Chapitre 10. Risque et assurance. Arthur Charpentier La problématique du provisionnment en assurance

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 10. Risque et assurance. Arthur Charpentier. 10.1 La problématique du provisionnment en assurance"

Transcription

1 Chapitre 10 Risque et assurance Arthur Charpentier Dans ce chapitre, nous allons présenter quelques modèles utilisés par les assureurs afin de quantifier les risques pris. Dans les premiers chapitres, il était mentionné qu un risque était une variable aléatoire X (ou un ensemble de variables aléatoires X), et que la gestion des risques se résumait à calculer R(X) (ou R[h(X)] si h désigne une fonction d agrégation). Mais nous n avions pas encore introduit d aspect temporel, sous entendant dans les sections traitant de l inférence statistique qu au moment de quantifier le risque, des observations X i (ou X i ) étaient disponibles. C est bien entendu très simplificateur. A la fin de l année, un assureur ne connait pas les coûts des sinistres survenus pendant l année. On peut parler des accidents corporels en assurance automobile, ou de la responsabilité civile des hôpitaux, ou de l expérience du sang contaminé dans les centres de transfusion. On pourra aussi penser à l assurance décès : les engagements pris ne seront parfois honnorés que d ici plusieurs dizaines d années. Dans ce chapitre, nous insisterons sur deux risques (parmi beaucoup d autres). Le premier sera la modélisation des «provisions pour sinistres à payer», et plus particulièrement, la présentation de méthodes permettant de quantifier la marge d erreur associée à ce calcul de provisions. Le second sera le risque démographique présent dans les contrats d assurance en cas de décès, ou surtout en cas de vie, en essayant de calculer la probabilité qu un assuré décède dans 30 ou 40 ans La problématique du provisionnment en assurance Comme le définit (19), «les provisions techniques sont les provisions destinées à permettre le règlement intégral des engagements pris envers les assurés

2 2 Chapitre 10 et bénéficiaires de contrats. Elles sont liées à la technique même de l assurance, et imposées par la règlementation». D un point de vue plus formel, à la date t, la compagnie d assurance est tenue de constituer une provision pour les sinistres survenus avant la date t qu elle sera tenu d indemniser (et de tenir ainsi la promesse qu elle a vendue). Elle doit donc estimer le coût des sinistres survenus, et retrancher les montants déjà versés. Il s agit donc fondamentalement d un problème de prévision. En effet, contrairement à l hypothèse faite dans la plupart des modèles actuariels, les coûts de sinistres ne sont pas connus le jour de la survenance du sinistre. Il y a tout d abord un délai avant que le sinistre ne soit déclaré à la compagnie d assurance par l assuré, puis un temps (plus ou moins long) de gestion du sinistre, d expertises, de paiements, avant de le clôturer plusieurs mois, ou plusieurs années plus tard. La Figure 10.1 illustre la problématique du provisionnement, avec un diagramme de Lexis de la vie des sinistres. Années de développement Temps calendaire Figure 10.1 Évolution de la vie des sinistres, sur un diagramme de Lexis, avec en abscisse le temps calendaire (la date à laquelle un opération est effectuée : déclaration, paiement, etc), et en ordonnée l âge des sinistres. Les sinistres surviennent à la date, sont déclarrés à l assureur à la date + et clôturés à la date. L exercice de provisionnement consiste à estimer à une date donnée (ici fin 2010, correspondant au trait plein vertical), le montant des paiements restant à faire pour l ensemble des sinistres survenus (déclarés ou pas). En pratique, le jour de la déclaration du sinistre à l assureur (+), le gestionnaire de sinistres est tenu d estimer un montant du sinistre dont il vient

3 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 3 d avoir connaissance (à l aide de factures à sa disposition, ou de coûts moyens de sinistres similaires). Le montant réel du sinistre ne sera connu que le jour de la clôture ( ). Entre ces deux dates, le gestionnaire de sinistre peut réviser ses estimations de coûts, mais aussi effectuer des paiements. En pratique, au lieu de travailler sur des données individuelles, les données sont ici aggrégées par années (comme indiquée sur la Figure 10.1) : on s intéresse à l année de survenance du sinistre (i, en abscisse) et l année du paiement (par rapport à l année de la survenance, j, en ordonnées). Parmi les méthodes reconnues par les autorités de contrôles, les plus classiques sont basées sur les cadences de paiements. On raisonne pour cela par année de survenance de sinistre, et on suppose une certaine régularité dans la cadence de paiement Quelques définitions et notations La plupart des méthodes présentées ici sont détaillées dans (5), ou (21). L idée est d agréger les informations sur les sinistres dans des triangles, avec : l année de survenance en ligne i, l année de développement en colonne j = 0, 1, 2,, l année calendaire en diagonale i + j, Parmi les informations que l on trouvera résumée : Y i,j les incréments de paiments, pour les sinistres survenus l année i, et pour l année de développement j (autrement dit payé l année i+j), comme indiqués dans la Table 10.1 C i,j les paiments cumulés, au sens où C i,j = Y i,0 + Y i,1 + + Y i,j, pour l année de survenance i, correspondant à l ensemble des paiements effectués pour les sinistres survenus l année i, entre l année i et l année i + j, comme dans la Table 10.2 N i,j le nombre cumulé de sinistres pour l année de survenance i, vu au bout de j années, dans la Table 10.3 (en milliers) Les données sont celles utilisées dans (16), et les calculs numériques sont détaillés dans (2). Enfin, une information non aléatoire (les primes étant payées en début de période de couverture) peut aussi être utilisée P i la prime acquise pour l année i (répartie prorata temporis pour les contrats chevauchant une année calendaire), dans la Table 10.4 On parle de triangle car au delà de la dernière diagonale, les montants (et les nombres) ne sont pas connus. La difficulté est donc de prévoir les montants qui seront payés par le futur : comme rappelé en introduction, les compagnies d assurance sont tenues de constituer des provisions pour garantir que ces paiements pourront être faits. Comme le notait (1), «it is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat the problem of incurred but not reported claim reserves is essentially actuarial or statistical. Perhaps in today s environment the quotation would

4 4 Chapitre 10 Table 10.1 Triangle des incréments de paiements, Y = (Y i,j ) Table 10.2 Triangle des paiements cumulés, C = (C i,j ) be even more relevant if it stated that the problem...is more actuarial than statistical.» Formalisation du problème du provisionnement Comme évoqué dans le paragraphe précédant, le provisionnement est fondamentalement un problème de prédiction, conditionnelle à l information dont on dispose à la date n. En particulier, on a besoin de prévoir la charge ultime des sinistres, pour une année de survenance donnée, C i,. On notera F n l information disponible à la date n, soit formellement : H n = {(Y i,j ), i + j n} = {(C i,j ), i + j n}. On cherche à étudier, par année de survenance, la loi conditionnelle de C i, sachant H n, ou encore, si l on suppose les sinistres clos au bout de n années la loi de C i,n sachant H n. Si l on se focalise sur une année de survenance particulière, on pourra noter : F i,n i = {(Y i,j ), j = 0,, n i)} = {(C i,j ), j = 0,, n i)}. Cette notation permet de prendre en compte que l information disponible change d une ligne à l autre.

5 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 5 Table 10.3 Triangle des nombres de sinistres, cumulés, en milliers, N = (N i,j ) Table 10.4 Vecteur des primes acquises, P = (P i ) H n F i,n i On cherchera par la suite à prédire le coût final des sinistres à payer survenus l année i : Ĉ (n i) i, = E[C i, F i,n i ]. Classiquement, on commencera par supposera que les sinistres sont clôturés au bout de n années, au plus (on reviendra sur cette hypothèse par la suite). Aussi, C i, = C i,n, et on cherche alors à prédire : Ĉ (n i) i,n = E[C i,n F i,n i ], et la différence entre ce montant et le montant déjà payé constituera la provision pour sinistres à payer, R i = Ĉ(n i) i,n C i,n i. On essayera ensuite de quantifier l incertitude associée à cette prédiction. Comme on le verra les méthodes usuelles visaient à calculer Var[C i,n F i,n i ] ou Var[Ĉ(n i) i,n ], ce que l on appelera incertitude à horizon ultime. Mais ce n est pas ce qui est demandé d un point de vue comptable et réglementaire, Solvabilité II demandant

6 6 Chapitre 10 plutôt de mesurer une incertitude dite «à un an». Pour cela, on va s intéresser à la prédiction qui sera faite dans un an, Ĉ (n i+1) i,n = E[C i,n F i,n i+1 ] et plus particulièrement le changement dans l estimation de la charge ultime n i = Ĉ(n i+1) i,n Ĉ(n i) i,n. Si cette différence est positive, on parle de «mali» (il faudra gonfler la provision afin de pouvoir payer les sinistres), et si elle est négative, on parle de «boni» (l assureur avait trop provisionné, et sur-estimé la charge ultime des sinistres). On peut montrer que E[ n i F i,n i ] = 0, autrement dit, on ne peut espérer faire ni boni, ni mali, en moyenne. On a alors une propriété de martingale. Les contraintes règlementaires imposées par Solvabilité II demandent de calculer Var[ n i F i,n i ]. La Figure 10.2 montre les estimations de montant de provisions deux années consécutives. On note ici que la variation est faible, mais sur des branches d assurance à forte variabilité (en particulier pour les dommages corporels, ou la responsabilité civile), la variation peut ètre beaucoup plus importante Les cadences de paiements et la méthode Chain Ladder L idée d utiliser des cadences de paiements pour estimer la charge future date du début du XXème siècle. On suppose qu il existe une certaine proportionnalité, avec une relation de récurrence de la forme : C i,j+1 = λ j C i,j pour tout i, j = 1,, n. Un estimateur naturel pour λ j, basé sur l expérience passée est alors : λ j = n j i=1 C i,j+1 n j i=1 C i,j pour tout j = 1,, n 1. De telle sorte que l on peut alors prédire la charge pour la partie non-observée dans le triangle : ] Ĉ i,j = [ λn+1 i... λ j 1 C i,n+1 i.

7 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 7 Montant (paiements et réserves) Figure 10.2 Estimation de la charge ultime Ĉi,n deux années consécutives (n 1 et n), avec en gris le montant total de paiements déjà effectués, C i,n i et en noir le montant de provisions R i. Notons qu au lieu de calculer les facteurs de développement, on peut aussi des taux de développement, cumulés ou non. Autrement dit, au lieu d écrire C i,j+1 = λ j C i,j pour tout i, j = 1,, n, on suppose que : On notera que : γ j = C i,j = γ j C i,n ou Y i,j = ϕ j C i,n. n k=j+1 { 1 γ1 si j = 1 et ϕ j = λ k γ j γ j 1 si j > 1 Table 10.5 Facteurs de développement, λ = ( λ i ), exprimés en cadence de paiements par rapport à la charge ultime, en cumulé (noté γ), puis en incréments (noté ϕ) n λ j 1, , , , , ,0000 γ j 70,819% 97,796% 98,914% 99,344% 99,529% 100,000% ϕ j 70,819% 26,977% 1,118% 0,430% 0,185% 0,000%

8 8 Chapitre 10 On notera qu il est possible de voir l estimateur Chain-Ladder comme une moyenne pondérée des facteurs de transition individuels : n j C i,j λ j = ω i,j λ i,j où ω i,j = n j i=1 C i,j i=1 i=1 et λ i,j = C i,j+1 C i,j. Aussi, on peut obtenir ces coefficients à l aide de régressions linéaires pondérées sans constantes, en régressant les C,j+1 sur les C,j, { n j [ λ j = argmin C i,j λ C ] } 2 i,j+1, λ R C i,j soit : λ j = argmin λ R { n j i=1 } 1 [λc i,j C i,j+1 ] 2. (10.1) C i,j Table 10.6 Triangle des paiements cumulés, C = (C i,j ) i+j n avec leur projection future Ĉ = (Ĉi,j) i+j>n Modèle multiplicatif et méthode des marges Avec l écriture C i,j = γ j C i,n, on voit que la méthode Chain Ladder repose sur l utilisation d un facteur ligne (les C i,n ) et d un facteur colonne (les γ j ). On peut ainsi réécrire le modèle sous la forme C i,j = A i B j. Afin d identifier les paramètres, des contraintes doivent être imposer. Par exemple, il peut être légitime de demander une égalité de la somme par ligne, mais aussi par colonnes, des C i,j, mais aussi des A i B j. Autrement dit, on cherche des vecteurs A = (A 0,, A n ) et B = (B 0,, B n ), avec B B n = 1, tels que : n j n j n i n i A i B j = Y i,j pour tout j, et A i B j = Y i,j pour tout i, i=0 i=0 (on ne somme que sur la partie observée du triangle) les montants prédits dans la partie inférieure du triangles. Alors les termes (A i B j ) i+j>n (correspondant j=0 j=0

9 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 9 aux prédictions pour les paiements futurs), coïncident avec les quantités prédites par la méthode Chain Ladder ((18)). Proposition 10.1 S il existe A = (A 0,, A n ) et B = (B 0,, B n ), avec B B n = 1 (car il faut rajouter une contrainte d identifiabilité), tels que alors et n j n j n i n i A i B j = Y i,j pour tout j, et A i B j = Y i,j pour tout i, i=0 i=0 B k = j=k j=0 Ĉ i,n = A i = C i,n i 1 λ j j=k 1 k=n i λ k j=0 1 1, avec B 0 =. λ j j=k λ j Autrement dit, le montant de provision coïncide avec l estimateur obtenu par la méthode Chain Ladder. Preuve 10.1 La démonstration se fait de manière récursive. Commençons par réécrire les conditions, n j n j n j n i n i n i Y i,j = A i B j = B j A i, et Y i,j = A i B j =, A i B j. i=0 i=0 i=0 j=0 j=0 Pour i = 0 dans la dernière somme, on en déduit que n j=0 A 0 = Y i,j n n j=0 B = Y i,j = C 0,n. j Supposons que la relation sur les A i soit vérifiée pour 0, 1, 2,, n k 1, et que i j=0 B j = 1 λ j aux étapes n, n 1,, k. Alors à l étape n k, n k A i = i=0 qui peut se réécrire soit encore n k 1 i=0 n k 1 i=0 C i,k j=i A i + A n k = n k 1 k=n i i=0 C i,k n k 1 i=0 k=n i λ k + C n k,k j=0 C i,k λ k + k=n i k=n i C n k,k k j=0 B j n k λ k = i=0 λ k + C i,k j=0 k j=0 Y n k,j k j=0 B j k=n i λ k.

10 10 Chapitre 10 De plus, en réécrire k k+1 B j = B j B k+1 = j=0 j=0 Pour le terme de droite, en notant que n k 1 j=0 on obtient que Y j,k = k B j = j=0 n k 1 j=0 j=k [S j,k+1 S j,k ] = λ 1 j n k 1 j=0 ( ) λ n k λ 1 j = j=n k+1 n k 1 j=0 Y j,k n k 1 j=0 A j n k 1 S j,k+1 j=n k j=0 λ 1 j. En soustrayant à chacune des étapes, on obtient le résultat annoncé. Nous reviendrons sur ce modèle dans la sectionn 10.5, car la régression de Poisson avec un lien logarithmique (dont les paramètres sont estimés par maximum de vraisemblance) coïncide avec la méthode des marges. S j,k 10.4 De Mack à Merz & Wüthrich La méthode dite Chain Ladder, que nous venons de voir, est une méthode dite déterministe, au sens où l on ne construit pas de modèle probabiliste permettant de mesurer l incertitude associée à la prédiction du montant des réserves. Différents modèles ont été proposés à partir des années 90, à partir du modèles de Mack, jusqu à l approche proposée par Merz & Wüthrich qui introduira la notion de «incertitude à un an» Quantifier l incertitude dans une prédiction Nous avons obtenu, par la méthode Chain Ladder un estimateur du montant de provision, R (même si nous n avons pas, pour l instant, de modèle stochastique sous-jacent). Classiquement, pour quantifier l erreur associée à un estimateur, on calcule l erreur quadratique moyenne - ou «mean squared error» mse - associée : E([ R R] 2 ). Formellement, comme R est ici une variable aléatoire, on ne parle pas d erreur d estimation, mais d erreur de prévision : on va alors calculer un erreur quadratique moyenne de prediction - ou «mean squared error of prediction» - notée msep (on ne prédit pas sur les données passées, mais on utilisera les donnéees

11 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 11 pour calibrer un modèle qui servira ensuite à faire de la prédiction pour les années futures). Aussi msep( R) = E([ R R] 2 ). Ce terme peut se décomposer en deux (en faisant une approximation au premier ordre), au sens où E([ R R] 2 ) E([ R E(R)] 2 ) + E([R E(R)] 2 ) } {{ } } {{ } Var(R) mse( R) où le terme de gauche est l erreur d estimation, compte tenu du fait que nous avons dû estimer le montant de provisions à partir de la partie supérieure du triangle, et le terme de droite est l erreur classique de modèle (tout modèle comportant une partie résiduelle orthogonale aux observations, et donc imprévisible). En fait, en toute rigueur (et nous en aurons besoin par la suite), on cherche plutôt à calculer un msep conditionnel à l information dont on dispose au bout de n années, msep n ( R) = E([ R R] 2 H n ) Le formalisme de Mack (13) a proposé un cadre probabiliste afin de justifier l utilisation de la méthode Chain-Ladder. Pour cela, on suppose que (C i,j ) j 0 est un processus Markovien, et qu il existe λ = (λ j ) et σ = (σj 2 ) tels que { E(Ci,j+1 H i+j ) = E(C i,j+1 C i,j ) = λ j C i,j Var(C i,j+1 H i+j ) = Var(C i,j+1 C i,j ) = σ 2 j C i,j On note que sous ces hypothèses, E(C i,j+k H i+j ) = E(C i,j+k C i,j ) = λ j λ j+1 λ j+k 1 C i,j. (13) rajoute une hypothèse supplémentaire d indépendance entre les années de survenance, autrement dit (C i,j ) j=1,...,n et (C i,j) j=1,...,n sont indépendant pour tout i i. Une réécriture du modèle est alors de supposer que C i,j+1 = λ j C i,j + σ j Ci,j + ε i,j+1, où les résidus (ε i,j ) sont i.i.d. et centrés. A partir de cette écriture, il peut paraître légitime d utiliser les méthodes des moindres carrés pondérés pour estimer ces coefficients, en notant que les poids doivent être inversement proportionnels à la variance, autrement dit aux C i,j, i.e. à j donné, on cherche à résoudre min { n j i=1 } 1 (C i,j+1 λ j C i,j ) 2 C i,j

12 12 Chapitre 10 qui correspond à l équation 10.1 : on va donc retrouver le même montant de provisions qu avec la méthode Chain Ladder. Pour tester ces deux premières hypothèses, on commence par représenter les C,j+1 en fonction des C,j à j donné. Si la première hypothèse est vérifiée, les points doivent être alignés suivant une droite passant par l origine. La Figure 10.3 montre ainsi les nuages de points pour j = 1 et j = 2. PAID[, j + 1] PAID[, j + 1] PAID[, j] PAID[, j] Figure 10.3 Nuage de points C,j+1 en fonction des C,j droite de régression passant par l origine. pour j = 1, 2, et Pour la seconde hypothèse, on peut étudier les résidus standardisés ((13) parle de «weighted residuals»), ε i,j+1 = C i,j+1 λ j C i,j Ci,j. L utilisation des résidus standardisés nous donnent d ailleurs une idée simple pour estimer le paramètre de volatilité. ( n j 1 σ j 2 1 C i,j+1 = λ ) 2 j C i,j n j 1 Ci,j ce qui peut aussi s écrire σ 2 j = 1 n j 1 i=0 n j 1 i=0 ( Ci,j+1 C i,j λ j ) 2 C i,j (ce qui est à rapprocher de l écriture du facteur de transition λ comme moyenne pondérée des facteurs de transitions observés). Cette méthode permet d estimer les différents paramètres intervenant dans le modèle de (13).

13 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE La notion de «tail factor» Comme nous l avions expliqué dans l introduction, jusqu à présent, on a supposé que la première ligne de notre triangle est close : il n y a plus de sinistres ouverts, et donc le montant de provision pour cette année de survenance est nul. Aussi, pour tout i, on suppose que C i, = C i,n. Cette hypothèse peut être un peu trop forte pour les branches à déroulement long. (14) a posé les bases des premiers modèles qui sont toujours utilisés, reposant sur l idée d un «tail factor». On supposera qu il existe alors un λ > 1 tel que C i, = C i,n λ. Une méthode qui a souvent été utilisée a reposé sur l idée que l on pouvait projeter les λ i par une extrapolation exponentielle (ou une extrapolation linéaire des log(λ k 1)), puis on pose λ = k n λ k Mais mieux vaut faire attention, en particulier s il y a des valeurs aberrantes. Ici, cette méthode prévoit de rajouter 0, 07% de charge par rapport à la prédiction faite par les méthodes classiques, en supposant la première année close De l incertitude sur R i et R L incertitude est ici quantifiée à l aide de l erreur quadratique moyenne, ( mse( R ] ) 2 i ) = mse(ĉi,n C i,n i ) = mse(ĉi,n) = E [Ĉi,n C i,n H n. En utilisant l expression on peut réécrire le mse sous la forme E([X x] 2 ) = Var(X) + [E(X) x] 2, [ Ĉi,n] 2 mse(ĉi,n) = Var(Ĉi,n H n ) + E(Ĉi,n H n ), où l on a un terme d erreur de modèle, et un terme d erreur d estimation. soit Pour le premier terme, Var(Ĉi,n H n ) = E(Var(Ĉi,n F i,n i )) + Var(E(Ĉi,n F i,n i )) Var(Ĉi,n H n ) = E(Ĉi, F i,n i ) σ 2 + Var(Ĉi, F i,n i ) λ 2

14 14 Chapitre 10 d où, en itérant sur le dernier terme, Var(Ĉi,n H n ) = E(Ĉi, F i,n i ) σ 2 [ ] + E(Ĉi,n 2 F i,n i ) σn Z 2 + Var(Ĉi,n 2 F i,n i ) λ 2 n 2 λ 2 etc. On arrive, en itérant jusqu à n i (car C i,n i est observé), à la relation Var(Ĉi,n H n ) = k=n i [λ n i λ k 1 C i,n i ] σ 2 kλ 2 k+1 λ 2 en utilisant le fait que pour n i < k < n, C i,k = λ n i λ k 1 C i,n i. Pour le second terme, E(C i,n H n ) = E (E (C i,n F i,n i )) = E (λ C i, F i,n i ) = λ E (C i, F i,n i ), ce qui donne, par itérations successives, E(C i,n H n ) = λ n i λ n i+1 λ C i,n i. Aussi, [ ] 2 [ E(Ĉi,n H n ) Ĉi,n = C 2 i,n i λ n i λ λ n i λ ] 2. σ 2 k Pour estimer le premier terme, on remplace simplement λ k par λ k et σk 2 par, de telle sorte que Var(Ĉi,n H n ) = k=n i [ λn i λ k 1 C i,n i ] σ 2 k λ 2 k+1 λ 2 ce qui se réécrit encore, en se basant sur l estimation de la charge ultime (et plus sur la dernière valeur observée) Var(Ĉi,n H n ) = Ĉ2 i,n k=n i σ 2 k / λ 2 k Ĉ i,k. Pour le second terme, ça se complique un peu, car on ne peut pas simplement remplacer λ k par son estimateur. On va alors réécrire [λ n i λ λ n i λ ] sous la forme d une somme, [λ n i λ λ n i λ ] = k=n i S k

15 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 15 où S k = λ n i λ k 1 [λ k λ k ]λ k+1 λ, ce qui permet d écrire le carré de la somme En notant que on en déduit que k=n i S 2 k + 2 j<k S j S k. E([λ k λ k ] 2 H k ) = Var( λ k H k ) = E(S 2 k H k ) = λ n i λ k 1 σ 2 k σk 2 n k j=1 C, j,k n k j=1 C λ k+1 λ. j,k Et en revanche, pour j < k, E(S j S k H k ) = 0. Aussi, un estimateur pour le second terme peut être λ n i λ On en déduit le résultat suivant : k=n i k=n i σ k 2/ λ 2 k n k j=1 C. j,k Proposition 10.2 L erreur quadratique moyenne du montant de provision mse( R i ), pour une année de survenance i, peut être estimé par ( ) mse( R σ 2 i ) = Ĉ2 k 1 1 i,n + λ 2 k Ĉ n k i,k j=1 C. j,k Toutefois, une compagnie doit au minimum provisionner pour la branche d activité, et par par année. Il faut ensuite calculer le mse pour R = R R n. En fait, on notera que ] 2 mse( R) n n = E R i R i H n i=2 i=2 soit ( n ) [ ( mse( R) n ) ] 2 n = Var C i,n H n + E C i,n H n Ĉ i,n i=2 i=2 i=2 Comme on suppose que les années de survenance sont indépendantes, le premier terme se simplifie, ( n ) n Var C i,n H n = Var (C i,n H n ) i=2 i=2

16 16 Chapitre 10 (dont les terms sous le signe sommee ont été calculés auparavant). Pour le second terme, il peut être réécrit [ n ] 2 soit i=2 E (C i,n H n ) Ĉi,n n [E (C i,n H n ) Ĉi,n] [E (C j,n H n ) Ĉj,n]. i,j=2 En utilisant les notations précédantes, notons que [E (C i,n H n ) Ĉi,n] [E (C j,n H n ) Ĉj,n] = [C i,n i F i ] [C j,n j F j ] ce qui permet de réécrire l erreur quadratique moyenne pour R. En réutilise alors l astuce précédante pour estimer F i F j. Proposition 10.3 L erreur quadratique moyenne du montant de provision mse( R), pour l ensemble des années de survenance, peut être estimé par mse( R) = n mse( R i ) + 2 i=2 2 i<j n Ĉ i,n Ĉ j,n k=n i σ k 2/ λ 2 k n k l=1 C. l,k Cette vision est parfois appelée «vision à l ultime» de l incertitude relative au montant de provision. Exemple 10.1 Sur le triangle de paiements 10.2, mse( R) = 79.30, alors que mse( R n ) = 68.45, mse( R ) = 31.3 ou mse( R n 2 ) = L incertitude à un an de Merz & Wüthrich Pour comprendre la notion d incertitude à un an, plaçons nous un an en arrière. A la fin de l année n 1, nous disposions du triangle sans la dernière diagonale, que l on avait alors complété par la méthode Chain Ladder (Table ). Si l on ne s intéresse qu aux années antérieures, i = 0,, n 1, à la fin de l année n, nous avions obtenu un triangle avec une diagonale supplémentaire que l on avait alors complété par la méthode Chain Ladder (Table ). A la fin de l année, le montant de provisions constitué était de 2114, 61, pour ces n 1 premières années. Au final, on pensait payer 27513, 61 (toutes années confondues). A la fin de l année n, la charge totale était revue à la hausse, passant à 27697, 33. Cette augmentation de 183, 72 correspond à un «mali». C est l incertitude associée à cette quantité qui est aujourd hui demandé dans le cadre des changements des normes comptables imposées par Solvabilité II.

17 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 17 Table 10.7 Triangle des paiements cumulés sur les années antérieures, C = (C i,j ) i+j,i avec les projection future Ĉ = (Ĉi,j) i+j> Table 10.8 Triangle des paiements cumulés sur les années antérieures, C = (C i,j ) i+j n,i avec les projection future Ĉ = (Ĉi,j) i+j>n Si on souhaite formaliser le calcul que l on vient d effectuer, il convient d introduire dans les notations la date à laquelle est faite l estimation. Par exemple, on distinguera λ n j = n i 1 n i i=0 C i,j+1 n+1 i=0 n i 1 et λ j = C i,j+1 n i i=0 C i,j i=0 C i,j qui sont les facteurs de transitions obtenus l année n et l année n+1. La section précédante permet de monter que E( λ n j H n ) = λ j et E( λ n+1 j H n+1 ) = λ j. Sauf qu ici, on se place toujours à la date n. Il convient alors de calculer H n ). Notons que E( λ n+1 j n i λ n+1 i=0 j = C i,j+1 n i i=0 C = i,j soit simplement n i i=0 C i,j+1 S n+1 = j i i=0 C i,j+1 S n+1 j + C n j,j+1 S n+1 j λ n+1 j = Sn j λ n j S n+1 j + C n j,j+1 S n+1. j

18 18 Chapitre 10 Lemme 10.1 Sous les hypothèses du modèles de Mack, E( λ n+1 j H n ) = Sn j S n+1 j On en déduit en particulier que E(Ĉn+1 i,j H n ) = C i,n i λ n i λ n C n j,n j + λ j S n+1. j j 1 k=n i+1 ( λn+1 ) E k H n. En reprenant les notations de (15), on peut étudier la variation du boni/mali d une année sur l autre, c est à dire du changement dans la prédiction de la charge totale, entre deux années. Pour cela, on introduit le concept suivant Définition 10.1 Le «claims development result» CDR i (n + 1), pour l année de survenance i, entre les dates n et n + 1 est CDR i (n + 1) = E(R n i H n ) [ Y i,n i+1 + E(R n+1 i H n+1 ) ], où Y i,n i+1 correspond à l incrément de paiements, Y i,n i+1 = C i,n i+1 C i,n i. On notera que CDR i (n+1) est une martingale H n+1 -mesurable, et que l on peut réécrire CDR i (n + 1) = E(C i,n H n ) E(C i,n H n+1 ). De plus, E (CDR i (n + 1) H n ) peut s écrire ou encore C i,n i C i,n i j=n i λ n j λ n i 1 λ n i λ n n i j=n i+1 j=n i+1 [ ( S n j S n+1 j 1 + (λ j λ n j ) λ n j + λ j Cn j,j S n+1 j ] C n j,j λ n j. Sn+1 j ), A l aide de ces relations, on peut calculer, puis estimer, l erreur quadratique moyenne de prédiction conditionnel du boni-mali (ou du CDR avec ces notations), par année de survenance i pour commencer, puis en aggrégeant toutes les années. Pour l erreur de modélisation, on peut noter que Var(CDR i (n + 1) D n ) = E(C i,n D n ) 2 σ2 n i /λ2 n i C i,n i.

19 MODÈLES STATISTIQUES DU RISQUE EN ASSURANCE 19 Pour l erreur d estimation, où Pour l estimation de ces deux termes, on considère naturellement Var(CDR i (n + 1) D n ) = (Ĉn i,n) 2 [ σn n i ]2 /[ λ n n i ]2 C i,n i, [ σ n i] n 2 = 1 n j ( ) 2 Ci,j C i,j 1 n j C λ n j 1 i,j 1 j=n i i=0 En revanche pour le second terme, c est un peu plus compliqué. On peut toutefois écrire ( ) Ci,n ie 2 S n λ n j j λ n i S n+1 λ n j + λ j 2 Cn j,j j S n+1 H n. j j=n i+1 Un peu de calcul permet alors d obtenir [ ] [ σ 2 j /λ 2 j j=n i λ 2 j j=n i S n j j=n i+1 α 2 j σ 2 j /λ2 j S n j + 1 ] 2 j=n i+1 [ α j σ 2 j /λ2 j S n j + 1] où α j = Sn j S n+1 j. On arrive finalement à la propriété suivante Lemme 10.2 Sous les hypothèses du modèle de Mack, msepc (CDR i (t)) = Ĉ2 i,n ( Γi,n + ) i,n où et Γ i,n = i,n = σ 2 n i+1 λ 2 n i+1 Sn+1 n i+1 + ( ) σ 2 n i λ 2 n i+1 C i,n i+1 j=n i+2 j=n i+2 ( ( 1 + C n j+1,j S n+1 j σ 2 j ) 2 σ 2 j λ 2 j Sn j λ 2 j [Sn+1 j ] C 2 n j+1,j ) 1. (15) ont alors approché ce terme par σ 2 n i+1 Γ i,n λ 2 n i+1 C + i,n i+1 j=n i+2 ( C n j+1,j S n+1 j ) 2 σ 2 j λ 2 j C n j+1,j

20 20 Chapitre 10 en faisant tout simplement un développement de la forme (1+u i ) 1+ u i, mais qui n est valide que si u i est petit, soit ici σ j 2 λ 2 j << C n j+1,j. Si l on regarde finalement ce qui se passe toutes années de survenance confondues, (15) ont obtenu une formule fermée. Sur le triangle 10.1, on obtient les grandeurs données dans la Table avec respectivement l incertitude à l ultime, et l incertitude (avec ou sans l approximation discutée dans le paragraphe précédant). Table 10.9 Erreurs quadratiques moyenne de prévision conditionnelles, à l ultime ou sur les boni-mali (CDR), avec la formule exacte, et la forme approchée cumul Mack Merz-Wüthrich (app.) Merz-Wüthrich (ex.) Régression et modèles factoriels Dans cette section, nous nous éloignerons des modèles récursifs inspirés de la méthode Chain Ladder, et nous reviendrons sur des classes de modèles très utilisés dans les années 70, appelés «modèles à facteurs», remis au goût du jour en proposant une lecture économétrique de ces modèles, permettant ainsi d obtenir des intervalles de confiance des différentes grandeurs Les modèles à facteurs, un introduction historique Avant de présenter l utilisation des modèles de régression, on peut commencer par évoquer des modèles plus anciens. Par exemple (20) supposait que Y i,j = r j µ i+j, pour tout i, j, autrement dit, on suppose qu il existe un effet colonne de cadence de paiement (paramètre r j ), et un effet diagonal, que (20) interprète comme un facteur d inflation (paramètre µ i+j ). Ce modèle peut se réécrire, dès lors qu il n y a pas d incrément négatif, log Y i,j = α i + γ i+j

Risque et assurance. Arthur Charpentier. Université Rennes 1. arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.

Risque et assurance. Arthur Charpentier. Université Rennes 1. arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free. Risque et assurance Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Journées d Études Statistique, Luminy, Novembre 2010. 1 1 Prise en compte

Plus en détail

Arthur Charpentier. Université Rennes I et École polytechnique. Laurent Devineau. Milliman. Jean-Marie Nessi. Institut des actuaires

Arthur Charpentier. Université Rennes I et École polytechnique. Laurent Devineau. Milliman. Jean-Marie Nessi. Institut des actuaires MESURER LE RISQUE LORS DU CALCUL DES PROVISIONS POUR SINISTRES À PAYER Arthur Charpentier Université Rennes I et École polytechnique Laurent Devineau Milliman Jean-Marie Nessi Institut des actuaires P

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Le métier d actuaire IARD

Le métier d actuaire IARD JJ Mois Année Le métier d actuaire IARD Journées Actuarielles de Strasbourg 6-7 octobre 2010 PLAN Présentation de l assurance non vie Le rôle de l actuaire IARD La tarification des contrats L évaluation

Plus en détail

assurance Février 2012

assurance Février 2012 Modèles fréquence coût : Construire un générateur de scénarios Quelles perspectives économiques d évolution en? assurance Version 0.7 Version 1.2 Mars 2014 Février 2012 Frédéric PLANCHET frederic@planchet.net

Plus en détail

Estimation de l erreur de prédiction dans le cas de l utilisation d une combinaison de méthodes pour le calcul de provisions en assurance IARD

Estimation de l erreur de prédiction dans le cas de l utilisation d une combinaison de méthodes pour le calcul de provisions en assurance IARD EURIA - Euro Institute of Actuarial Studies Bureau d études Sous la direction de Aude Goichon (KPMG) Franck Vermet (UBO) Françoise Pène (UBO) Estimation de l erreur de prédiction dans le cas de l utilisation

Plus en détail

Introduction à l'actuariat

Introduction à l'actuariat Introduction à l'actuariat 3A MMEFI M2 AMSE M2 IMSA Renaud Bourlès Introduction (1) Spécicité de l'assurance : cycle de production inversé Contrat d'assurance = promesse Importance de la prévision Importance

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST GUIDE PRATIQUE pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST Edition du 16 décembre 2011 But Le présent guide pratique s entend comme une aide pour

Plus en détail

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE Gestion du niveau de la franchise d un contrat avec bonus-malus Pierre THEROND & Stéphane BONCHE SOMMAIRE 1. Réduction de franchise en l absence de système bonus-malus A - Bonnes propriétés du modèle collectif

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

cadre du pilier 1 assurance Février 2012

cadre du pilier 1 assurance Février 2012 Mortalité, longévité, pandémie : Construire un générateur de scénarios Choix des économiques hypothèses en dans le assurance cadre du pilier 1 Version 1.2 Version 1.0 Septembre 2012 Février 2012 Frédéric

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Production des Services d Assurance non-vie selon le SCN 2008

Production des Services d Assurance non-vie selon le SCN 2008 REPUBLIQUE DU CAMEROUN Paix - Travail Patrie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Fatherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------

Plus en détail

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains. Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY

Plus en détail

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics 3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics Résumé-Abstracts Organization: Ghislain Léveillé Co-organization:

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Mesure et gestion des risques d assurance

Mesure et gestion des risques d assurance Mesure et gestion des risques d assurance Analyse critique des futurs référentiels prudentiel et d information financière Congrès annuel de l Institut des Actuaires 26 juin 2008 Pierre THEROND ptherond@winter-associes.fr

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Segmentation en assurance et problématiques de gestion des risques associées en mortalité

Segmentation en assurance et problématiques de gestion des risques associées en mortalité Segmentation en assurance et problématiques de gestion des risques associées en mortalité 13 septembre 2013, version 1.0 Aymric Kamega, Actuaire aymric.kamega@univ-brest.fr www.euria.univ-brest.fr Sommaire

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

LES PROVISIONS TECHNIQUES : UNE APPROCHE PAR SIMULATIONS

LES PROVISIONS TECHNIQUES : UNE APPROCHE PAR SIMULATIONS LES PROVISIONS TECHNIQUES : UNE APPROCHE PAR SIMULATIONS Yannick REGAZZONI Actuaire I.S.F.A. Jérôme SANDER Le Foyer Assurance, Luxembourg Le but de cet article est de proposer une méthode d'estimation

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus. JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

BIG DATA : PASSER D UNE ANALYSE DE CORRÉLATION

BIG DATA : PASSER D UNE ANALYSE DE CORRÉLATION BIG DATA : PASSER D UNE ANALYSE DE CORRÉLATION À UNE INTERPRÉTATION CAUSALE Arthur Charpentier Professeur d actuariat à l Université du Québec, Montréal Amadou Diogo Barry Chercheur à l Institut de santé

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Compte rendu de l examen par le BSIF des coefficients du risque d assurance

Compte rendu de l examen par le BSIF des coefficients du risque d assurance Compte rendu de l examen par le BSIF des coefficients du risque d assurance Le présent document précise encore davantage les données et la méthodologie utilisées par le BSIF pour calculer les marges pour

Plus en détail

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé

TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé TARIFICATION EN ASSURANCE COMPLEMENTAIRE SANTE: il était une fois, un statisticien, un actuaire, un économiste de la santé Plan de l intervention 1 2 3 Généralités sur le fonctionnement de l assurance

Plus en détail

Le modèle de régression linéaire

Le modèle de régression linéaire Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le

Plus en détail

Quantitative Impact Study 5. Résultats & Conclusions. Luxembourg - 29 avril 2011

Quantitative Impact Study 5. Résultats & Conclusions. Luxembourg - 29 avril 2011 Quantitative Impact Study 5 Résultats & Conclusions Luxembourg - 29 avril 2011 1 Participation Principales difficultés / divergences Ratios de solvabilité Provisions techniques Fonds propres SCR : Capital

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

des compagnies d assurance : évolutions récentes

des compagnies d assurance : évolutions récentes Les Contrôle normes IFRS de la solvabilité en assurance des compagnies d assurance : évolutions récentes - DIAF Hanoi, le 28 février 2005 Pierre THEROND Consultant JWA - Actuaires & chargé de cours à l

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Une étude de différentes analyses réalisées par le BIT

Une étude de différentes analyses réalisées par le BIT Association internationale de la sécurité sociale Quinzième Conférence internationale des actuaires et statisticiens de la sécurité sociale Helsinki, Finlande, 23-25 mai 2007 Comparaison des hypothèses

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Optimisation de l agrégation d un portefeuille de contrat d assurance vie

Optimisation de l agrégation d un portefeuille de contrat d assurance vie Optimisation de l agrégation d un portefeuille de contrat d assurance vie Pierre-Olivier Goffard 1 1 AXA France, Université de Aix-Marseille. pierreolivier.goffard@axa.fr Résumé. Une méthode d agrégation

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Table des matières: Guidelines Fonds de Pensions

Table des matières: Guidelines Fonds de Pensions Table des matières: Guidelines Fonds de Pensions TABLE DES MATIERES... 1 INTRODUCTION... 2 1 FINANCEMENT ET FINANCEMENT MINIMUM... 3 1.1 FINANCEMENT... 3 1.2 FINANCEMENT DE PLAN... 3 1.3 FINANCEMENT MÉTHODE

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail