sur un écran infini impédance de rayonnement d une face en considérant a taie du diaphragme petite devant a ongueur d onde (cas des basses fréquences) s écrit : Z ar = Z c S d ( 1 2 (ka)2 + j 8ka 3π ) (1.4) avec a e rayon de a membrane, k = ω/c e nombre d onde et Z c = ρc impédance caractéristique de air où ρ est a densité atmosphérique et c a vitesse du son. En écrivant impédance de rayonnement sous a forme : On obtient : Z ar = R ar + jωm ar (1.5) R ar = ρω2 2cπ M ar = 8 ρ 3π 2 a (1.6) (1.7) La résistance acoustique est a résistance dans aquee e haut-pareur dissipe son énergie acoustique. La masse acoustique M ar correspond à une masse mécanique : M r = S 2 d M ar = 8 3 ρa3 (1.8) Cette masse mécanique est a masse d air qui s ajoute à a masse de a membrane et vibre avec ee. La résistance R ar étant faibe devante R as ee est 7

9 négigée dans e cacu de q d (e rendement d un haut-pareur acoustique est en effet très médiocre). Le seu terme pris en compte dans Z ar pour cacuer e débit du diaphragme est ainsi M ar. Dans e cas d un haut-pareur monté sur un écran infini, i faut douber cette vaeur pour obtenir impédance de rayonnement totae. On introduit aors a masse totae définie par : et a masse acoustique équivaente définie par : M ms = M ms + 2M r (1.9) M as = M as + 2M ar (1.10) avec M ar = M r /S 2 d. Dans e cas d un haut-pareur rayonnant en champ ibre sans écran, on trouve une impédance de rayonnement égae à cee d une seue face du montage sur écran infini. Le schéma acoustique d un haut pareur se résume finaement à : Figure 1.2 Synthése du schema acoustique du haut-pareur avec M as éga à M as + M ar ou M as + 2M ar seon que e haut-pareur est monté ou non sur un écran infini Paramètres En notant s a variabe de Lapace, a fonction de transfert du circuit cidessus entre e débit du diaphragme q d et a pression P g s écrit : q d = P g R ae + R as + M ass + 1 sc as (1.11) Cee-ci se déveoppe sous a forme : q d = sp g C as s 2 M asc as + sr ae C as + sr as C as + 1 (1.12) 8

10 Cette équation fait apparaître e produit M asc as qui définit a pusation de résonance non amortie du haut-pareur et es produits dépendants soit de R ae soit de R as qui définissent es facteurs de quaités correspondants. L amortissement (ié au facteur de quaité) a donc deux origines : une origine mécanique provenant de R ms et une origine éectrique provenant de R e. On introduit es vaeurs suivantes : Pusation de résonance : ω s = 1 M as C as = 1 M ms C ms Facteur de quaité mécanique : Q ms = Facteur de quaité éectrique : Q es = 1 ω s C as R as = 1 ω s C as R ae = 1 ω s C ms R ms R e ω s C ms (B) 2 Facteur de quaité tota : Voume d air équivaent à a suspension (m 3 ) : 1 = Q ts Q es Q ms V as = ρc 2 C as Le paramètre V as est e voume d air de compiance égae à a suspension mécanique du haut-pareur (voir e paragraphe 1.2.1) Débit du diaphragme On définit a variabe de Lapace normaisée : S = s ω s (1.13) On obtient aors (voir annexe D ignes 10, 11 et 12) : avec : q d = q s G s (S) S q s = U gs d Q es (B) (1.14) (1.15) G s est a fonction de transfert normaisée dont expression est : G s (S) = Puissance acoustique rayonnée La puissance acoustique rayonnée est donnée par : S 2 S 2 + Q 1 ts S + 1 (1.16) P ar = R ar q d 2 (1.17) 9

11 avec R ar a résistance de rayonnement : R ar = Z c 1 S d 2 (ka)2 = ρ ω 2 2c π = ρ Sωs 2 2c π (1.18) On obtient (voir annexe D igne 24) : avec P ar = P as G s (S) 2 (1.19) P as = ρs2 d 2πc ( B Mms ) 2 U g 2 Re 2 (1.20) La forme de a courbe de réponse d un haut-pareur ne dépend que de Q ts. Ee correspond à un fitre passe-haut du second ordre. Cacuons a fréquence de coupure à -3 db de cette fonction de transfert, soit à cacuer ω 3 te que G s (S) 2 = 1/2. On obtient : ω 3 ω s = Q 2 ts 2 + (Q 2 ts 2) (1.21) En annuant a dérivée on trouve a pusation où se produit e pic de réponse : ω max ω s = Q 2 ts (1.22) Le maximum du pic de réponse est : G s (ω max /ω s ) = Q ts (1.23) Q 2 ts Si Q ts < 1/ 2, i n y a pas de maximum Rendement et niveau acoustique Le rendement est e quotient entre a puissance acoustique rayonnée et a puissance éectrique fournie. Ces deux puissances dépendant de a fréquence, a puissance acoustique rayonnée est cacuée dans a partie médiane de a argeur égae donc à P as et a puissance éectrique de référence est donnée par : On obtient ainsi a vaeur du rendement : η s = P es = U g 2 R e (1.24) ρs2 d ( B 2πcR e Mms ) 2 (1.25) 10

12 L ordre de grandeur de η s est de queques pour-cents. Le rendement fait apparaître e terme B homogène à une accéération et M ms qu on nomme facteur d accéération du haut-pareur. Cacuons e niveau de pression acoustique en db. Ceui-ci s exprime en fonction de a pression p par : L p = 20 og 10 p p 0 (1.26) avec p 0 a pression de référence égae à 20µP a. La pression se cacue à partir de intensité acoustique I exprimée en W/m 2 seon (voir M. Rossi [4] chapitre ) : p = Z c I (1.27) avec Z c impédance caractéristique du miieu. Pour un rayonnement omnidirectionne dans 2π str à a distance r, on a : I = P ar 2πr 2 (1.28) L intensité acoustique mesurée à 1 m pour une puissance éectrique de référence de 1 W dans a partie médiane de a argeur de bande vaut donc : I = η s 2π Le niveau de pression acoustique qui en résute est donc : (1.29) Soit : avec ρ = 1.18kg/m 3 et c = 344m/s Eongation du diaphragme L p = 10 og 10 (ρc η s 2π ) 20 og 10 p 0 (1.30) On obtient (voir annexe D igne 14 et 15) : avec L p = og 10 η s (1.31) ξ d = ξ s G s (S) S 2 (1.32) ξ s = U g ω s Q es (B) (1.33) L éongation du diaphragme correspond à un fitre passe-bas du second ordre. La pusation ω ξ du maximum de éongation s obtient en dérivant a fonction de transfert. On obtient : ω ξ ω s = Q 2 ts (1.34) 11

13 Le maximum de a fonction de transfert de éongation est aors : x max = Q ts (1.35) Q 2 ts Si Q ts < 1/ 2, x max vaut 1 et ω ξ est nu. Cacuons éongation à ω ξ en fonction de a puissance rayonnée. On obtient (voir annexe D igne 21) : 2πc ξ d = ρ P x max as ωss 2 (1.36) d L éongation en fonction de a puissance rayonnée ne dépend que de a fréquence de résonance et de a surface de a membrane du haut-pareur. Soit ξ h éongation maximum du domaine inéaire de fonctionnement du haut-pareur obtenue en imitant a distorsion à une vaeur donnée. Cacuons a puissance efficace rayonnée P aξ correspondant à cette éongation. En rempaçant P as par P aξ dans équation (1.36) on obtient éongation efficace maximum ˆξ d. Or ξ h est par définition une éongation crête puisqu ee est e maximum admissibe. Nous avons donc : 2 ˆξd = ξ h (1.37) On déduit : P aξ = ρω4 s Vd 2 4πc x 2 max avec V d = S d ξ h e voume dépacé par a membrane. (1.38) Schéma équivaent éectrique Le schéma éectrique équivaent est e suivant (voir annexe A) : avec : Figure 1.3 Schema éectrique du haut-pareur 12

14 Equivaent éectrique de R ms (Ω) : R es = (B)2 R ms = (B)2 S 2 d R as Equivaent éectrique de M ms (F) : C es = M ms (B) 2 = M assd 2 (B) 2 Equivaent éectrique de C ms (H) : L es = C ms (B) 2 = C as(b) 2 S 2 d Equivaent éectrique du rayonnement (Ω) : Z er = (B)2 S 2 d Z ar En prenant es vaeurs des impédances de rayonnement cacuées précédemment, on se ramène au schéma simpifié suivant : Figure 1.4 Synthèse du schema éectrique du haut-pareur Avec : On déduit aors : S 2 d Ces = M ms (B) 2 = M as (B) 2 (1.39) Pusation de résonnance : ω s = 1 C es L es Facteur de quaité mécanique : Q ms = R es ω s L es Facteur de quaité éectrique : Q es = R e ω s L es L impédance du haut-pareur se cacue directement à partir du schéma éectrique ci-dessus. On définit impédance réduite : On obtient (voir annexe D igne 37) : Z r = Z R e (1.40) Z r = S2 + Q 1 ts S + 1 S 2 + Q 1 mss + 1 (1.41) 13

15 La courbe d impédance dépend de ω s, R e, Q es, Q ms. La figure 1.5 représente e modue de d impédance du haut-pareur. A a résonance, a phase de impédance est nue et son modue vaut : Z max = R e Q ms Q es (1.42) Figure 1.5 Courbe d impédance du HP Synthèse Un haut-pareur est modéisé par six paramètres qui sont : S d, R e, B, M ms, C ms, R ms (1.43) Le rayonnement de a membrane conduit en prenant en compte a masse d air qui vibre avec ee à définir e paramètre M ms. L étude de a réponse en fréquence et de a courbe d impédance conduit à utiiser un nouveau jeu de paramètres, es paramètres de Thiee et Sma, qui sont : S d, R e, ω s, Q es, Q ms, V as (1.44) De ces paramètres on déduit e facteur de quaité tota : 1 = (1.45) Q ts Q es Q ms Les paramètres mécaniques sé déduisent du nouveau jeu de paramètres par 14

16 es reations : C ms = V as ρc 2 S 2 d (1.46) Mms= 1 ωsc 2 ms (1.47) R ms = ω smms 1 = Q ms ω s Q ms C ms (1.48) B = ω s MmsR e R e = Q es ω s C ms Q es (1.49) Les paramètres du schéma acoustique se cacuent par es formues suivantes : R ae = (B)2 S 2 d R e R as = R ms S 2 d (1.50) (1.51) et ceux du schéma éectrique par : Mas= M ms Sd 2 (1.52) C as =Sd 2 C ms (1.53) R es = (B)2 R ms = (B)2 S 2 d R as (1.54) S 2 d Ces= M ms (B) 2 = M as (B) 2 (1.55) L es =C ms (B) 2 = C as (B) 2 S 2 d (1.56) Enfin e cacu des paramètres du schéma éectrique en fonction des paramètres de Thiee et Sma s obtient par : R es =R e Q ms Q es (1.57) Ces= Q es (1.58) ω s R e R e L es = (1.59) ω s Q es Le fichier Exce <Cacu Paramètres ME.xs> permet de cacuer es paramètres mécaniques et éectriques à partir des paramètres de Thiee et Sma. Le fichier Exce<Cacu Paramètres TS.xs> réaise a fonction inverse. Le schéma de a figure 1.2 montre que es résistance R as et R ae sont en série. L amortissement du mouvement de a membrane est donc e résutat d un amortissement mécanique R ms auque s ajoute un amortissement éectrique B 2 /R e. 15

17 Le facteur de quaité est ié à amortissement par équation : Q = 1 2ξ (1.60) Sachant que généraement a vaeur de Q ms d un haut-pareur est pus importante que Q es, on déduit que amortissement est principaement contrôé par Q es. On peut se rendre compte faciement de cette propriété en tapotant égèrement a membrane d un haut-pareur monté dans une enceinte. L amortissement est bien pus rapide quand on court-circuite a bobine Dimensionnement d un haut-pareur Supposons que on veuie concevoir un haut-pareur défini par : une courbe de réponse donnée ; un rendement η s donné. La premiere condition fixe directement es paramètres F s, ω s et Q ts à partir de a fonction de transfert. La deuxième détermine pour une vaeur R e et S d donnés e rapport B/M ms à partir de équation (1.25). Or, équation (1.49) permet égaement de cacuer ce rapport. Cee-ci donne : B M ms En égaant es termes obtenus, on déduit : = R e C ms ω 3 sq es (1.61) C ms = 2πcQ esη s ρs 2 d ω3 s (1.62) La vaeur de Q ms étant pus éevé que cee de Q es on peut confondre Q ts avec Q es ou se donner une vaeur a priori de Q ms et en déduire Q es. Le reste des paramètres mécaniques se déduit aisément. Le fichier Exce <Dimensionnement HP.xs> permet de cacuer es paramètres mécanique d un haut-pareur à partir de spécifications données. Prenons e cas d un haut-pareur spécifié par es vaeurs suivantes : F s = 24 hz ; Q ts = 0.26 ; n s = 3.38 %. On se fixe de pus es paramètres suppémentaires : Re = 6.7 Ω ; S d = 825 cm 2 ; Q ms = 5. On déduit a masse de équipage mobie M ms =46.88 gr, e facteur de force B=14.9 T.m et e voume d air équivaent à a compiance de a suspension V as = Modifions e rendement et recacuons es paramètres mécaniques du hautpareur. En prenant un rendement pus faibe de vaeur 1 %, on obtient : M ms = gr, B=27.4 T.m et V as =

18 Les haut-pareurs à haut rendement se caractérisent par une membrane égère et un V as important. En baissant e rendement, a masse de a membrane augmente e V as diminue et e B augmente. I est important de remarquer que ces deux haut-pareurs ont exactement a même courbe de réponse. De pus ayant même surface de diaphragme et même fréquence de résonance, eur membrane aura un dépacement identique pour un même niveau acoustique. Du point de vue de eur utiisation, seu e rendement diffère. Ainsi, en dehors du rendement (et en dehors de probème technoogiques de réaisation non abordés ici), a modéisation de Thiee et Sma ne permet pas de choisir entre une membrane ourde ou égère. On peut enfin étudier impact sur es paramètres du haut-pareur d une variation de a vaeur de a résistance de a bobine mobie. On constate que e seu paramètre modifié est e produit B Mesure des paramètres du haut-pareur I s agit d identifier es paramètres : S d, R e, ω s, Q es, Q ms, V as (1.63) Les paramètres ω s, Q es, Q ms dépendent de a manière dont est monté e haut-pareur car, comme nous avons vu, a masse de rayonnement diffère seon que e haut-pareur est monté ou non sur un écran. Nous reprendrons ce point dans a dernière partie de cette note. La note [9] décrit précisément a procédure de mesure et e cacu des paramètres de Thiee et Sma d un haut-pareur avec e ogicie LIMP. Le paramètre S d se cacue en mesurant e diamètre effectif de a membrane et R e se mesure avec un Ohmmètre ou un votmètre et un pont diviseur. Les paramètres ω s, Q es et Q ms se cacuent à partir de deux points particuiers de a courbe d impédance réduite (voir a e manue d utiisation de LIMP et es cacus de annexe D igne 45 à 51). La seue mesure de a courbe d impédance ne permet pas d idenfitier e paramètre V as. Pour cea on utiise une deuxième mesure de a courbe d impédance, e haut-pareur étant monté dans une enceinte de voume connu ou sa membrane aourdie d une masse donnée. Nous ne traiterons dans ce document que de a méthode de a masse additionnee. La masse ajoutée modifie évidemment a fréquence de résonance du haut-pareur mais modifie égaement sensibement a compiance et es pertes par frottements de a suspension. La connaissance de seuement a nouvee fréquence de résonance ω sδ ne suffit donc pas pour cacuer M ms et C ms. I faut égaement cacuer a nouvee compiance à partir du nouveau facteur éectrique. On note M msδ a nouvee masse de équipage mobie, C msδ a nouvee compiance et Q esδ e nouveau facteur éectrique. Nous avons : D autre part nous avons : δm = M msδ M ms (1.64) M msδ ω2 sδ C msδ = 1 = M msω 2 sc ms (1.65) 17

19 En faisant apparaître es facteurs de quaités éectriques, nous obtenons équation qui permet de cacuer a masse de équipage mobie : On déduit : δm = M ms( ω sq esδ ω sδ Q es 1) (1.66) C ms = 1 Mmsω s 2 (1.67) V as =ρc 2 Sd 2 C ms (1.68) La méthode de cacu du V as avec une masse additionnee ne permet pas d estimer précisément ce paramètre. Des erreurs de ordre de 10% sont fréquentes. Une soution pour améiorer a précision d estimation est d utiiser pusieurs masses additionnees et d effectuer une régresssion inéaire sur es vaeurs obtenues. Dans a deuxième partie de cette note nous verrons comment cacuer es paramètres du haut-pareur à partir de a méthode des moindres carrés qui permet d ajuster es paramètres sur ensembe des points de mesures. Cette méthode permet égaement d identifier a résistance de a bobine mobie sans avoir à a mesurer avec un ohmmètre (voir. Matejan, M. Sikora [8] pour un comparatif des méthodes d estimations). 1.2 L enceinte cose Une enceinte cose est une boite fermée sur une face de aquee est monté un haut-pareur éectrodynamique dont un des cotés de a membrane rayonne à air ibre Schéma équivaent acoustique Pour cacuer e schéma équivaent acoustique d une enceinte cose i faut déterminer es paramètres acoustique d une boite fermée doté d un piston osciant (e haut-pareur). Notons V b e voume d une tee boite. Le mouvement du piston provoque une variation de voume auque i résute une variation de pression. La variation de pression exerçant une force sur a surface du piston, a boite se comporte comme un ressort pneumatique dont on peut définir a compiance acoustique. On montre que a vaeur de cette compiance vaut (voir [4] paragraphes et ) : C ab = β V b ρc 2 (1.69) Le facteur β vaant 1 pour une transformation purement adiabatique et 1.4 pour une transformation purement isotherme (cas d un matériaux fibreux disposé à intérieur de a boite). Cette compiance présente égaement une résistance acoustique R ab due aux pertes viscothermiques qui dépendent de a nature pus ou moins absorbante des parois où du matériaux de rempissage (voir [1] paragraphe ). 18

20 Enfin, cette compiance présente égaement une masse acoustique M ab qui orsque a surface du piston est petite par rapport aux dimensions de enceinte vaut cee d un piston rayonnant sur un écran infini (voir [1] paragraphe ). La boite d une enceinte cose se caractérise donc par trois composants acoustiques C ab, R ab, M ab dont on ne connaît pas précisément es vaeurs. Le schéma acoustique équivaent d une enceinte cose (voir figure 1.6) s obtient à partir de ceui du haut-pareur sur un écran infini en substituant impédance de rayonnement arrière par es ééments constitutif de a boite. Figure 1.6 Schema acoustique de enceinte cose On pose : Mac=M as + M ab + M ar (1.70) 1 = (1.71) C ac C as C ab R ac =R as + R ab (1.72) On obtient aors e schéma simpifié de a figure 1.7. Figure 1.7 Synthése du schema acoustique de enceinte cose On définit es paramètres suivants : 19

21 Facteur d augmentation de compiance : Facteur de masse acoustique : Facteur de perte acoustique : β = ρc2 C ab V b q = M as M ac p = R as R ac Le coefficient β caractérise e matériaux acoustique de rempissage. Le coefficient q caractérise a variation de a masse acoustique de rayonnement entre e haut-pareur mesuré en dehors de enceinte (M as) et monté dans cee-ci (M ac). Le coefficient p caractérise a variation des pertes acoustiques. Les coefficients β, q, p seront déterminés par mesures de a courbe d impédance Paramètres On définit es paramètres suivants : Facteur de compiance : Pusation de résonance du hautpareur dans enceinte : Pusation de résonance de enceinte : α = C as C ab = V as βv b ω sc = ω c = 1 M ac C as 1 M ac C ac 1 Facteur de quaité mécanique : Q mc = ω c C ac R ac 1 Facteur de quaité éectrique : Q ec = ω c C ac R ae Facteur de quaité tota : 1 = Q tc Q ec Q mc La pusation de résonance du haut-pareur ω sc ne prend en compte que a compiance C as du haut-pareur. Ee diffère de a pusation de résonance ω s du fait de a différence des impédances de rayonnement (Mac Mas). Le rapport de ces pusation vaut : ω sc ω s = Mas C as Mac = q (1.73) C as Le rapport de a pusation de résonance de enceinte par rapport à cee du haut-pareur mesuré en dehors de enceinte vaut : ω c Mas = C as ω s Mac = q(1 + α) (1.74) C ac 20

22 Le rapport des facteur de quaité mécanique est : Q mc = ω sc as R as 1 + α = p (1.75) Q ms ω c C ac R ac q Le rapport des facteurs de quaité éectrique est : Q ec = ω sc as R ae 1 + α = Q es ω c C ac R ae q (1.76) Le schéma acoustique d une enceinte cose étant identique à ceui du hautpareur seu, e débit du diaphragme, a courbe de réponse se déduisent directement de cee du haut-pareur Schéma équivaent éectrique Le schéma éectrique se déduit du schéma acoustique. On obtient : Figure 1.8 Schema éectrique de enceinte cose Les ééments C ec, L ec, R ec sont es équivaents éectriques de respectivement M ac, C ac, R ac seon es reations du paragraphe Le schéma éectrique est identique, aux vaeurs des composants prés, à ceui du haut-pareur Synthèse avec un haut-pareur donné La démarche de cacu des caractéristiques d une enceinte cose à partir d un haut-pareur donné est synthétisé dans e schéma de a figure 1.9. Connaissant d une part es paramètres du haut-pareur : S d, R e, ω s, Q es, Q ms, V as (1.77) Connaissant d autre part e voume de enceinte V b et une estimation des paramètres β, p, q, on cacue es paramètres de enceinte cose dont on déduit a courbe de réponse. La vaeur du paramètre q varie seon que es paramètres de Thiee et Sma du haut-pareur aient été mesurés sur écran ou non. Si a mesure du haut-pareur a été réaisée sur un écran infini on peut faire hypothèse que es masses de rayonnement M ac et M as sont identiques et prendre q = 1. 21

23 Dans e cas d une mesure en champ ibre sans écran, on supposera : M ac = M as + M ar (1.78) avec M as a masse totae issue de a mesure du haut-pareur en champ ibre et M ar = 8ρ 3π a2 a masse de rayonnement d une face. On prendra donc : q = M ac M as + M ar (1.79) Le coefficient β est pris entre 1,2 et 1,4 en fonction du rempissage de enceinte. On supposera que es pertes dues à a boîte sont inférieures aux pertes mécaniques du haut-pareur, soit R ab R as. On déduit p = 1. L enceinte réaisée, a mesure de a courbe d impédance permetra d identifier es paramètres ω c, Q ec, Q mc à partir desques on cacuera es paramètres seon es formues (voir annexe?? igne 4) : α = ω cq ec ω s Q es 1, β = V as αv b, q = ω cq es ω s Q ec, p = Q mcq es Q ms Q ec On pourra aors simuer a courbe de réponse et rempir pus ou moins e voume de enceinte d abosorbant et/ou diminuer son voume afin d obtenir a courbe de réponse visée. 22

24 Figure 1.9 Synthése conception enceinte cose 1.3 L enceinte à évent Une enceinte à évent est une boite ouverte sur une des faces de aquee est monté un haut-pareur éectrodynamique Schéma équivaent acoustique Comme, enceinte cose, a boite se caractérise donc par trois composants acoustiques C ab, R ab, M ab dont on ne connaît pas précisément es vaeurs. A ces paramètres s ajoutent ceux caractérisants évent qui sont : une masse acoustique M ap, une masse acoustique de rayonnement M arp et une resistance acoustique R ap. On tient compte égaement des pertes par fuites de a boite modéisées par une résistance R a. 23

25 Des considérations ci-dessus, on déduit e schéma acoustique : On pose : Figure 1.10 Schema acoustique de enceinte à event M ao=m as + M ar + M ab (1.80) M ap=m ap + M arp (1.81) On obtient aors e schéma simpifié de a figure On définit es paramètres suivants : Facteur d augmentation de compiance : Facteur de masse acoustique : β = ρc2 C ab V b q = M as M ao Le coefficient β caractérise e matériaux acoustique de rempissage et e coefficient q caractérise a variation de a masse acoustique de rayonnement entre e haut-pareur mesuré en dehors de enceinte et monté dans cee-ci. 24

26 Figure 1.11 Synthèse du schéma acoustique de enceinte à event Paramètres On définit es paramètres suivants : Facteur de compiance : Pusation de résonance du hautpareur dans enceinte : α = C as C ab = V as βv b ω so = 1 M ao C as Pusation de résonance de évent : ω p = 1 M ap C ab Rapport de résonance entre évent et e haut-pareur : h = ω p ω so Facteur de quaité mécanique : Q mo = Facteur de quaité éectrique : Q eo = 1 ω so C as R as 1 ω so C as R ae Facteur de quaité tota : Facteur de quaité des pertes par fuites : 1 = Q to Q eo Q mo Q = ω p C ab R a Facteur de quaité des pertes par absorption dans a boite : Facteur de quaité due au frottement dans évent : Q a = Q p = 1 ω p C ab R ab 1 ω p C ab R ap 25

27 De ces paramètres on déduit : ω so ω s = Mas Mao = q, Q eo = Q es Débit dans enceinte 1 q, Q mo Q ms = 1 q I s agit de cacuer q b. On pose, comme pour e haut-pareur : S = s ω so (1.82) avec s a variabe de Lapace. A partir du schéma acoustique on déduit (voir annexe E igne 23 et 24 à 42) : q d = q o G o (S) S (1.83) Avec : q o = U g S d Q eo B(1 + Q 1 a Q 1 ) (1.84) G o (S) est donné par : G o (S) = a 4 S 4 + b 3 S 3 a 4 S 4 + a 3 S 3 + a 2 S 2 + a 1 S + a 0 (1.85) Avec : a 0 =h 3 (1 + Q 1 p Q 1 ) (1.86) a 1 =h 3 Q 1 to (1 + Q 1 p Q 1 + h 2 (Q 1 p a 2 =h 3 (1 + Q 1 p + Q 1 a Q 1 + h(α(1 + Q 1 p a 3 =h 2 (Q 1 p ) + Q 1 ) + h 2 Q 1 Q 1 a + Q 1 p ) Q 1 Q 1 a Q 1 + Q 1 a to (Q 1 p a Q 1 Q 1 a Q 1 + αq 1 p ) (1.87) + Q 1 + Q 1 p Q 1 a Q 1 ) ) (1.88) + Q 1 a + Q 1 + Q 1 p ) + hq 1 to (1 + Q 1 a Q 1 ) + αq 1 a (1.89) a 4 =h(1 + Q 1 a Q 1 ) (1.90) b 3 =h 2 Q 1 p (1 + Q 1 a Q Puissance acoustique rayonnée ) (1.91) La puissance acoustique rayonnée se cacue en considérant ensembe des débits sortants, c est à dire à partir de q d + q + q p (voir a figure 1.11). Or nous avons : q b = q d + q + q p (1.92) La puissance rayonnée se cacue donc à partir de équation P ar = R ar q b 2 avec R ar a résistance de rayonnement. 26

28 On obtient (voir annexe E igne 60) : avec P ao = P ar = P ao G o (S) 2 (1.93) q 2 (1 + Q 1 a Q 1 ) 2 ρs2 d 2πc ( B M ms ) 2 U g 2 R 2 e (1.94) La figure 1.12 montre effet des paramètres Q, Q a, Q p sur a courbe de réponse. La courbe beue est a réponse sans perte d une enceinte à évent aignée sur un Butterworth. On remarque es effets différents de Q, Q a, Q p qui conduisent tous à baisser a fréquence de coupure. On cherchera donc toujours à minimiser es pertes ors de a conception d un bass-refex. Figure 1.12 Effet des pertes sur a courbe de réponse Eongation du diaphragme L éongation du diaphragme se cacue à partir de q d. On obtient (voir annexe E igne 49 et 50) : ξ d = ξ o a 2 S 2 + a 1 S + a 0 S 4 + b 3 S 3 G o (S) (1.95) 27

29 avec : et : a 0 =h 2 (1 + Q 1 p Q 1 ) (1.96) a 1 =h(q 1 p + Q 1 a + Q 1 p ) (1.97) a 2 =1 + Q 1 a Q 1 (1.98) b 3 =hq 1 p (1.99) + Q 1 U g Q 1 a Q 1 ξ o = Q eo ω so B(1 + Q 1 a Q 1 (1.100) ) La courbe de réponse de éongation se caractérise par un minimum autour de ω b et deux maximum de part et d autre cette fréquence comme e montre a figure Figure 1.13 Eongation du diaphragme dans une enceinte bass-refex Schéma équivaent éectrique Le schéma éectrique (voir figure 1.14) se déduit du schéma acoustique. Les ééments C eo, L es, R es, L eb, R eb, C ep, R ep, R e sont es équivaents éectriques de respectivement M ao, C as, R as, C ab, R ab, M ap, R ap, R a seon es reations du paragraphe L impédance du haut-pareur se cacue directement à partir du schéma éectrique. L impédance réduite s écrit (voir annexe E igne 83 à 107) : Z r = b 4S 4 + b 3 S 3 + b 2 S 2 + b 1 S + b 0 a 4 S 4 + a 3 S 3 + a 2 S 2 + a 1 S + a 0 (1.101) 28

30 Figure 1.14 Schéma éectrique de enceinte à event Avec : a 0 =h 3 (1 + Q 1 p Q 1 ) (1.102) a 1 =h 3 Q 1 mo(1 + Q 1 p Q 1 + h 2 (Q 1 p a 2 =h 3 (1 + Q 1 p + Q 1 a Q 1 + h(α(1 + Q 1 p a 3 =h 2 (Q 1 p ) + Q 1 ) + h 2 Q 1 Q 1 a + Q 1 p mo(q 1 p ) Q 1 a Q 1 a Q 1 + αq 1 p ) (1.103) + Q 1 a Q 1 + Q 1 + Q 1 p Q 1 a Q 1 ) ) (1.104) + Q 1 a + Q 1 + Q 1 p Q 1 a Q 1 ) + hq 1 mo(1 + Q 1 a Q 1 ) + αq 1 a (1.105) a 4 =h(1 + Q 1 a Q 1 ) (1.106) b 0 =h 3 (1 + Q 1 p ) (1.107) b 1 =h 3 Q 1 to (1 + Q 1 p Q 1 + h 2 (Q 1 p b 2 =h 3 (1 + Q 1 p Q 1 + Q 1 a + h(α(1 + Q 1 p b 3 =h 2 (Q 1 p ) + Q 1 ) + h 2 Q 1 Q 1 Q 1 a + Q 1 a + Q 1 + Q 1 p to (Q 1 p Q 1 a Q 1 + αq 1 p ) (1.108) + Q 1 a ) Q 1 a Q 1 + Q 1 p Q 1 a Q 1 + Q 1 + Q 1 p Q 1 a Q 1 ) ) (1.109) ) + hq 1 to (1 + Q 1 a Q 1 ) + αq 1 a (1.110) b 4 =h(1 + Q 1 a Q 1 ) (1.111) Le numérateur de a fonction de transfert de impédance réduite est identique au dénominateur de a fonction de transfert de a réponse en fréquence. Le dénominateur de a fonction de transfert de impédance réduite est identique à son numérateur en rempaçant Q 1 to par Q 1 mo. 29

31 La courbe du modue d impédance présente deux bosses de résonance. La figure 1.15 montre effet sur cette courbe des facteurs de pertes. On remarque que Q a pour effet de diminuer ampitude des deux résonances, Q a a deuxième et Q p a première. Figure 1.15 Effet des pertes sur a courbe d impédance Aignement L aignement d une enceinte à évent consiste à déterminer es paramètres du haut-pareur et de enceinte pour suivre une courbe de réponse donnée. I faut dans un premier temps normaiser a fonction de transfert de a puissance rayonnée. On introduit a pusation ω 0 et a nouvee variabe de Lapace S définie par : S = Sω 0 = s ω 0 ω so (1.112) de tee manière que a fonction de transfert soit sous a forme : G o (S ) = S 4 + b 3 S 3 S 4 + a 3 S 3 + a 2 S 2 + a 1 S + 1 (1.113) On obtient : ω 0 = 4 a 4 /a 0 = Q 1 a 1 + Q 1 p Q 1 Q 1 1 (1.114) h 30

32 Avec : a 1= a 1ω 3 0 a 4 (1.115) a 2= a 2ω 2 0 a 4 (1.116) a 3= a 3ω 0 a 4 (1.117) b 3 = b 3ω 0 a 4 (1.118) L aignement consiste à identifier es coefficients a 3, a 2, a 1 et b 3 à des fonctions de transfert particuières. La fonction de transfert d un fitre passe-haut du quatrième ordre s écrit : G(S) = S 4 S 4 + c 3 S 3 + c 2 S 2 + c 1 S + 1 (1.119) On remarque que identification de équation (1.119) à équation (1.113) ne peut être exacte à cause du terme b 3. En absence de perte e terme b 3 est nu et identification exacte est possibe. Dans ces conditions a fonction de transfert de a courbe de réponse s écrit (voir annexe E igne 45) : hs 4 G o (S) = hs 4 + hq 1 to S3 + (h 3 + h(1 + α))s 2 + h 3 Q 1 to S + (1.120) h3 La fonction de transfert ne dépend que de trois paramètres h, α, Q to. La normaisation conduit à : ω 0 = 1 (1.121) h L identification avec a fonction de transfert (1.119) donne : c 3 = 1 h Q 1 to (1.122) (1 + α) c 2 =h + (1.123) h c 1 = hq 1 to (1.124) Soit : Q to = 1 c1 c 3 (1.125) h =(a 1 Q to ) 2 (1.126) α =h(c 2 h) 1 (1.127) Ainsi à une courbe de réponse donnée correspond un unique paramètre Q to et donc un unique paramètre Q ts. 31

33 Dans e cas d une enceinte avec perte, identification ne pouvant être exacte, on utiise une méthode de type moindres carrés sur une page d ajustement, par exempe, de -20 db à 0 db. La courbe de réponse dépendant de Q a, Q p, Q, i n y a pus de correspondance unique et i existe donc en théorie une infinité de haut-pareur pour une réponse donnée. Cependant, comme nous avons vu, on cherche généraement à maximiser es coefficients Q a, Q p, Q car ceux-ci conduisent toujours à réduire a fréquence de coupure. L ajustement par moindres carrés consiste donc à cacuer h, α, Q to pour Q a, Q p, Q donnés, de tee manière que a réponse en fréquence de enceinte soit a pus proche possibe de a réponse du fitre choisi. On peut n ajuster que h, α pour un Q to donné dans a mesure ou ceui-ci est proche du Q to optima Mesure de a courbe de réponse La courbe de réponse d une enceinte mesurée dans un oca semi réverbérant étant perturbée par es ondes stationnaires qui s y trouvent, i est quasi impossibe de comparer cette courbe à cee théorique cacuée par simuation. Par contre, étant donné es faibes dimensions d une enceinte, a mesure de a pression à intérieur de cee-ci est exempt de perturbation jusqu à environ 100 hz. Etant donné qu à partir de a mesure de a pression interne on peut recacuer a pression externe, i devient possibe de comparer cette mesure à a courbe de réponse simuée (voir R. H. Sma [7]). Le microphone pacé dans enceinte mesure a pression P b (voir a figure 1.11). A partir de cette pression on déduit e débit q b par : P b = (R ab + 1 jωc ab )q b (1.128) La pression extérieure mesurée à a distance r s écrit : P e = ρω 2πr q b (1.129) Des définitions des quantités C ab et R ab on tire : En combinant ces équations, on obtient : C ab = βv b ρc 2 (1.130) ωr ab C ab = ω (hq a ) 1 ω so (1.131) P e = βv bω 2 so 2πr S S(hQ a ) 1 P b (1.132) Ainsi connaissant es paramètres h, Q a et en appiquant a fonction de transfert : S S(hQ a ) 1 (1.133) à a mesure de a pression intérieure de enceinte, on reconstitue a pression extérieure que on peut superposer à ampitude et a phase de a courbe de réponse simuée. 32

34 1.3.9 Synthèse avec un haut-pareur donné La démarche de cacu est synthétisée dans e schéma de a figure Connaissant d une part es paramètres du haut-pareur : S d, R e, ω s, Q es, Q ms, V as (1.134) Connaissant d autre part e voume de enceinte V b et une estimation des paramètres β, q, ω p, Q a, Q p, Q, on cacue es paramètres de enceinte à évent dont on déduit a courbe de réponse. La vaeur du paramètre q varie seon que es paramètres de Thiee et Sma du haut-pareur aient été mesurés sur écran ou non. Si a mesure du haut-pareur a été réaisée sur un écran infini on peut faire hypothèse que es masses de rayonnement M ao et M as sont identiques et prendre q = 1. Dans e cas d une mesure en champ ibre sans écran, on supposera : M ao = M as + M ar (1.135) avec M as a masse issue de a mesure du haut-pareur en champ ibre sans écran et M ar = 8ρ 3π a2 a masse de rayonnement d une face. On prendra donc : q = M as M as + M ar (1.136) L enceinte réaisée, a mesure de a courbe d impédance permettra d identifier es paramètres h, α, q, Q a, Q p, Q à partir desques on cacuera es paramètres β et ω p. On pourra aors cacuer a courbe de réponse. En rempissant pus ou moins enceinte de matériaux absorbant, en diminuant son voume et/ou a surface des évents on s approchera de a courbe de réponse visée. 33

35 Figure 1.16 Synthèse conception enceinte à évent 34

36 Chapitre 2 Utiitaires Sciab Le ogicie Sciab peut être tééchargé <ici>. On trouvera à cette <page>, un guide pour débutant. Sciab execute des instruction en igne de commande ou des scripts contenants une iste d instructions. Les fichiers de scripts portent extension.sce ou.sic, cette dernière étant putôt réservée à a définition de fonctions. Les utiitaires Sciab décrits dans ce document sont régis par a icence Ce- CILL (voir Ces utiitaires comportent un script généra de définition des fonctions de nom <SciAudioBox.sci> et des scripts indépendants pour a simuation et identification des haut-pareurs et enceintes à évent. Pour éditer ces scripts, on utiise éditeur SciNotes de Sciab. On execute dans un premier temps une seue fois e script généra de définition des fonctions <SciAudioBox.sci> puis e script dédié au cacu qu on désire effectuer. I existe deux types de scripts : es scripts de simuations et es scripts d identification de paramètres. Ces derniers utiisent a mesure d impédance et a méthode des moindres carrés (voir annexe C). Les fichiers de mesures de impédance us par es scripts Sciab sont des fichiers textes dont chaque igne doit contenir es données suivantes : a fréquence de mesure (hz) ; e modue de impédance (Ω) ; a phase de impédance (en degrés comprise entre π et π). Les données sont séparées par des espaces. Le script de simuation d une enceinte à évent utiise a mesure de a pression sonore. Les données de ce fichier, dont e format est identique à ceui de impédance, sont es suivantes : a fréquence de mesure (hz) ; e niveau SPL (db) ; a phase (en degrés). Les structures de ces fichiers sont compatibes aves es fichiers exportés par LIMP ou REW. L utiisateur peut choisir es mesures prises en compte pour identification des paramètres. Cee-ci s effectue en utiisant ampitude de impédance, a 35

37 phase de impédance ou simutanément ampitude et a phase. Ce point sera repris ors de a description des scripts. Le script <SciAudioBox.sci> initiaise es vaeurs de a densité atmosphérique à ρ = 1.18 kg/m 3, a vitesse du son à c = 345 m/s et a pression de référence p 0 = 20 µpa. Ce sont es vaeurs utiisées par LIMP. 2.1 Le Haut-Pareur Deux scripts Sciab concernent e haut-pareur : e script <Simuation HP.sce> et <Mesure HP.sce>. Le tabeau suivant rappee et résume es paramètres du haut-pareur : Résistance de a bobine (Ω) : Fréquence de résonance (hz) : Facteur de quaité mécanique : Facteur de quaité éectrique : Voume d air équivaent à a suspension (m 3 ) : Masse du système mobie (kg) : Compiance mécanique de a suspension externe et du spider (m/n) : Resistance mécanique de pertes par frottements (N.s/m) : Produit du champs magnétique dans entrefer par a ongueur du fi de a bobine mobie (T.m) : Rendement (%) : Le niveau sonore pour 1 W à 1 m (db) : R e F s Q ms Q es V as M ms C ms R ms B η s L p Simuation d un haut-pareur Le script <Simuation HP.sce> simue a courbe d impédance, éongation de a membrane, a courbe de réponse et e temps de propagation de groupe du haut-pareur monté sur un écran. 36

38 Les paramètres à saisir sont : es paramètres du haut-pareur R e, F s, Q es, Q ms, es paramètres nécessaires au cacu de éongation du diaphragme : P as, S d et es paramètres de tracé des courbes : F min, F max, N bp. La figure 2.1 représente es paramètres tes qu is apparaissent dans éditeur Sciab avec eurs significations. Figure 2.1 Paramètres de simuation d un haut-pareur 37

39 Figure 2.2 Courbes de simuation d un haut-pareur La figure 2.2 représente es courbes de simuation avec es paramètres de a figure 2.1. Les tracés, de gauche à droite et de haut en bas, sont : e modue de impédance (Ω), éongation de a membrane (mm), a courbe de réponse (db) et e temps de propagation de groupe (ms). Le script cacue e facteur de quaité tota Q ts, a fréquence de coupure, f 3 à -3 db ainsi que e pic de a réponse Identification des paramètres de Thiee et Sma d un haut-pareur Le script <Mesure HP.sce> cacue es paramètres de Thiee et Sma d un haut-pareur à partir de a mesure de a courbe d impédance et a méthode de a masse additionnee. Le paramétrage de ce script est donné figure 2.3. Le paramètre T ypajust détermine es mesures utiisées pour estimation (mesures d ampitude et/ou de phase). Le paramètre ReAjust permet à utiisateur d estimer ou non a résistance R e de a bobine mobie. Le nom du fichier de mesure de impédance du haut-pareur doit être renseigné dans e variabe fic 1. Le fichier fic 2 correspond aux mesures de impédance avec a masse additionnee de vaeur dm. 38

40 Si dm est nu, e fichier fic 2 n est pas u et e ogicie ne cacue aors que es paramètres F s, Q es, Q ms et éventueement R e. Si dm est différent de zéro, e fichier fic 2 doit être renseigné. Le ogicie cacue aors es paramètres suppémentaires V as, M ms, C ms, R ms, B, η s, L p. L utiisateur renseigne ensuite a vaeur de a résistance de a bobine mobie R e et a vaeur de a surface de a membrane S d. L ajustement est réaisé à partir de impédance de a première fréquence u dans es fichiers de mesures jusqu à a fréquence renseignée dans a variabe F max. Les vaeurs saisies dans es variabes F s, Q es, Q ms (et R e si ce dernier paramètre est ajusté), sont es vaeurs initiaes nécessaires à agorithme de cacu des moindres carrés. A a convergence, ces vaeurs n infuent pas sur e résutat. On pourra saisir es vaeurs nominaes fournies par e constructeur du hautpareur. L ajustement terminé, e script informe de a quaité de ajustement en imprimant e code retour de a fonction Sciab utiisée pour e cacu des moindres carrés. Ce code retour est de 1 quand ajustement s est correctement effectué. En cas de mauvais ajustement, ce qui se traduit généraement par des paramètres identifiés erronés, on changera es vaeurs initiaes jusqu à obtenir e bon code retour. Le script imprime ensuite es écart-types et es vaeurs maximum des résidus, c est-à-dire es écarts entre es grandeurs mesurées et cacuées. Le script trace enfin es courbes de impédance mesurée et cacuée (ampitude et phase) ainsi que es résidus. La figure 2.4 montre es courbes obtenu sur a mesure du haut-pareur Atec 416 de numéro Dans cet exempe a résistance de a bobine R e n est pas ajustée et on a utiisé es mesures d ampitude et de phase. 39

41 Figure 2.3 Paramètres de mesure d un haut-pareur On obtient es paramètres suivants : R e Ω M ms g F s hz C ms m/n Q es R ms kg/s Q ms B T m Q ts V as 764 η s 3.59 % L P 97.6 db/w à 1 m Le cacu donne égaement, pour information, es paramètres du haut-pareur avec a masse additionnee. On obtient : 40

42 Figure 2.4 Courbes de mesure d un haut-pareur F sd hz Q msd F s /F sd C msd m/n Q esd R msd kg/s On remarque que e fait d ajouter une masse modifie égèrement a soupesse de a suspension C ms et pus sensibement a résistance mécanique de perte R ms. I faut savoir qu en changeant es types de mesures utiisées pour identification des paramètres (mesure d ampitude et/ou mesures de phase), on obtient des résutats sensibement différents. Une deuxième identification des paramètres du même haut-pareur en n utiisant que es mesures de ampitude de impédance, conduit par exempe à un Q ts de au ieu de Ces écarts sont acceptabes car i ne faut pas s attendre à mesurer pus précisément es paramètres d un haut-pareur. En généra, i est préférabe de mesurer précisément a résistance de a bobine R e putôt que de identifier dans e processus d estimation. La fréquence maximum des mesures utiisées pour identification doit être autour de 100 hz, car inductance de a bobine mobie, non prise en compte dans a modéisation, crée des écarts au-deà. On peut e constater sur a phase de a figure 2.4. Enfin, i est préférabe d utiiser à a fois es mesures d ampitude et de phase, même si ceci conduit généraement à des résidus pus éevés. 41

43 2.2 L enceinte cose Deux scripts concernent enceinte cose : e script <Simuation Cose.sce> et e script <Mesure Cose.sce> Les tabeau suivant rappee es paramètres qui définissent une enceinte cose : Voume brut de enceinte (m 3 ) : Facteur d augmentation de compiance : Facteur de masse acoustique : Facteur de perte acoustique : Facteur de compiance : Fréquence de résonance du hautpareur dans enceinte (hz) : Fréquence de résonance de enceinte (hz) : Facteur de quaité mécanique : Facteur de quaité éectrique : Facteur de quaité tota : V b β q p α = V as βv b F sc F c Q mc Q ec 1 = Q tc Q ec Q mc Simuation d une enceinte cose Le script <Simuation HP.sce> simue a courbe d impédance, éongation de a membrane, a courbe de réponse et e temps de propagation de groupe d une enceinte cose. Les paramètres à saisir sont : es paramètres du haut-pareur R e, F s, Q es, Q ms monté dans enceinte, e voume d air équivaent à a compiance de a suspension V as, es paramètres nécessaires au cacu de éongation du diaphragme P as, S d et es paramètres de tracé des courbes : F min, F max, N bp. Concernant es paramètres de voume, utiisateur peut au choix saisir e facteur d augmentation de compiance β (b), e voume net de enceinte V b et dans ce cas cacuer e facteur de compiance α (a) ou saisir directement ce rapport. Dans ce cas β et V b n ont pas besoin d être renseignés. La figure 2.5 représente es paramètres tes qu is apparaissent dans éditeur Sciab avec eurs significations. 42

44 Figure 2.5 Paramètres de simuation d une enceinte cose Le script trace aors, comme pour e haut-pareur : e modue de impédance (Ω), éongation de a membrane (mm), a courbe de réponse (db) et e temps de propagation de groupe (ms). Le script cacue e facteur es paramètres de enceinte croise F sc, F c, Q ec, Q mc, a fréquence de coupure, f 3 à -3 db ainsi que e pic de a réponse Identification des paramètres d une enceinte cose Le script <Mesure Cose.sce> cacue es paramètres d une enceinte cose à partir de a mesure de a courbe d impédance. Le paramétrage de ce script est donné figure 2.6. Le paramètre T ypajust détermine es mesures utiisées pour estimation (mesures d ampitude et/ou de phase). Le paramètre ReAjust permet à utiisateur d estimer ou non a résistance R e de a bobine mobie. Le nom du fichier de mesure de impédance de enceinte doit être renseigné dans e variabe fic. L utiisateur renseigne ensuite a vaeur des paramètres du haut-pareur R e, F s, Q es, Q ms. L ajustement est réaisé à partir de impédance de a première fréquence u dans es fichiers de mesures jusqu à a fréquence renseignée dans a variabe F max. Les vaeurs saisies dans es variabes F c, Q ec, Q mc (et R e si ce dernier paramètre est ajusté), sont es vaeurs initiaes nécessaires à agorithme de cacu 43

45 des moindres carrés. A a convergence, ces vaeurs n infuent pas sur e résutat. On pourra saisir es vaeurs du haut-pareur. L ajustement terminé, e script informe de a quaité de ajustement en imprimant e code retour de a fonction Sciab utiisée pour e cacu des moindres carrés. Ce code retour est de 1 quand ajustement s est correctement effectué. En cas de mauvais ajustement, ce qui se traduit généraement par des paramètres identifiés erronés, on changera es vaeurs initiaes jusqu à obtenir e bon code retour. Le script imprime ensuite es écart-types et es vaeurs maximum des résidus, c est-à-dire es écarts entre es grandeurs mesurées et cacuées. Le script trace enfin es courbes de impédance mesurée et cacuée (ampitude et phase) ainsi que es résidus. Figure 2.6 Paramètres de mesure d une enceinte cose 44

46 2.3 L enceinte à évent Quatre scripts Sciab concernent enceinte à évent : e script <Aignement Event.sce>, e script <Simuation Event.sce>, e script <Mesure Event.sce>, e script <Mesure Event avec HP.sce> et e script <Mesure Event avec Qmo.sce>. Les tabeau suivant rappee es paramètres qui définissent une enceinte à évent : Voume brut de enceinte (m 3 ) : Facteur d augmentation de compiance : Facteur de masse acoustique : Facteur de compiance : Fréquence de résonance du hautpareur dans enceinte (hz) : Fréquence de résonance de évent (hz) : Rapport de résonance entre évent et e haut-pareur : Facteur de quaité mécanique : Facteur de quaité éectrique : Facteur de quaité tota : Facteur de quaité des pertes par fuites : Facteur de quaité des pertes par absorption dans a boite : Facteur de quaité due au frottement dans évent : V b β q α = V as βv b F so F p h = F p F so Q mo Q eo 1 Q to = 1 Q eo + 1 Q mo Q Q a Q p Le facteur de masse acoustique q permet de cacuer es paramètres du hautpareur monté dans enceinte à partir de ceux mesurés en dehors de cee-ci. On obtient : 45

47 F so = F s q, Qeo = Q es q, Q mo = Q ms q Aignement d une enceinte à évent Le script <Aignement Event.sce> cacue es paramètres h, α et éventueement Q to à partir des coefficients d un fitre donné et des facteurs de pertes supposés Q, Q a, Q p. Le paramétrage est donnée figure 2.7. Figure 2.7 Paramètres d aignement d une enceinte à évent L utiisateur renseigne e numérateur et e dénominateur de a fonction de transfert cibe. Cee-ci doit être normaisée (coefficients, d 0, d max, n max égaux à 1). L exempe donné est ceui d un fitre de Besse. L utiisateur renseigne ensuite es paramètres de pertes Q, Q a, Q b de son enceinte. Dans cet exempe is sont considérés infinis (enceinte sans pertes). I faut ensuite saisir es données de tracés et a page d ajustement avec es paramètres F min, F max, db min, N bp. Les fréquences sont normaisées par a pusation ω 0 (voir équation (1.114)). L ajustement est réaisée de a fréquence correspondant à dbmin de a courbe de réponse à a fréquence F max. I faut ensuite indiquer au script de cacu si e paramètre Q to est identifié ou pas. Cette option permet de cacuer une enceinte avec un haut-pareur dont e Q to est différent du Q to optima. L utiisateur saisit ensuite a vaeur de a fréquence de résonance F so du haut-pareur monté dans enceinte. Ceci n est pas utie au cacu des paramètres 46

48 de enceinte mais permet de cacuer a fréquence de coupure et e temps de propagation de groupe sans avoir à ancer une simuation suppémentaire. I faut enfin renseigner es vaeurs initiaes des paramètres à identifier pour e cacu du moindres carrés. Le script trace aors a courbe de réponse du fitre cibe, a courbe de réponse de enceinte et es résidus entre ces deux vaeurs. La figure 2.8 montre e résutat avec es paramètres de a figure 2.7. Figure 2.8 Courbes d ajustement Besse Ce cas correspondant à une enceinte sans perte avec un cacu du Q to optima, on obtient des résidus nus puisque identification parfaite est possibe (voir 1.3.7). Le script donne es paramètres de enceinte optimae. On obtient : Q to h a Ainsi, dans e cas d une enceinte sans perte, un aignement avec un fitre de Besse n est possibe qu avec un haut-pareur conduisant à un Q to de La figure 2.9 montre es résidus d ajustement, toujours dans e cas d une enceinte sans perte, pour un haut-pareur de Q to Les paramètres sont : 47

49 h a Figure 2.9 Courbes d ajustement Besse avec Q to de Simuation d une enceinte à évent Le script <Simuation-Event.sce> cacue a courbe de réponse et d impédance d une enceinte à évent. Les paramètres à saisir sont : es paramètres du haut-pareur monté dans enceinte R e, F so, Q eo, Q mo, e voume d air équivaent à a compiance de a suspension V as, es facteurs de pertes Q, Q a, Q p, es paramètres nécessaires au cacu de éongation du diaphragme P as, S d, e nom du fichier de mesure de a pression dans enceinte fic et es paramètres de tracé des courbes F min, F max, N bp. En ce qui concerne évent utiisateur peut entrer au choix a fréquence d accord de évent F b et dans ce cas cacuer e rapport de résonance h ou saisir directement ce rapport. Dans ce cas F b, n a pas besoin d être renseigné. Concernant es paramètres de voume, utiisateur peut au choix saisir e facteur d augmentation de compiance β (b), e voume net de enceinte V b et dans ce cas cacuer e facteur de compiance α (a) ou saisir directement ce rapport. Dans ce cas β et V b n ont pas besoin d être renseignés. La figure 2.10 montre un exempe de paramétrage. 48

50 Figure 2.10 Paramètres de simuation d une enceinte à évent Le script cacue aors a fréquence de coupure à -3dB, e pic de a courbe de réponse et e temps de propagation de groupe à 20 hz, 30 hz, 40 hz et 50 hz. Les tracés comprennent a courbe d impédance, éongation de a membrane, a courbe de réponse et e temps de propagation de groupe. Si un fichier de mesures de pression a été renseigné, cette mesure, une fois transformée, est superposée à a courbe de réponse et de temps de propagation de groupe Identification des paramètres d une enceinte à évent L expression de impédance réduite de enceinte à évent donnée par équation (1.101) montre que cee-ci dépend des paramètres F so, Q eo, Q mo, Q, Q a, Q p, h et α. On peut être tenté d essayer d identifier ensembe de ces paramètres à partir de a mesure de impédance. On pourrait ainsi mesurer es paramètres 49

51 du haut-pareur et es paramètres de enceinte en une seue fois. Le script <Mesure Event.sce> a cet objectif. L exempe qui suit est un essai d identification à partir de a simuation réaisée avec es paramètres de a figure Ces paramètres sont : R e (Ω) F so (hz) Q eo Q mo Q Q a Q p h α L identification conduit aux paramètres suivants : F so (hz) Q eo Q mo Q Q a Q p h α On obtient es résidus de a figure 2.11 Figure 2.11 Courbes de mesure de enceinte à évent On remarque que es résidus sont nus aors que a soution ne converge pas vers es paramètres de a simuation. Mis à part F so et Q eo, es paramètres diffèrent. L examen des vaeurs propres de a matrice des moindres carrés montre que a vaeur a pus faibe vaut 2.2e-12 ce qui signifie que e système est inobservabe (voir annexe C). Le vecteur propre associé à cette vaeur propre est e suivant : 50

52 F so Q eo Q mo Q Q a Q p h α 2e-7 1e e-2 4.2e-3 Les composantes significatives portent sur es composantes Q mo, Q, Q a, Q p et dans une moindre mesure sur h, α. Les composantes associées aux termes F so et Q eo sont pratiquement nues. On en déduit que inobservabiité ne touche pas F so et Q eo (ce que confirme a simuation) mais concerne uniquement es autres paramètres avec principaement des variations sur Q mo, Q, Q a, Q p (ce que confirme égaement a simuation). Les signes des composantes du vecteur propre renseignent sur es compensations des paramètres. Une diminution de Q mo se traduit par une diminution de Q et une augmentation de Q a et Q p. En revenant au schéma éectrique de enceinte à évent (voir a figure 1.14), on constate que a résistance R es (qui définit Q mo ) est en paraèe des résistances R e, R eb, R ep en séries (qui définissent respectivement Q, Q a, Q p ). On comprend qu une augmentation de R es peut être compensée par une diminution de R e, R eb, R ep pour fournir au fina a même impédance. Etant données es expressions des facteurs de pertes en fonction des résistances associées, on déduit bien qu une diminution de Q mo conduit à une diminution de R es, une diminution de Q à une augmentation de R e et une augmentation de Q a, Q p à une augmentation de R eb, R ep. L annexe B donne es équations entre Q mo, Q, Q a, Q p, h, α qui conduisent à a même impédance Identification des paramètres avec un haut-pareur connu On utiisera pour cea e script <Mesure Event avec HP.sce> qui suppose connu es paramètres du haut pareur. Etant donné qu à partir des paramètres du haut-pareur F s, Q es, Q ms et du facteur de masse acoustique q, on peut remonter aux paramètres F so, Q eo, Q mo, ce nouveau script, en ieu et pace d identifier es paramètres F so, Q eo, Q mo, va identifier e paramètre q. Ceci va ever inobservabiité de a combinaison Q mo, Q, Q a, Q p. Cependant es compensations entre ces paramètres étant inhérent à a structure de a fonction de transfert, i est évident qu une erreur sur Q mo conduira à des erreurs sur Q, Q a, Q p inobservabe dans es résidus. La figure 2.12 donne e paramètrage du script Sciab. Le paramètre T ypajust détermine es mesures utiisées pour estimation (mesures d ampitude et/ou de phase). Le paramètre ReAjust permet à utiisateur d estimer ou non a résistance R e de a bobine mobie. Le nom du fichier de mesure de impédance du haut-pareur doit être renseigné dans e variabe fic. L ajustement est réaisé à partir de impédance de a première fréquence u dans ce fichier jusqu à a fréquence renseignée dans a variabe F max. I faut ensuite renseigner es paramètres du haut-pareur : R e, F s, Q es, Q ms. 51

53 Figure 2.12 Paramètres de mesure avec un haut-pareur connu Les paramètres du haut-pareur V as et e voume de enceinte V b ne sont saisis que pour cacuer e facteur d augmentation de compiance β et e voume apparent de enceinte βv b. I faut enfin saisir es vaeurs initiaes des paramètres identifiés : q, Q, Q a, Q p h, α. Le cacu des paramètres avec ce script dans e cas de a simuation du paragraphe conduit à retrouver exactement es paramètres de cette simuation. L identification avec seuement es mesures d ampitude de impédance donne une vaeur pµ min de 0.02 (voir annexe C). Le cacu avec es mesures d ampitude et de phase conduit à une vaeur de I sera donc préférabe d utiiser à a fois es mesures d ampitude et de phase. Ajoutons que, comme ce script cacue β, i est possibe à partir d une enceinte non encore rempie d absorbant d identifier e paramètre V as du hautpareur. En effet, i suffira de saisir a vaeur de V as qui donne β = 1 pour e voume V b mesuré de enceinte. 52

54 2.3.5 Identification des paramètres connaissent e Q mo Dans e cas où on ne connait pas es paramètres du haut-pareur, on pourra utiiser e script <Mesure Event avec Qmo.sce> qui suppose seuement connu e paramètre Q mo. La figure 2.13 donne e paramètrage du script Sciab. Figure 2.13 Paramètres de mesure avec un haut-pareur connu Le paramètre T ypajust détermine es mesures utiisées pour estimation (mesures d ampitude et/ou de phase). Le paramètre ReAjust permet à utiisateur d estimer ou non a résistance R e de a bobine mobie. Le nom du fichier de mesure de impédance du haut-pareur doit être renseigné dans e variabe fic. L ajustement est réaisé à partir de impédance de a première fréquence u dans ce fichier jusqu à a fréquence renseignée dans a variabe F max. I faut ensuite renseigner es paramètres du haut-pareur : R e, Q mo. 53

55 Les paramètres du haut-pareur V as et e voume de enceinte V b ne sont saisis que pour cacuer e facteur d augmentation de compiance β et e voume apparent de enceinte βv b. I faut enfin saisir es vaeurs initiaes des paramètres identifiés : F so, Q eo, Q, Q a, Q p h, α. 54

56 Chapitre 3 Exempe : enceinte ONKEN Ce chapitre est un exempe d utiisation des scripts décrits dans cette note. I traite e cas des enceintes ONKEN 360 itres équipées de haut-pareurs ALTEC 416-8A. La simuation précise de a courbe de réponse d une enceinte à évent nécessite, comme nous avons vu, de connaître es facteurs de pertes Q, Q a, Q p, e facteur d augmentation de compiance β et e facteur de masse acoustique q. La ittérature cassique considère que es pertes es pus éevées sont es pertes par fuite (dépendant du facteur Q ) et que es pertes par absorption dans enceinte (Q a ) et par évent (Q p ) sont négigeabes (voir H.R Sma [5] part I page 320 repris par M. Rossi [4] paragraphe ). Ces considérations conduisent à prendre es vaeurs suivantes : Q a et Q p entre 50 et 100 et Q entre 5 et 20. Le ogicie de cacu winisd [10] prend pour défaut es vaeurs : Q = 10, Q a = 100, Q p = 100. L effet de absorbant pacé dans enceinte sur es paramètres Q a et β est peu détaié dans a ittérature. Le ogicie Unibox [11] donne une vaeur comprise entre 1.01 et 1.21 en fonction du rempissage. Quand au facteur q, i dépend de comment e haut-pareur est mesuré et nous avons vu au chapitre comment e cacuer. Les mesures de ce chapitre vont permettre de voir ce qu i en est de ces recommendations. 3.1 Mesure des haut-pareurs Les paramètres de Thiee et Sma des haut-pareurs et sont donnés dans a référence [9]. Cependant avant de monter ces haut-pareurs dans es enceintes, j ai procédé au nettoyage de a suspension (voir [12]), ce qui change de manière significative eurs caractéristiques. La photo 3.1 montre a suspension dont un secteur a été nettoyé. 55

57 Figure 3.1 Nettoyage de a suspension Le tabeau suivant montre évoution des paramètres de Thiee et Sma. Ceux-ci sont cacués en utiisant e script de mesure <Mesure HP.sce> avec es mesures d ampitude et de phase. Réf F s (hz) Q es Q ms avant après avant après Le nettoyage de a suspension a pour effet de égèrement baisser a fréquence de résonance (en augmentant a compiance) et de fortement diminuer es pertes par frottement, ce qui augmente e facteur Q mo. La figure 3.2 montre a variation du modue de impédance du haut-pareur

58 Figure 3.2 Effet du nettoyage de a suspension sur impédance 3.2 Mesure des paramètres de enceinte Nous aons décrire es mesures effectuées sur es paramètres de enceinte équipée du haut-pareur Cinq configurations différentes ont été mesurées : configuration A : enceinte sans matériaux absorbant ; configuration B : pacement d un absorbant sur es cotés et e fond (voir a photo 3.3 ) ; configuration C : pacement d absorbants suppémentaire sur e dessus et e dessous (voir a photo 3.4 ) ; configuration D : enceinte avec un évent du bas bouché ; configuration E : enceinte avec es deux évents du bas bouchés. Figure 3.3 Configuration B Figure 3.4 Configuration C L absorbant utiisé est de a aine de coton de 50 mm d épaisseur de marque <Metisse>. Les mesures des paramètres de enceinte sont effectuées avec e script <Mesure Event avec HP.sce> en utiisant es mesures d ampitude et de phase de 57

Lexmark Print Management

Lexmark Print Management Lexmark Print Management Optimisez impression en réseau et accès à vos informations avec une soution fexibe. Impression des documents sûre et pratique Fexibe. Libérez es travaux d impression à partir de

Plus en détail

Manuel d'utilisation de Wapam

Manuel d'utilisation de Wapam Manue de 'utiisateur de Wapam Tabe des matières 1Wapam, une recherche de motifs par automates pondérés...3 2Tutorie : un exempe simpe d'utiisation...3 Utiisation avec Rdisk...3 Utiisation sans Rdisk...6

Plus en détail

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012 Master Actuariat-Finance Master Actuariat-Prévoyance Sociae Prof ABDELKADER SALMI 2012 Actuaire L étymoogie du mot "actuaire" est atine (comptabe, rédacteur des ivres de comptes acta), ce terme n'apparaît

Plus en détail

Conception et réalisation d une sectorisation

Conception et réalisation d une sectorisation Conception et réaisation d une sectorisation OBJECTIF : mise en pace d un outi cohérent permettant de mesurer es voumes transitant dans e système de manière fiabe Une attention particuière doit être portée

Plus en détail

Structures dynamiques Listes chaînées

Structures dynamiques Listes chaînées TC Informatique Structures de données abstraites PC N 4 30 Novembre 2000 François Siion Structures dynamiques Listes chaînées http://w3.edu.poytechnique.fr/informatique Représenter un ensembe d'ééments

Plus en détail

Mesure de facteur de bruit sur analyseur de réseaux vectoriel corrigée en Paramètres-S. Frédéric Molina

Mesure de facteur de bruit sur analyseur de réseaux vectoriel corrigée en Paramètres-S. Frédéric Molina esure de facteur de bruit sur anayseur de réseaux vectorie corrigée en Paramètres-S Frédéric oina Agenda Rappe : qu est-ce que e facteur de bruit d un composant? éthodes et setup de mesure Etapes de caibrage

Plus en détail

Une grille pour évaluer la qualité de vos données et choisir votre outil de D Q M

Une grille pour évaluer la qualité de vos données et choisir votre outil de D Q M DOSSIER BASES DE DONNEES PAR VIRGINIE GOASDOU~ (EDF R&D), SYLVAINE NUGIER (EDF R&D), BRIGITTE LABOISSE (AID) ET DOMINIQUE DUQUENNOY (AID) Une grie pour évauer a quaité de vos données et choisir votre outi

Plus en détail

De la caractérisation à l identification des langues

De la caractérisation à l identification des langues De a caractérisation à identification des angues Séection de conférences données ors de a 1 ère journée d étude sur identification automatique des angues, Lyon, 19 janvier 1999 avec e soutien de Association

Plus en détail

LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles

LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles E Chapitre I : appes générau. Chapitre 3 es câbes 38 Cacuer une structure : de a théorie à 'eempe Iustration au recto et photos ci-dessous : Mât haubané de mètres servant de soutien au tieu cassé de Doyon

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

La conception et les spécifications peuvent être modifiées sans préavis.

La conception et les spécifications peuvent être modifiées sans préavis. La conception et es spécifications peuvent être modifiées sans préavis. LTD KXTDA30_FR_200_v.indd 2 3/2/0 3:3:0 PM Système PBX IP hybride KX-TDA30 LTD KXTDA30_FR_200_v.indd 3 3/2/0 3:3:02 PM TABLE DES

Plus en détail

Une introduction à l analyse discriminante avec SPSS pour Windows

Une introduction à l analyse discriminante avec SPSS pour Windows Une introduction à anayse discriminante avec SPSS pour Windows Dominique DESBOIS INRA-ESR Nancy et SCEES 5 rue de Vaugirard, 7573 Paris Cedex 5. Fax : +33 49 55 85 00 Mé :desbois@jouy.inra.fr RÉSUMÉ :

Plus en détail

Système PBX IP hybride

Système PBX IP hybride Système PBX IP hybride KX-TDA30 La conception et es spécifications peuvent être modifiées sans préavis. FrenchPan_NEW MASTER_FA.indd -3 /6/09 9:0:0 AM Pour a mise en pace d un environnement de communications

Plus en détail

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA La gestion de a reation cient au sein de a PME Laurent Warichet 2006 SOGID. Tous droits réservés Le CRM outi pour es PME? Contenu de a présentation Qu est-ce que e CRM? Pourquoi a gestion cient? CRM :

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

La transformation du centre informatique. Les enjeux économiques, écologiques et métiers des centres informatiques

La transformation du centre informatique. Les enjeux économiques, écologiques et métiers des centres informatiques La transformation du centre informatique Les enjeux économiques, écoogiques et métiers des centres informatiques IBM & Schneider Eectric - La transformation du centre informatique Savez-vous que? La mise

Plus en détail

MÉCANIQUE DES STRUCTURES

MÉCANIQUE DES STRUCTURES SCIENCES SUP Aide-mémoire IUT Licence Master MÉCANIQUE DES STRUCTURES Résistance des matériaux Arnaud Deapace Fabrice Gatuingt Frédéric Ragueneau AIDE-MÉMOIRE MÉCANIQUE DES STRUCTURES Résistance des matériaux

Plus en détail

UNICEF/92-5221/Toutounji

UNICEF/92-5221/Toutounji UNICEF/92-5221/Toutounji Pourquoi i est important de communiquer et d utiiser es informations sur L aaitement materne Un bébé nourri au sein est moins souvent maade et mieux nourri qu un bébé à qui on

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Le recours à l Aide complémentaire santé : les enseignements d une expérimentation sociale à Lille

Le recours à l Aide complémentaire santé : les enseignements d une expérimentation sociale à Lille Document de travai Working paper Le recours à Aide compémentaire santé : es enseignements d une expérimentation sociae à Lie Sophie Guthmuer (LEDa-LEGOS, Université Paris-Dauphine) Forence Jusot (LEDa-LEGOS,

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

WWW.ELCON.SE Multichronomètre SA10 Présentation générale

WWW.ELCON.SE Multichronomètre SA10 Présentation générale WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Guide d utilisation 5117

Guide d utilisation 5117 MO0912-FA Guide d utiisation 5117 Famiiarisation Féicitations pour achat de cette montre CASIO. Pour tirer e meieur parti de votre achat, veuiez ire attentivement cette notice. Exposez a montre à une umière

Plus en détail

Bouclier sanitaire : choisir entre égalité et équité?

Bouclier sanitaire : choisir entre égalité et équité? Document de travai Working paper Boucier sanitaire : choisir entre égaité et équité? Une anayse à partir du modèe ARAMMIS Thierry Debrand (Irdes) Christine Sorasith (Irdes) DT n 32 Juin 2010 Reproduction

Plus en détail

WIRELESS SYSTEM QLX-D USER GUIDE. Le Guide de l Utilisateur. 2014 Shure Incorporated 27A22351 (Rev. 1)

WIRELESS SYSTEM QLX-D USER GUIDE. Le Guide de l Utilisateur. 2014 Shure Incorporated 27A22351 (Rev. 1) WRELESS SYSTEM QLX-D USER GUDE Le Guide de Utiisateur 2014 Shure ncorporated 27A22351 (Rev. 1) CONSGNES DE SÉCURTÉ MPORTANTES 1. LRE ces consignes. 2. CONSERVER ces consignes. 3. OBSERVER tous es avertissements.

Plus en détail

Face au deuil, Vous n êtes pas seul(e) Ce guide vous est proposé par la Caf de Meurthe-et-Moselle et les Associations Deuil Espoir et Favec.

Face au deuil, Vous n êtes pas seul(e) Ce guide vous est proposé par la Caf de Meurthe-et-Moselle et les Associations Deuil Espoir et Favec. Face au deui, Vous n êtes pas seu(e) Ce guide vous est proposé par a Caf de Meurthe-et-Mosee et es Associations Deui Espoir et Favec. 1 Edition 2011 ÉDITO Soutenir et accompagner Soutenir a fonction parentae

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

2 juillet 2014-18h00 Mairie de Saint-Priest

2 juillet 2014-18h00 Mairie de Saint-Priest Compte-rendu de a réunion pubique d information dans e cadre de a concertation sur e Pan de Prévention des Risques Technoogiques de Saint-Priest (CREALIS et SDSP) 2 juiet 2014-18h00 Mairie de Saint-Priest

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Automobile et aéronautique

Automobile et aéronautique Soutions et systèmes de marquage et de codage Automobie et aéronautique Nous avons conscience des difficutés particuières auxquees vous devez faire face sur vos ignes de production Dans 'industrie automobie

Plus en détail

Guide d utilisation 4738

Guide d utilisation 4738 MO0612-FA Guide d utiisation 4738 Famiiarisation Féicitations pour achat de cette montre CASIO. Pour tirer e meieur parti de votre montre, isez attentivement ce manue. Avertissement! Les fonctions de mesure

Plus en détail

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité 1 Cours d Acoustique Techniciens Supérieurs Son Ière année Aurélie Boudier, Emmanuelle Guibert 2006-2007 Niveaux Sonores Puissance, Pression, Intensité 1 La puissance acoustique Définition La puissance

Plus en détail

TSP 6500/7000 SÉRIE. Spécifications Chariots tridirectionnels à nacelle élevable

TSP 6500/7000 SÉRIE. Spécifications Chariots tridirectionnels à nacelle élevable C TSP 6500/7000 SÉRIE Chariots tridirectionnes à nacee éevabe C Série TSP 6500 / 7000 Chariots tridirectionnes à nacee éevabe Aée disponibe min. Jeux fonctionnes Fourches non téescopiques 4.33a 4.33 Longueur

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

Sécurité Lexmark pour les imprimantes et MFP compatibles avec les solutions

Sécurité Lexmark pour les imprimantes et MFP compatibles avec les solutions Sécurité Lexmark pour es imprimantes et MFP compatibes avec es soutions Améioration de a sécurité de vos documents et vos données d entreprise En terme de sécurité, votre organisation doit être assurée

Plus en détail

Acoustique des salles

Acoustique des salles Acoustique des salles Ricardo ATIENZA Suzel BALEZ CRESSON L5C École Nationale Supérieure d Architecture de Grenoble Acoustique des salles L acoustique des salles vise à offrir la meilleure qualité possible

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

C 230-... Eco CHAUDIÈRES GAZ AU SOL À CONDENSATION

C 230-... Eco CHAUDIÈRES GAZ AU SOL À CONDENSATION C 2-... Eco CHAUDIÈRES GAZ AU SO À CODESATIO C 2-85 à 21 Eco : de 18 à 2 kw pour chauffage centra à eau chaude et production d ecs par préparateur indépendant Chauffage seu, eau chaude sanitaire par préparateur

Plus en détail

SAGEM F@st TM 2404/2444 Guide d Instaation Rapide Sommaire Présentation... 1 Pack... 2 Raccordements... 3 Instaation à partir du CD-ROM... 4 Instaation Wi-Fi... 5 Instaation Ethernet... 8 Instaation suppémentaire...

Plus en détail

Notice d utilisation de la : Pro-Ject Debut & Debut Phono SB

Notice d utilisation de la : Pro-Ject Debut & Debut Phono SB Notice d utilisation de la : Pro-Ject Debut & Debut Phono SB 11 14 11 22 2 1 3 16 17 6 15 1 4 5 8 7 9 20 21 17 9a 3a 25 33 45/78 SPEED 24 10 11 13 12 2 PRO-JECT DEBUT/DEBUT PHONO SB Descriptif du produit

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. www.altoproaudio.com Version 1.0 Juillet 2003 Français

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. www.altoproaudio.com Version 1.0 Juillet 2003 Français Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE www.altoproaudio.com Version 1.0 Juillet 2003 Français SOMMAIRE 1. INTRODUCTION................................................................... 4 2. FONCTIONNALITÉS................................................................

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

NUANCE The experience speaks for itself

NUANCE The experience speaks for itself NUANCE The experience speaks for itsef Comparatif des soutions PDF Professiona Compatibiité Compatibe avec Microsoft Windows XP (32 bits), Vista (32 et 64 bits) et Windows 7 (32 et 64 bits) Compatibe avec

Plus en détail

Comment s installer aux Canaries

Comment s installer aux Canaries Comment s instaer aux Canaries Aide institutionnee Le gouvernement des Canaries soutient activement es investissements réaisés dans es secteurs stratégiques canariens. Pour ce faire, e département de Investir

Plus en détail

SERIES WIRED MICROPHONE PG ALT A TM PGA27 USER GUIDE. Le Guide de l Utilisateur. 2015 Shure Incorporated 27A27347 (Rev. 3)

SERIES WIRED MICROPHONE PG ALT A TM PGA27 USER GUIDE. Le Guide de l Utilisateur. 2015 Shure Incorporated 27A27347 (Rev. 3) PG ALT A TM SERIES WIRED MICROPHONE PGA27 USER GUIDE Le Guide de l Utilisateur 2015 Shure Incorporated 27A27347 (Rev. 3) PGA27 Microphones PG Alta Félicitations pour avoir acheté un microphone de la nouvelle

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle Série 77 - Relais statiques modulaires 5A Caractéristiques 77.01.x.xxx.8050 77.01.x.xxx.8051 Relais statiques modulaires, Sortie 1NO 5A Largeur 17.5mm Sortie AC Isolation entre entrée et sortie 5kV (1.2/

Plus en détail

NPIH800 GENERATION & RESEAUX. PROTECTION de COURANT TERRE

NPIH800 GENERATION & RESEAUX. PROTECTION de COURANT TERRE GENERATION & RESEAUX PROTECTION de COURANT TERRE NPIH800 assure la protection à maximum de courant terre des réseaux électriques de moyenne et haute tension. Ce relais multifonction surveille les défauts

Plus en détail

PRIMOPIERRE. Société Civile de Placement Immobilier

PRIMOPIERRE. Société Civile de Placement Immobilier PRIMOPIERRE Société Civie de Pacement Immobiier Primonia REIM Septembre 2011 IDENTIFICATION DES RISQUES LIÉS À L INVESTISSEMENT DANS UNE SCPI Facteurs de risques Avant d effectuer un investissement en

Plus en détail

NOTRE MISSION NOTRE APPROCHE NOTRE ÉQUIPE NOTRE MARCHÉ. Confiance. Professionnalisme. Confidentialité

NOTRE MISSION NOTRE APPROCHE NOTRE ÉQUIPE NOTRE MARCHÉ. Confiance. Professionnalisme. Confidentialité www.cobus.net NOTRE MISSION Fournir à nos cients des soutions appropriées, sécurisées et bénéfiques Mettre en pace des soutions restant rentabes sur e ong terme et faciitant ensembe du processus de gestion

Plus en détail

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Vétérinaires : quelles perspectives d activité en 2010?

Vétérinaires : quelles perspectives d activité en 2010? Vétérinaires : quees perspectives d activité en 2010? Edito Arnaud Duet Docteur Vétérinaire Président d Ergone Ergone, nouvee association pour es vétérinaires qui partagent envie d entreprendre, a vouu

Plus en détail

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant . INTRODUCTION On voit apparaître depuis queques années des codes de cacu de tenue à a mer des navires par a méthode des singuarités utiisant a fonction de Green de diffraction-radiation avec vitesse d

Plus en détail

1 Problème 1 : L avion solaire autonome (durée 1h)

1 Problème 1 : L avion solaire autonome (durée 1h) Problèmes IPhO 2012 1 NOM : PRENOM : LYCEE : 1 Problème 1 : L avion solaire autonome (durée 1h) Nous souhaitons dans ce problème aborder quelques aspects de la conception d un avion solaire autonome. Les

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

LE MANUEL DE L INITIATIVE DE LAVAGE DES MAINS

LE MANUEL DE L INITIATIVE DE LAVAGE DES MAINS LE MANUEL DE L INITIATIVE DE LAVAGE DES MAINS Guide de préparation d un programme de promotion du avage des mains au savon BANQUE MONDIALE The Internationa Bank for Reconstruction and Deveopment/The Word

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

GELE5222 Chapitre 9 : Antennes microruban

GELE5222 Chapitre 9 : Antennes microruban GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE Le test statique est un moyen très connu pour évaluer les moteurs électriques. Cependant, si un moteur ne peut pas être arreté,

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

CRM. Registre d équilibrage et de mesure du débit, classe d étanchéité 0 ou 4.

CRM. Registre d équilibrage et de mesure du débit, classe d étanchéité 0 ou 4. Registre d équilibrage et de mesure du débit, classe d étanchéité 0 ou 4. Quelques caractéristiques Méthode de mesure agréée Classe de pression A Classé d'étanchéité à l'air 0 ou 4 Facteur de fuite du

Plus en détail

Rejoignez le. No 1 mondial. de la franchise *! Créez votre entreprise en Franchise avec SUBWAY. www.subwayfrance.fr

Rejoignez le. No 1 mondial. de la franchise *! Créez votre entreprise en Franchise avec SUBWAY. www.subwayfrance.fr Rejoignez e No 1 mondia de a franchise *! Créez votre entreprise en Franchise avec SUBWAY www.subwayfrance.fr *SUBWAY est e numéro 1 mondia de a restauration, en nombre de restaurants. 2015 Doctor s Associates

Plus en détail

Jacques Lévy, professeur à l'universités de Reims et à l'institut d'études politiques de Paris, fellow au Wissenschaftskolleg zu Berlin

Jacques Lévy, professeur à l'universités de Reims et à l'institut d'études politiques de Paris, fellow au Wissenschaftskolleg zu Berlin e point sur La cartographie, enjeu contemporain Jacques Lévy, professeur à 'Universités de Reims et à 'Institut d'études poitiques de Paris, feow au Wissenschaftskoeg zu Berin De ce vieux Mercator, à quoi

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Un guide du bailleur : pourquoi?...3

Un guide du bailleur : pourquoi?...3 édition 2012 SOMMAIRE Un guide du baieur : pourquoi?...3 Avant a ocation Que type de ocation puis-je proposer ou accepter?...4 Quees conditions pour mon ogement mis en ocation?...5 Quees aides pour améioration

Plus en détail

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N Série 55 - Relais industriels 7-10 A Caractéristiques 55.12 55.13 55.14 Relais pour usage général avec 2, 3 ou 4 contacts Montage sur circuit imprimé 55.12-2 contacts 10 A 55.13-3 contacts 10 A 55.14-4

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

Le transistor bipolaire

Le transistor bipolaire IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en

Plus en détail

A. N(p) B + C p. + D p2

A. N(p) B + C p. + D p2 Polytech Nice ELEC3 T.P. d'electronique TP N 7 S ACTIFS DU SECOND ORDRE 1 - INTRODUCTION Un quadripôle est dit avoir une fonction de transfert en tension, du second ordre, lorsque le rapport tension de

Plus en détail

SOMMAIRE. Vous souhaitez embaucher dans votre entreprise un ou plusieurs apprenti(e)s. INFOS APPRENTISSAGE 04. 06.

SOMMAIRE. Vous souhaitez embaucher dans votre entreprise un ou plusieurs apprenti(e)s. INFOS APPRENTISSAGE 04. 06. SOMMAIRE INFOS APPRENTISSAGE 04. 06. 07. L APPRENTISSAGE INDUSTRIEL LE PARCOURS DE L APPRENTISSAGE INDUSTRIEL LES MÉTIERS ET DIPLÔMES PRÉPARÉS DANS LES CENTRES DE FORMATION DE LA BRANCHE EN ÎLE-DE-FRANCE

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

Chapitre 7: Dynamique des fluides

Chapitre 7: Dynamique des fluides Chapitre 7: Dynamique des fluides But du chapitre: comprendre les principes qui permettent de décrire la circulation sanguine. Ceci revient à étudier la manière dont les fluides circulent dans les tuyaux.

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

l EXCLUSION, INCLUSION m

l EXCLUSION, INCLUSION m EXCLUSION, INCLUSION m education permanente CULTURE ÉDUCATION PERMANENTE «I y a eu une invention de accessibiité comme nouvee forme sociae révéatrice d une conception du traitement de atérité dans notre

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Mesure de la dépense énergétique

Mesure de la dépense énergétique Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie

Plus en détail

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Monte charge de cuisine PRESENTATION DU MONTE CHARGE Nom.. Prénom.. Monte charge de cuisine Réalisation /0 Mise en service /0 Dépannage /0 PRESENTATION DU MONTE CHARGE M ~ S0 (Atu) S (appel pour monter) S (descente) H (descendez les déchets S.V.P.!) Sh Salle

Plus en détail

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance

Plus en détail

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Valérie Pommier-Budinger Bernard Mouton - Francois Vincent ISAE Institut Supérieur de l Aéronautique et de

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2 Varset Direct Batteries fixes de condensateurs basse tension Coffrets et armoires Notice d utilisation Coffret C1 Coffret C2 Armoire A2 Réception DB110591 Présentation Varset Direct est une batterie fixe

Plus en détail