Questions de compréhension du cours (20 / 20)

Dimension: px
Commencer à balayer dès la page:

Download "Questions de compréhension du cours (20 / 20)"

Transcription

1 Eamen : «Eléments de microéconomie» Enseignants : David Bounie - Thomas Houy Durée de l épreuve : h30 Questions de compréhension du cours (0 / 0) Concernant le comportement du consommateur (3 pts): ) Soit un consommateur ayant une préférence pour les mélanges. Attribuez à cet agent une fonction d utilité. Quelle sera l utilité de ce consommateur s il achète un panier de biens composé de 8 unités de bien et de unité de bien. Calculez le TMS du consommateur en ce point. Interprétez la valeur de ce TMS en terme économique. Dans votre interprétation, introduisez le concept d utilité marginale. U(X, X ) = X. X U(8, ) = 8 U X (X,X ) = X => U X (8,) = U X (X,X ) = X => U X (8,) = 8 TMS = - (U X / U X ) => TMS (8,) = -/8 Le TMS (Tau Marginal de Substitution) correspond à la quantité de biens que le consommateur est prêt à céder pour acquérir une unité supplémentaire de biens et obtenir ainsi le même niveau d utilité. Dans notre cas, au point (8,), le consommateur dispose de beaucoup d unités de biens et de peu d unité de biens. Par conséquent, le consommateur valorise beaucoup plus le bien que le bien. L utilité perçue par le consommateur d une unité supplémentaire de biens (=utilité marginale du bien ) est beaucoup plus forte que l utilité perçue par le consommateur d une unité supplémentaire de bien (=utilité marginal du bien ). Le consommateur sera donc prêt à céder une quantité très faible (/8) de bien pour acquérir une unité supplémentaire de bien. Le TMS est donc faible. Le raisonnement que nous venons d eposer vaut parce que la fonction d utilité que nous avons posé révèle une préférence pour les mélanges de la part du consommateur. Représentation graphique de la situation :

2 ) Un consommateur procède au classement suivant entre 6 paniers de deu biens X et Y : il préfère strictement le panier (8 ; 48) au panier (5 ; 5). Il est indifférent entre (5 ; 0) et (3 ; ). Il préfère strictement le panier (5 ; 5) au panier (0 ; 45). Il préfère strictement le panier (0 ; 45) au panier (9 ; 48). Peut-on considérer que le classement de ce consommateur est rationnel? Argumentez votre réponse. (8 ; 48) > (5 ; 5) > (0 ; 45) > (9 ; 48) => (8 ; 48) > (9 ; 48) => L agent préfère un panier qui contient moins d unité de biens (8<9) et autant de biens de biens (48). Si nous considérons qu il n eiste pas d effet de satiété pour le bien, l agent apparaît alors irrationnel. 3) Commentez la forme des courbes d indifférence du consommateur sur le graphique cidessous :

3 Au regard des courbes d indifférences du consommateur, nous pouvons dire que le consommateur eprime un niveau de satiété pour le bien (au point *) et un niveau de satiété pour le bien (au point *). En effet, les courbes d indifférences convergent vers le panier (*, *). Ce panier de bien est celui qui lui apporte le plus d utilité. Disposer de plus de quantité de bien que * et de plus que quantité de biens de biens que * crée une désutilité pour le consommateur. Eercice sur le consommateur (5 pts): Soit un consommateur dont on représente la relation de préférence par la fonction d utilité suivante : U(, y) = + 4y. Le revenu du consommateur est égal à 0. ) Déterminer l équation des courbes d indifférence associées au niveau d utilité U = et U = 4. Tracer ces courbes d indifférence et commenter. ) Calculer les utilités marginales et le TMS du bien Y au bien X, puis commenter. 3) Ecrire l équation de la droite de budget en notant p et py les pri respectifs des biens X et Y. Déterminer sa pente. Sachant que p = py =, tracer la droite de budget. 4) Déterminer graphiquement le panier de biens qui maimise l utilité du consommateur. 5) Comment les pri doivent-ils être modifiés pour qu à l équilibre le consommateur ne consomme plus que du bien X? ) U(, y) = + 4y U = => + 4y = => y = (-) / 4 => y = 3- ½ U = 4 => + 4y = 4 => y = (4-) / 4 => y = 6- ½

4 La fonction de préférences ne traduit aucune préférence pour les mélanges du consommateur (utilité marginale du bien (resp. du bien ) indépendante du niveau de bien (resp. du niveau de bien ) dont dispose l agent). Les courbes d indifférence du consommateur ne sont donc pas concaves. ) U = et U y = 4 => TMS = -/ Les utilités marginales sont constantes. Le TMS est identique en tout point (,y). Autrement dit, l utilité d une unité supplémentaire de bien et de bien est la même pour le consommateur quelque soit la quantité de bien et dont il dispose déjà. Par conséquent, il sera toujours prêt à céder la même quantité de biens (/) pour acquérir une unité de bien (et rester sur la même courbe d indifférence). 3) Equation de la droite de budget : 0 =. p.+ y. py => y = (0. p) / py. La pente de la droite de budget est donc : -(p/py) p = py = => pente de la droite de budget = - 4) Le panier optimal pour le consommateur est le panier (*, y*) = (0,5) => U(0,5) = 0

5 5) Pour que le consommateur ne consomme plus que du bien, il faut que la pente de la droite de budget soit telle que -/<pente<0 ó -/< -(p/py) <0 Eemple. Si py = 0 et p = => pente de la droite de budget = -/0 => le consommateur ne consomme plus que du bien X : Concernant le concept d élasticité (3 pts):

6 ) Quel est l impact de l élasticité pri directe de la demande d un bien X sur les recettes du producteur de bien X? Distinguez les cas où l élasticité pri directe est inférieure, supérieure et égale à -. Considérons un producteur sur un marché en CPP (= le producteur est price taker) ) Quel est l impact de l élasticité pri directe de la demande d un bien X sur la recette marginale du producteur de bien X? Distinguez les cas où l élasticité pri directe est inférieure, supérieure et égale à -

7 3) Soit une courbe de demande globale donnée par l équation : P = 00 Q ½. Calculer l élasticité pri directe de la demande quand le pri est égal à 60. P = 00 Q ½. => Q = (00 P) dq/dp = P P= 60 => Q = 600 ep = ( ). (60/600) ep = -3 (loi de la demande vérifiée) Concernant la nature des biens en économie ( pts): ) Qu est ce qu un bien inférieur? Un bien inférieur est un bien pour lequel l élasticité revenu est négative. Autrement dit, il s agit d un bien pour lequel la demande baisse (relativement) lorsque le revenu du consommateur augmente (e : la margarine). ) Deu biens substituables peuvent-ils être des biens normau? Pour qualifier des biens de substituables, nous étudions l élasticité pri croisée de ces deu biens. Pour qualifier des biens de normau, nous regardons l élasticité revenu de ces biens. Rien n empêche des biens dont l élasticité pri croisée est positive d avoir une élasticité revenu positive. La réponse à la question est donc oui

8 Concernant l efficacité d un marché ( pts) : ) La concurrence est-elle Pareto optimale? Justifiez. La concurrence est Pareto optimale. Il n eiste pas d échange mutuellement avantageu. (cf cours pour justification) ) Le monopole ordinaire est-il Pareto optimal? Justifiez. Le monopole ordinaire n est pas Pareto optimal. Il eiste des échange qui peuvent être mutuellement avantageu (cf cours pour justification). Eercice sur le producteur en concurrence (5 pts) : Soit la fonction de production d un producteur : q = +. Soit p, le pri de l output, w et w, les pri des inputs. ) Calculez le produit marginal des facteurs de production et. Interprétez économiquement la valeur de ces produits marginau. ) Eiste-t-il des rendements d échelle croissants, décroissants ou constants pour la firme? 3) Définissez les fonctions de demande d input de la firme : d d = = d d ( p, w, w) ( p, w, w) ) fonction de production : f(,) = +

9 Produit marginal du facteur de production : f = Produit marginal du facteur de production : f = Le produit marginal du facteur de production (resp. ) est indépendant de la quantité de facteur de production (reps. ). Autrement dit, il n eiste pas de complémentarité entre les deu inputs. ) f(k., k.) = k + k = k.( + ) < k.( + ) ð rendements d échelle décroissants 3) Le producteur égalise le produit marginal des facteurs de production et leur pri relatif : f = = w p => * = p w f = = w p => * = p w

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Concurrence imparfaite

Concurrence imparfaite Concurrence imparfaite 1. Le monopole 2. Concurrence monopolistique 3. Hotelling et Salop 4. Concurrence à la Cournot 5. Concurrence à la Bertrand 6. Concurrence à la Stackelberg Monopole Un monopole,

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel

CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER Epargne et emprunt Calcul actuariel Plan du cours Préambule : la contrainte budgétaire intertemporelle et le calcul actuariel I II III Demandes d épargne

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Séquence 8. Fonctions numériques Convexité. Sommaire

Séquence 8. Fonctions numériques Convexité. Sommaire Séquence 8 Fonctions numériques Conveité Objectifs de la séquence Introduire graphiquement les notions de fonctions convees et de fonctions concaves. Établir le lien entre le sens de variation d une fonction

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Fondements de l'analyse Économique Travaux Dirigés

Fondements de l'analyse Économique Travaux Dirigés Fondements de l'analyse Économique Travaux Dirigés Cours de Nicolas Drouhin Chargés de TD : Alexandre de Cornière & Marc Sangnier Octobre 2008 École Normale Supérieure de Cachan - Département Économie

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

JOHANNA ETNER, MEGLENA JELEVA

JOHANNA ETNER, MEGLENA JELEVA OPENBOOK LICENCE / BACHELOR Micro économie JOHANNA ETNER, MEGLENA JELEVA Sommaire Remerciements... Introduction... V VII Chapitre 1 Demande et offre sur le marché... 1 Chapitre 2 Technologie de production...

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

ELASTICITE DE LA DEMANDE Calcul de l'elasticite & Applications Plan du cours I. L'elasticite de la demande & ses determinants II. Calcul de l'elasticite & pente de la courbe de demande III. Applications

Plus en détail

Chapitre 5. Équilibre concurrentiel et bien-être

Chapitre 5. Équilibre concurrentiel et bien-être Chapitre 5 Équilibre concurrentiel et bien-être Microéconomie III 5 1 5.1 Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Introduction à la Microéconomie Contrôle continu Licence 1 Economie-Gestion 2009/2010 Enseignants : E. Darmon F.Moizeau B.Tarroux

Introduction à la Microéconomie Contrôle continu Licence 1 Economie-Gestion 2009/2010 Enseignants : E. Darmon F.Moizeau B.Tarroux Nom : Prénom : Num Etudiant : Groupe de TD : Introduction à la Microéconomie Contrôle continu Licence 1 Economie-Gestion 2009/2010 Enseignants : E. Darmon F.Moizeau B.Tarroux PRECISEZ ICI SI VOUS AVEZ

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

FONCTION DE DEMANDE : REVENU ET PRIX

FONCTION DE DEMANDE : REVENU ET PRIX FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie

Plus en détail

Développer, factoriser pour résoudre

Développer, factoriser pour résoudre Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Méthode : On raisonnera tjs graphiquement avec 2 biens.

Méthode : On raisonnera tjs graphiquement avec 2 biens. Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5.

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5. Deuxième partie Les jeux non-coopératifs avec information complète 3. Équilibre de Nash (1951) 35 4. Dynamique et rétroduction 61 5. Jeux répétés 85 3. Équilibre de Nash (1951) John Nash a généralisé

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

ATELIER Les mutuelles de santé comme acteur et partenaire de la couverture santé universelle

ATELIER Les mutuelles de santé comme acteur et partenaire de la couverture santé universelle FORMATION SUR LE DEVELOPPEMENT DE L ASSURANCE MALADIE UNIVERSELLE www.coopami.org ATELIER Les mutuelles de santé comme acteur et partenaire de la couverture santé universelle Projet d Appui Institutionnel

Plus en détail

Institut Informatique de gestion. Communication en situation de crise

Institut Informatique de gestion. Communication en situation de crise Institut Informatique de gestion Communication en situation de crise 1 Contexte Je ne suis pas un professionnel de la communication Méthode empirique, basée sur l(es) expérience(s) Je suis actif dans un

Plus en détail

N d anonymat : Remarques générales :

N d anonymat : Remarques générales : N d anonymat : Introduction à la Microéconomique Examen final Licence 1 Economie-Gestion 2010/2011 Enseignants (cours et travaux dirigés) : N. Andries, S.Billon et E. Darmon Eléments de correction Remarques

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ;

Cookies de session ils vous permettent de sauvegarder vos préférences d utilisation et optimiser l expérience de navigation de l Utilisateur ; Ce site utilise des Cookies, émis également par des tiers, pour des raisons de fonctionnalité, pratiques et statistiques indiquées dans notre politique en matière de Cookies. Politique en matière de Cookies

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Exemples d utilisation de G2D à l oral de Centrale

Exemples d utilisation de G2D à l oral de Centrale Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf

Plus en détail

COURS 2 : LA DEMANDE DU CONSOMMATEUR

COURS 2 : LA DEMANDE DU CONSOMMATEUR Université Pierre et Marie Curie Licence Informatique 2014-2015 Cours LI 352 - Industrie Informatique et son Environnement Économique Responsable : Jean-Daniel Kant ([email protected]) COURS 2 :

Plus en détail

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0) CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.

Plus en détail

Cours 1 : La compilation

Cours 1 : La compilation /38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas [email protected] PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà

Plus en détail

L'ELASTICITE-PRIX I- QUAND LES PRIX VARIENT...

L'ELASTICITE-PRIX I- QUAND LES PRIX VARIENT... L'ELASTICITE-PRIX La consommation dépend, entre autre, du prix des biens et des services que l'on désire acheter. L'objectif de ce TD est de vous montrer les liens existants entre le niveau et l'évolution

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Office Central de la Coopération à l Ecole Association 1901 reconnue d utilité publique

Office Central de la Coopération à l Ecole Association 1901 reconnue d utilité publique , 22, rue des Sablières 33800 BORDEAUX Tel : 05 56 91 67 55 - Fax : 05 56 92 87 67 - Courriel : [email protected] Site Internet : http://www.occe33.net/ QUESTIONS posées à l OCCE lors de la FORMATION des

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

Circulaire 1/2014 concernant l assurance-qualité interne des entreprises de révision (Circ. 1/2014)

Circulaire 1/2014 concernant l assurance-qualité interne des entreprises de révision (Circ. 1/2014) Autorité fédérale de surveillance en matière de révision ASR Circulaire 1/2014 concernant l assurance-qualité interne des entreprises de révision (Circ. 1/2014) du 24 novembre 2014 Sommaire I. Contete

Plus en détail

Analyse Financière Les ratios

Analyse Financière Les ratios Analyse Financière Les ratios Présenté par ACSBE Traduit de l anglais par André Chamberland [email protected] L analyse financière Les grandes lignes Qu est-ce que l analyse financière? Que peuvent

Plus en détail

CHAPITRE 1 : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ

CHAPITRE 1 : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ CHAPITRE : DE LA FONCTION DE DEMANDE DU CONSOMMATEUR À LA DEMANDE DE MARCHÉ..Introduction.2. Le point de départ de l analyse micro-économique du consommateur.3. La fonction de demande individuelle.4. Effets

Plus en détail

P A P 1 D 1 -S 1 S 1 D 1

P A P 1 D 1 -S 1 S 1 D 1 Les instruments de la politique commerciale - tarifs: source de revenu et protection des industries nationales -pécifiques : montant fixe par unité de bien importé (exemple: 100 par voiture) -Ad-valorem:

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT

COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile Red shift or blue shift, that is the question. a) Quand une source d onde se rapproche d un observateur immobile, la longueur d onde λ perçue par l observateur est-elle plus grande ou plus petite que λo

Plus en détail

Calculs financiers (1) : intérêts simples, composés.

Calculs financiers (1) : intérêts simples, composés. Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).

Plus en détail

Les coûts de la production. Microéconomie, chapitre 7

Les coûts de la production. Microéconomie, chapitre 7 Les coûts de la production Microéconomie, chapitre 7 1 Sujets à aborder Quels coûts faut-il considérer? Coûts à court terme Coûts à long terme Courbes de coûts de court et de long terme Rendements d échelle

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

DÉCOUVREZ SON FONCTIONNEMENT EN 10 CLICS!

DÉCOUVREZ SON FONCTIONNEMENT EN 10 CLICS! DÉCOUVREZ SON FONCTIONNEMENT EN 10 CLICS! 1 POUR FAIRE VOS PREMIERS PAS : LA PAGE D ACCUEIL POUR TOUS Sur la page d accueil de la Fabrique à menus : Grâce au menu déroulant, sélectionnez le nombre de jours

Plus en détail

INTRODUCTION A LA MACROECONOMIE Séance de travaux dirigés n 4 Construction des comptes de secteur

INTRODUCTION A LA MACROECONOMIE Séance de travaux dirigés n 4 Construction des comptes de secteur Université Montesquieu Bordeaux IV 1 ère année Licence AES Année universitaire 2012-2013 INTRODUCTION A LA MACROECONOMIE Séance de travaux dirigés n 4 Construction des comptes de secteur Questions préliminaires

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

L oligopole ESCP 2012 2103

L oligopole ESCP 2012 2103 Structures de marché L oligopole Anne Yvrande Billon ESCP 2012 2103 1 Plan du cours (1/2) 1. Introduction : qu est ce qu un oligopole? 2. L oligopole de Cournot 3. Le «paradoxe de Bertrand» 2 1. Introduction

Plus en détail

1. La fonction de règlement ne peut être assurée au niveau international que dans des conditions bien différentes. D une part, les agents concernés

1. La fonction de règlement ne peut être assurée au niveau international que dans des conditions bien différentes. D une part, les agents concernés Introduction La notion de système évoque l idée d organisation. Un système monétaire national est l organisation des relations monétaires dans un pays : comment les agents économiques peuvent-ils utiliser

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Chapitre 1 : Notions. Partie 9 - Rente viagère. Qu est-ce q u u n e «r e n t e v i a g è r e»?

Chapitre 1 : Notions. Partie 9 - Rente viagère. Qu est-ce q u u n e «r e n t e v i a g è r e»? Chapitre 1 : Notions Qu est-ce q u u n e «r e n t e v i a g è r e»? Principe. Une rente viagère, c est en fait une dette à vie d une personne envers une autre, que l on connaît surtout dans le cadre de

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Jeux sous forme extensive (Jeux dynamiques)

Jeux sous forme extensive (Jeux dynamiques) (Jeux dynamiques) Plan du chapitre ( juillet 008) / éfinitions, exemples et équivalences Arbres de jeux, information et mémoire tratégies et réduction en forme normale Équilibre de Nash parfait en sous-jeux

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

L assurance des travaux d installation d une

L assurance des travaux d installation d une L assurance des travau d installation d une centrale photovoltaïque Etes-vous bien assurés? Quel est l enjeu du photovoltaïque pour le promoteur?. Toute l attention se porte sur les conditions de rachat

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU

UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU Odile VERBAERE UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU Résumé : Cet article présente une réflexion sur une activité de construction de tableau, y compris

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Un moyen simple d'être plus favorable aux familles Les points les plus importants du Family Score en un coup d'œil

Un moyen simple d'être plus favorable aux familles Les points les plus importants du Family Score en un coup d'œil Un moyen simple d'être plus favorable aux familles Les points les plus importants du Family Score en un coup d'œil c/o Pro Familia Suisse Marktgasse 36 Tél. 031 381 90 30 [email protected] 3011 Berne

Plus en détail

Compte consolidé de la Confédération

Compte consolidé de la Confédération Compte consolidé de la Confédération Expériences avec la première élaboration Association pour les finances et la comptabilité publiques Colloque du 3 septembre 2010 Markus Stöckli, chef du service comptabilité,

Plus en détail