Collège F. Joliot Currie Lallaing ALGEBRE

Dimension: px
Commencer à balayer dès la page:

Download "Collège F. Joliot Currie Lallaing ALGEBRE"

Transcription

1 ALGEBRE N1 : Les nombres entiers et décimaux (6 ème ) N2 : Fractions (6 ème ) N3 : Fractions (5 ème ) N4 : Fractions (4 ème ) N5 : Repérage (6 ème ) N6 : Nombres relatifs et repérage (5 ème ) N7 : Addition, soustraction et multiplication (6 ème ) N8 : Division (6 ème ) N9 : Enchainement d opérations (5 ème ) N10 : Addition et soustraction de nombres relatifs (5 ème ) N11 : Multiplication et division de nombres relatifs (4 ème ) N12 : Proportionnalité et pourcentage (6 ème ) N13 : Tableau de proportionnalité (5 ème ) N14 : Proportionnalité et produit en croix (4 ème ) N15 : Fonctions affines et linéaires (3 ème ) N16 : Série statistique et graphique (6 ème ) N17 : Statistiques, fréquences et graphiques (5 ème ) N18 : Moyennes (4 ème ) N19 : Médiane, quartile et étendue (3 ème ) N20 : Calcul littéral et équations (5 ème ) N21 : Calcul littéral : développer et réduire (4 ème ) N22 : Identités remarquables (3 ème ) N23 : Puissances (4 ème ) N24 : Résolution d équations (4 ème ) N25 : Factorisation (3 ème ) N26 : Equations diverses et inéquations (3 ème ) N27 : Système (3 ème ) N28 : Généralités sur les fonctions (3 ème ) N29 : La racine carrée (3 ème ) N30 : Expérience et probabilité (3 ème ) N31 : Arithmétiques : le PGCD (3 ème ) N32 : Grandeurs et unités (3 ème ) N33 : Conversions (5 ème )

2 6ème LES NOMBRES ENTIERS ET LES NOMBRES DECIMAUX N1 A) LA NUMERATION : B) DECOMPOSITION D UN NOMBRE : 1823,45 = (1 1000) + (8 100) + (2 10) + (3 1) + (4 0,1) + (5 0,01) 1 millier 8 centaines 2 dizaines 3 unités 4 dixièmes 5 centièmes C) NOMBRES EN CHIFFRE ET NOMBRES EN LETTRES : 1823,45 se lit «Mille huit cent vingt trois unités et quarante cinq centièmes» 300 s écrit «trois cents» mais 301 s écrit «trois cent un» 80 s écrit «quatre-vingts» mais 81 s écrit «quatre-vingt un» 4000 s écrit «quatre mille» D) LES ZEROS INUTILES 1) Règle : Dans un nombre, les zéros inutiles sont : Ceux à gauche de la partie entière, sauf celui des unités. Ceux à droite de la partie décimale. 2) Exemples : , = , ,00120 = 0,012 E) COMPARAISON 1) Règle : Pour comparer des nombres entre eux, il faut d abord comparer leur partie entière, puis leurs parties décimales si nécessaire, en vérifiant qu elles ont bien le même nombre de chiffres. 2) Exemples : Comparer 4,2 et 4,065 4,2=4,200 donc 4,2 > 4,065 Ranger dans l ordre croissant : 1,23 ; 1,045 ; 1,1254 ; 2,003 1,2300 ; 1,0450 ; 1,1254 ; 2,0030 donc 1,045 < 1,1254 < 1,23 < 2,003 F) CONVERSIONS km hm dam m dm cm mm kg hg dag g dg cg mg hl dal L dl cl ml Convertir revient à placer un nombre dans un tableau de conversion et à placer correctement la virgule. Exemples : Convertir 4,56 m en cm. On place ce nombre dans le tableau, puis la virgule dans la colonne des centimètres. 4,56m = 456,0 cm = 456 cm De la même façon : 54,2 dg = 0,0542 hg = 5420 mg 2L = 0,2 dal = 200 cl

3 6ème FRACTIONS N2 A) DEFINITION : Quand on partage une unité en parties égales et que l on prend quelques parts, on obtient une fraction. B) VOCABULAIRE : 5 se lit «cinq huitièmes» ou «cinq sur huit» se lit aussi «un quart» ; 1 3 se lit aussi «un tiers» ; 1 se lit aussi «un demi». 2 Dans la fraction a, le nombre a est le numérateur et le nombre b est le dénominateur. b Une fraction dont le dénominateur est 10 ; 100 ; 1000 etc s appelle une fraction décimale. Remarque : Le dénominateur est toujours différent de 0. C) FRACTIONS EGALES : On ne change pas la valeur d une fraction en multipliant ou en divisant le numérateur et le dénominateur par un même nombre différent de Exemples : = = Simplifier une fraction, c est rendre le numérateur et le dénominateur entiers les plus petits possibles. Exemples : :2 = 6 15 :3 = 2 5 ou = = 6 15 = = 2 5 :2 :3 D) DECOMPOSITION FRACTIONNAIRE Tous les nombres décimaux se décomposent en une somme de fractions. Exemples : 8,254 = E) ECRITURE FRACTIONNAIRE : Tous les nombres décimaux peuvent s écrire sous la forme d une fraction. Exemples : 8,254 = = =

4 5ème FRACTIONS N3 A) QU EST- CE QU UNE FRACTION? : 1) Une proportion : 3, c est 3 parties d une unité coupée en 5 parties égales. 5 2) Une opération : 3, c est aussi le nombre par lequel je multiplie 5 pour obtenir 3, c'est-à-dire le nombre manquant dans le 5 calcul 5 = est donc aussi le résultat de la division de 3 par 5. B) DIVISER PAR UN NOMBRE DECIMAL : On ne change pas le résultat d une division en multipliant ou divisant le dividende et le diviseur par un même nombre différent de 0. Exemples : 2 40,5 : 4,5 = 40,5 4,5 = , = , ,416 : 1,24 = 10, , = 1 041,6 = 8, C) COMPARAISON : 1) Règle : Pour comparer 2 fractions, il faut qu elles aient le même dénominateur. On compare alors leur numérateur < 5 6 Exemples : Comparons 2 3 et 5 = 6 2 2) Remarque : Dans certains cas, il est plus simple de comparer la fraction avec le chiffre Par exemple, < 1 car le numérateur est inférieur au dénominateur > 1 car le numérateur est supérieur au dénominateur. 5 On en déduit alors que < 8 5

5 D) ADDITION ET SOUSTRACTION : 1) Règle : Pour additionner (ou soustraire) deux fractions, il faut qu elles aient le même dénominateur. On additionne (ou soustrait) alors les numérateurs et on garde le dénominateur commun. 2) Exemples : = = = 6 = = = = - = = = = ) Problème : Jacques est très dépensier : chaque mois, il dépense la totalité de son argent de poche. Il en dépense 1/4 en sucreries, 1/3 en vêtements et le reste en jeux vidéo. Quelle fraction de son argent de poche est consacrée aux jeux vidéo? Il a déjà dépensé = = Il lu i reste donc = 12 = 7 12 E) MULTIPLICATION : 1) Règle : Pour multiplier des fractions, il faut multiplier les numérateurs entre eux et les dénominateurs entre eux. 2) Exe mples : = = = = = = ) Problème : Ma mère m a donné 1/3 d une plaque de chocolat. J en ai mangé les 3/5. a) Quelle fraction de la plaque entière ai-je mangé? = 5 15 :3 = :3 1 5 J ai donc mangé 1 de la plaque entière. 5 b) Sachant que la plaque pèse 200g, combien de grammes de chocolat ai-je mangé? = 200 = 40g. 5 J ai mangé 40 g de chocolat.

6 4ème FRACTIONS N4 A) LES SIGNES DANS UNE FRACTION : 1) Règle : -a b = a -b = - a -a b -b = a b 2) Exemples : -1-3 = = -4 5 B) PRODUIT DE PLUSIEURS FRACTIONS : A = A = A = A = A = A = avec a et b nombres relatifs, b 0 On simplifie les signes des fractions On détermine le signe du produit. Ici, il n y a qu un seul facteur négatif : le produit est donc négatif. On multiplie alors les parties numériques. On cherche à simplifier la fraction en cours de calcul, en décomposant si nécessaire les numérateurs et dénominateurs. On termine le calcul A = C) SOMME ET DIFFERENCE DE FRACTIONS : B = On simplifie les signes des fractions -6 B = B = B = (-5) B = B = 12 2 = 13 6 = On cherche un dénominateur commun aux 2 fractions. Le premier multiple commun de 4 et 6 est 12. On simplifie le résultat. D) DIVISER PAR UNE FRACTION : 1) Inverse d un nombre: Deux nombres non nuls sont inverses l un de l autre si leur produit est égal à 1. L inverse d un nombre x se note x -1 ou 1 x 2) Inverse d une fraction : L inverse d une fraction a b est la fraction b avec a et b nombres relatifs non nuls. a On note ( a b )-1 = b a 3) Règle : Diviser par une fraction, c est multiplier par son inverse. 4) Exemples : A = : B= = = A = A = B = 7 6 : 3 2 = = =

7 6ème REPERAGE N5 A) REPERAGE D UN POINT SUR UNE DEMI DROITE : Une demi-droite graduée est composée d une graduation et d une origine correspondant à la valeur 0. On repère chaque point de cette demi-droite par une valeur appelée abscisse de ce point. Ci-dessus, l abscisse de A est 1. On note A(1). De la même façon, on note B(3). B) CAS D UNE ABSCISSE FRACTIONNAIRE : Ci-dessus, chaque unité est divisée en trois parties égales. Il faut donc compter en tiers. Ainsi, l abscisse de A est 2 3.De même, on a B ( 10 3 ) et C( 14 3 ). Attention, cette fois chaque unité est divisée en 9 parties égales. Il faut donc compter en neuvièmes. Ainsi, A ( 4 9 ) B ( 8 9 ) et C ( 12 9 ). C) CAS D UNE ABSCISSE DECIMALE : Pour représenter les nombres décimaux sur une demi-droite, on utilise souvent du papier millimétré. Ci-dessus : A (3,8) et B (10,4) Ci-dessus : A (0,44) et B (1,13)

8 5ème NOMBRES RELATIFS ET REPERAGE N6 A) NOMBRES RELATIFS : 1) Définition: Un nombre relatif est composé : d un signe ( «+» ou «-» ) d une partie numérique 2) Exemple et utilisation: «Cet hiver, il fait très froid : la nuit, la température descend à -10 C, et le jour, il fait à peine +2 C.» - 10 est un nombre négatif +2 est un nombre positif Les nombres négatifs sont les nombres inférieurs à 0. Les nombres positifs sont les nombres supérieurs à 0. 3) Droite graduée : Une droite graduée est une droite munie : d une origine dont l abscisse est 0, d un sens positif, d une graduation. L abscisse de A est +2. On note A(+2) L abscisse de B est -3. On note B(-3) 4) Remarque : Le signe «+» est facultatif pour les nombres positifs : le nombre +2 peut s écrire simplement 2. (+ 5) et (-5) ont la même partie numérique mais des signes contraires : ils sont opposés. B) RANGER LES NOMBRES RELATIFS DANS L ORDRE CROISSANT : Pour ranger des nombres relatifs dans l ordre croissant, il suffit de les écrire dans le même ordre que celui de leur position sur la droite graduée de la gauche vers la droite. Ex : Rangeons -1,5 ; 0,5 ; 2 ; -5 dans l ordre croissant. donc -5 < -1,5 < 0,5 < 2 C) REPERE DU PLAN 1) Définition et vocabulaire: 2 droites graduées de même origine O forment un repère du plan. O est appelé origine du repère. Chaque point du plan est alors repéré par 2 nombres appelés coordonnées du point. Le premier nombre est l abscisse du point : c est la coordonnée lue sur la droite graduée horizontale. Le deuxième nombre est son ordonnée : c est la coordonnée lue sur la droite graduée verticale. 2) Exemples: Les coordonnées de A sont (+2 ; +1) +2 est l abscisse de A et +1 est son ordonnée. De la même manière, on a : B(-1 ; +2) C(0,5 ; -1) D(-2 ; -1,5)

9 6ème ADDITION, SOUSTRACTION ET MULTIPLICATION N7 A) SOMME, DIFFERENCE ET PRODUIT : a) Somme : La somme de deux termes est le résultat d une addition. 12,3 et 4,56 sont les termes de la somme 12,3 + 4,56 b) Différence : La différence de deux termes est le résultat d une soustraction. 1 2, 3 + 4, 5 1 6, , 2 4, 6 4, 6-1, 2 6 c) Produit : 3 5, 3 Le produit de deux facteurs est le résultat d une multiplication ,26 et 5,3 sont les facteurs du produit 1,26 5, , B) CALCUL MENTAL : a) Somme : Dans une somme de plusieurs termes, on peut changer l ordre des termes et les regrouper. Ex : 0,75 + 2,39 + 0,25 + 4,6 + 0,01 =0,75 + 0,25 + 2,39 + 0,01 + 4,6 = 1 + 2,4 + 4,6 = = 8 b) Produit : 1- Pour multiplier par 10, 100 ou 1000, on décale la virgule de 1, 2 ou 3 rangs vers la droite. Ex : 5, = 5300 Pour multiplier par 0,1 ; 0,01 ou 0,001, on décale la virgule de 1,2 ou 3 rangs vers la gauche. Ex : 4,75 0,1 = 0,475 2-Pour calculer un produit de facteurs se terminant par des zéros, on fait les calculs sans en tenir compte,puis on en rajoute autant qu il y en a à la fin des facteurs. Ex : = (on calcule 2 31 = 62, puis on rajoute 4 zéros) 3-Pour calculer un produit dont les facteurs sont des décimaux, on fait les calculs sans tenir compte de la virgule. On la rajoute ensuite en comptant le nombre de chiffres après la virgule dans les facteurs. Ex : 0,04 0,003 = 0,00012 (je calcule 3 4 = 12 et je place ma virgule pour avoir 5 chiffres après la virgule) 4- Dans un produit de plusieurs facteurs, on peut changer l ordre des facteurs et les regrouper. Ex : 2,5 0, =2,5 2 0, = = 25 4 = 100 C) PROBLEMES : Au supermarché, j achète 6 paquets de biscuits à 0,8 euros, 3 bouteilles de soda à 1,7euros et 3 paquets de bonbons à 2,9 euros le paquet. a) Donner un ordre de grandeur de la somme à payer. 0,8 euros 1 euro 1,7 euros 2 euros 2,9 euros 3 euros (6 1) + (3 2) + (3 3) = = 21 Je vais payer environ 21 euros b) Je paye avec un billet de 50 euros. Donner la valeur exacte de la monnaie rendue. (6 0,8) + (3 1,7) + (3 2,9) = 4,8 + 5,1 + 8,7 = 18,6 Je vais payer 18,6 euros ,6 = 31,4 On va me rendre 31,4 euros. 3

10 6ème DIVISIONS N8 A) DIVISION EUCLIDIENNE (ou division entière) : 1) Définitions : Donner le quotient et le reste de la division euclidienne de 56 par 5, c est répondre à la question : «Dans 56, il y a combien de fois 5? Combien reste-t-il?» Mathématiquement, on écrit : 56 = ( 11 5 ) + 1 Le quotient est 11. Le reste est 1. De manière générale : Donner le quotient et le reste de la division euclidienne du nombre entier a par le nombre entier b, c est répondre à la question : «Dans le nombre a, il y a combien de fois le nombre b? Combien reste-t-il?» a est appelé le dividende et b est appelé le diviseur. 2) Exemples de division euclidienne posée : ) Critère de divisibilité. Un nombre entier a est divisible par un nombre entier b, si le reste de la division euclidienne de a par b est 0. Autrement dit, «le nombre a est dans la table de multiplication du nombre b». Quelques cas particuliers : Un nombre entier est divisible par 2 si son chiffre des unités est pair. Un nombre entier est divisible par 3 si la somme de ses chiffres est divisible par 3. Un nombre entier est divisible par 4 si le nombre composé par ses deux derniers chiffres est divisible par 4. Un nombre entier est divisible par 5 si son chiffre des unités est 0 ou 5. Un nombre entier est divisible par 9 si la somme de ses chiffres est divisible par 3. Un nombre entier est divisible par 10 si son chiffre des unités est 0. B) DIVISION DECIMALE : - 1) Définition : Donner le quotient de la division décimale de 10 par 4, c est compléter l opération à trou «10 = 4». Réponse : 10 = 4 2,5 Mathématiquement, on écrit : 10 4 = 2,5 1 4, , 4 9 2) Exemples de division décimale posée : 3) Résultat approché , , , , Quand la division «ne s arrête jamais», on est obligé de donner un résultat approché. On remarque que le reste sera toujours 4 : on n obtiendra jamais 0! On va donc écrire ,17 C est un résultat approché au centième.

11 5ème ENCHAINEMENTS D OPERATIONS N9 A) AVEC DES PARENTHESES : 1) Règle : Dans une suite d opérations, les calculs entre parenthèses sont prioritaires. 2) Exemple : [ 2 (5 + 3) ] + [4 (2+1) ] = [ 2 8 ] + [ 4 3 ] = = 17 3) Remarque : Quand il n y a pas de signe entre un nombre et une parenthèse, alors c est obligatoirement. 4( 5 + 6) = 4 (5+6) = 4 11 = 44 B) SANS PARENTHESE : 1) Quand il n y a que des sommes ou des produits. On peut changer librement la place des nombres et commencer par le calcul que l on veut. Exemple : 5, , , ,9 = 5,5 + 0, ,1 + 0, = = = 30 2) Quand il y a plusieurs opérations différentes. On calcule toujours de la gauche vers la droite en commençant par les multiplications et les divisions. Exemples : : 2 = = = = 18 3) Nommer un calcul : Pour nommer une expression, il faut d abord regarder la dernière opération à effectuer. Exemple : (5-3) C est la SOMME de «2 4» et de «5-3» C est donc la SOMME du produit de 2 par 4 et de la différence de 5 et de 3. C) AVEC UNE BARRE DE FRACTION : 1) Règle : Une barre de fraction dans un calcul signifie que l on divise tout ce qui est au numérateur par tout ce qui est au dénominateur. Il ne faut donc pas oublier de rajouter des parenthèses. 2) Exemple : = 4 + (25 1) : ( 2 4) = : 8 = = 7 D) DEVELOPPER ET FACTORISER : 1) Règle : k ( a + b) = k a + k b k ( a b) = k a k b 2) Exemples : Développer, c est transformer un produit en somme ou différence = 8 (100 1) = = = 792 Factoriser, c est transformer une somme ou différence en produit. 7 4, ,5 = 7 (4,5 + 5,5) = 7 10 = 70

12 5ème ADDITIONS ET SOUSTRACTIONS DE NOMBRES RELATIFS N10 A) SOMME DE 2 NOMBRES RELATIFS : 1) Somme de 2 nombres de même signe: Le signe de cette somme est ce signe commun. La partie numérique de cette somme est la somme des parties numériques. Ex : (+3) + (+5) = (+8) car (+3) et (+5) sont 2 nombres positifs, et la partie numérique est ( -4) + (-6) = (-10) car (-4) et (-6) sont 2 nombres négatifs, et la partie numérique est ) Somme de 2 nombres de signes différents: Le signe de cette somme est celui du nombre qui a la plus grande partie numérique. La partie numérique de cette somme est la différence entre les 2 parties numériques. Ex : (+5) + (-12) = -7 car (-12) a la partie numérique la plus grande et 12-5 = 7 (+7,5) + (-4) = (+3,5) car (+7,5) a la partie numérique la plus grande et 7,5-4 = 3,5 B) DIFFERENCE DE 2 NOMBRES RELATIFS : 1) Règle: Soustraire un nombre, c est additionner son opposé. 2) Exemples: (+5) (+10) = (+5) + (-10) = -5 (-4 ) (-3) = (-4) + (+3) = -1 (-8) (+4) = (-8) + (-4) = -12 3) Distance entre 2 points sur une droite graduée : Pour calculer la distance séparant 2 points sur une droite graduée, il suffit de calculer la différence entre la plus grande abscisse et la plus petite abscisse. AB = (+21) (-33) = (+21) + (+33) = 54 unités C) ENCHAINEMENT DE CALCULS : 1) Première méthode : Calculer de gauche à droite après avoir transformé toutes les soustractions = 4 + (-5) (-7) + 8 = (-1) (-7) + 8 = 5 + (-7) + 8 = (-2) + 8 = 6 2) Deuxième méthode : Rassembler les nombres positifs et les négatifs après avoir transformé toutes les soustractions = 4 + (-5) (-7) + 8 = (-5) + (-7) = 18 + (-12) = 6 3) Remarque : On peut faire mentalement les transformations des soustractions et gagner du temps = = 6

13 4ème MULTIPLICATION ET DIVISION DE NOMBRES RELATIFS N11 A) PRODUIT DE NOMBRES RELATIFS : 1) Règle des signes: Le produit de deux nombres de même signe est positif. Le produit de deux nombres de signes différents est positif. Il suffit alors de multiplier les parties numériques. 2) Exemple: 5 (-4) = -20 (-3) (-6) = ) Attention : Il ne faut pas confondre (-2) + 3 qui est positif et (-2) 3 qui est négatif. Ce n est pas la même règle des signes! B) QUOTIENT DE 2 NOMBRES RELATIFS : 1) Règle des signes: C est la même règle des signes que pour la multiplication. Il suffit alors de diviser les parties numériques. 2) Exemples: (-10) : (-2) = +5 (-9) : 3 = : (-4) = -3 C) ENCHAINEMENT DE CALCULS : 1) Enchaînement de produits: A = (-2) 3 (-5) (-0,01) 8 (-100) (-4) On déterminee le signe du produit : Si le nombre de facteurs négatifs est pair, le produit est positif. Si le nombre de facteurs négatifs est impair, le produit est négatif. Ici, il y a 5 facteurs négatifs, donc le produit sera négatif. A = , Il n y a plus qu à multiplier les parties numériques, en les regroupant astucieusement. A = , A = A = = ) Priorités opératoires : Les priorités sont les mêmes qu avec les nombres positifs. B = = = = = [ -2 + (-3) (-4) ] 6 + (-18) : 3 [ ] 6 + (-6) (-6) (-6)

14 6ème PROPORTIONNALITE ET POURCENTAGE N12 A) PROPORTIONNALITE : 1) Définition et exemple : Des chocolats sont vendus par paquet de 20 au prix de 3. Craignant l indigestion, je ne veux en acheter que 4. Combien vais-je payer? On cherche d abord le prix de 1 chocolat: 3 : 20 = 0,15 Puis je multiplie par le nombre de chocolats : 0,15 11 = 1,65 Cette situation peut se résumer sous la forme du tableau suivant : On dit que ce tableau représente une situation de proportionnalité ; c'est-à-dire que pour passer d une ligne à l autre, d une colonne à une autre, on multiplie ou on divise les valeurs par un même nombre. Ainsi, si je veux savoir combien de chocolat je peux acheter avec 15, il suffit d après mon tableau de calculer 15 : 0,15 = 100. Je peux donc m acheter 100 chocolats. 2) Exemple de situation non proportionnelle : Tous les problèmes ne peuvent pas se résoudre avec la proportionnalité. Par exemple : B) PROPORTION ET POURCENTAGE : 1) Proportion : Si je mesure 1,80m à 20 ans, à 40 ans, je ne vais pas mesurer 1,80 2 = 3,60m et à 60 ans 1,80 3=5,40m!! Ce n est pas une situation proportionnelle. Un gâteau pèse 400g. J en mange les 3. Combien de grammes de gâteau ai-je mangé? 4 Manger les trois quarts signifie que j ai coupé mon gâteau en 4 parts égales (qui représente chacune 1 4 du gâteau) et j en ai mangées 3. C est une situation de proportionnalité. Je dois donc faire les calculs suivants : 400 g : 4 = 100 g donc 1 de gâteau pèse 100 g g 3 = 300 g donc j en ai mangé 300 g 2) Pourcentage : Un fromage de 250g contient 45% de matière grasse. Combien de grammes de matière grasse contient-il? 45% signifie que le fromage contient 45 grammes de graisse pour 100 grammes de fromage. C est une situation de proportionnalité : C) MULTIPLIER PAR UNE FRACTION : 1) Règles : a b = a : b par exemple 1 2 On effectue alors le calcul suivant : 45 : 100 = 0,45 g pour 1 g de fromage 0, = 112,5 g pour 250g de fromage OU en une seule ligne de calcul (45 : 100) 250 = 112,5 g = 1:2 = 0,5 c a b = c (a : b) = (c a) : b = (c : b) a par exemple 4 3 = (4 3) : 8 = 12 : 8 = 2,25 8 2) Prendre une fraction de quelque chose Pour prendre les 3 4 d un gâteau de 400g, il faut calculer (400 : 4) 3. Ce calcul peut s écrire Pour prendre 45% d un fromage de 250g, il faut calculer 250 (45 :100). Ce calcul peut s écrire Pour prendre une proportion d une quantité, il faut multiplier cette quantité par la fraction correspondante.

15 5ème TABLEAU DE PROPORTIONNALITE N13 A) TABLEAU DE PROPORTIONNALITE 1) Définition : Un tableau de proportionnalité est un tableau représentant une situation de proportionnalité. Cela signifie que tous les nombres de la 2 ème ligne du tableau s obtiennent à partir des nombres de la 1 ère ligne grâce à une multiplication ou une division par un même nombre (différent de 0). Ce nombre est un coefficient de proportionnalité. Exemples : Ce tableau est proportionnel car 3 1,5=4,5 2 1,5=3 5 1,5=7,5 6 1,5=9 8 1,5=12 1,5 est un coefficient de proportionnalité Ce tableau n est pas proportionnel car 3 3=9 6 3=18 MAIS Il n y a pas de coefficient de proportionnalité. 2) Calculer un coefficient de proportionnalité : Pour calculer un coefficient de proportionnalité, on peut utiliser une «opération à trou» ou équation (voir BAO N20). Par exemple, il suffit de traduire par un calcul la phrase suivante : «Par combien doit-on multiplier 8 pour obtenir 9,6?» 8 x = 9,6 où x est le nombre que l on cherche. On trouve x grâce à la division 9,6 : 8 x vaut donc 1,2 (on vérifie facilement que 8 1,2 = 9,6). Le coefficient de proportionnalité est donc 1,2. 3) Compléter un tableau de proportionnalité : On veut compléter le tableau suivant : B) EXEMPLE : L ECHELLE : a) «La méthode du 1» On rajoute 1 dans le tableau et on cherche des multiplications ou des divisions se rapportant à 1. b) Grâce au coefficient de proportionnalité. On cherche un coefficient et on l utilise. 3 x = 7,2 donc x = 7,2 : 3 = 2,4 Le coefficient de proportionnalité est 2,4. 7 2,4 = 16,8 L échelle est utilisée dans les plans, les cartes, les maquettes...etc... Elle exprimer le rapport entre les longueurs représentées et les longueurs réelles. Par exemple, sur un plan, l échelle 1/ signifie que 1cm sur le plan représente cm en réalité. si on mesure 1,7cm, quelle est alors la longueur réelle? Il s agit en fait d une situation de proportionnalité : Il suffit de calculer 1, = cm = 170 m 1,7 cm sur le plan représente 170m en réalité.

16 4ème PROPORTIONNALITE ET PRODUITS EN CROIX N14 A) REPRESENTATION GRAPHIQUE D UNE SITUATION PROPORTIONNELLE: 1) Règle : Si une situation est proportionnelle, alors sa représentation graphique dans un repère est une droite passant par l origine. Réciproquement, une droite passant par l origine d un repère est la représentation graphique d une situation proportionnelle. 2) Exemples : On a calculé les aires de différentes figures, et on a représenté l aire de ces figures en fonction de x. Situation proportionnelle: Situation non proportionnelle: Situation non proportionnelle : B) EGALITE DES PRODUITS EN CROIX : 1) Règle : 2) 3) Exemple : calcul de pourcentage : Dans une classe de 25 élèves, il y a 10 filles et 15 garçons. 40% des garçons et 20% des filles ont les yeux bleus. Calculer le nombre d élèves aux yeux bleus et le pourcentage d élèves aux yeux bleus dans cette classe. 4) Exemple : vitesse moyenne : V = D T où V est la vitesse moyenne en km/h, D est la distance parcourue en km et T le temps en h. Une automobile parcourt 91 km en 1 h 24 min. Calculons sa vitesse moyenne. 1 h 24 min = 84 min = (84 : 60) h = 1,4 h donc V = 91 = 65 km/h. 1,4 Elle roule à cette vitesse pendant encore 2h 36mn. Quelle distance va-t-elle parcourir? 2h 36min = 156 min = (156 : 60)h = 2,6 h donc 65 = D 2,6 En utilisant les produits en croix, on a D = 65 2,6 = 169 km.

17 3ème FONCTIONS AFFINES ET LINEAIRES N15 A) FONCTION LINEAIRE: 1) Définition : Une fonction f est linéaire si elle peut s écrire sous la forme f : x a a x où a est un nombre relatif fixé. Une fonction linéaire représente une situation de proportionnalité. Le nombre relatif a est alors un coefficient de proportionnalité. 2) Exemples : f : x a 3x est une fonction linéaire dont le coefficient a = 3. g : x a 5(x 2) + 10 est aussi linéaire car 5(x 2) + 10 = 5x = 5x Elle est bien de la forme x a a x avec a = 5. 3) Représentation graphique : La représentation graphique d une fonction linéaire dans un repère est une droite passant par l origine. On peut y lire le coefficient a. Ici, par exemple, f(x) = 2,5x. On dit alors que 2,5 est le coefficient directeur ou la pente de la droite. B) FONCTION AFFINE : 1) Définition : Une fonction f est affine si elle peut s écrire sous la forme f : x a a x + b où a et b sont des nombres relatifs fixés. 2) Exemples : f : x a 3x + 2 est une fonction affine avec a = 3 et b =2. g : x a 3x 2 4 est aussi affine car 3x 2 4 = 3 4 x 2 4 Elle est bien de la forme x a a x + b avec a = 3 4 et b = 2 4 3) Représentation graphique : La représentation graphique d une fonction affine dans un repère est une droite. On peut y lire le coefficient a de la même façon que pour les fonctions linéaires. Le point d intersection de l axe des ordonnées et de la droite a pour ordonnée b. On appelle alors cette valeur l ordonnée à l origine. Ici, par exemple, f(x) = -2x + 4. L ordonnée à l origine est b =4. Le coefficient directeur est a = -2.

18 6ème SERIE STATISTIQUE ET GRAPHIQUE N16 A) SERIE STATISTIQUE : On a posé à 25 personnes les 2 questions suivantes : «Quelle est votre couleur préférée?» et «Combien de fois partez-vous en vacances par an?» Les résultats sont les suivants : Jaune-Bleu-Bleu-Rouge-Jaune-Vert-Vert-Bleu-Rouge-Jaune-Vert-Bleu-Bleu-Rouge-Noir-Noir-Blanc-Jaune- Bleu-Blanc-Jaune-Rouge-Bleu-Noir-Bleu Ces résultats étant peu lisibles, on préfère les classer dans des tableaux. Couleur Jaune Bleu Rouge Vert Blanc Noir Effectifs Nombre de départs en vacances Effectifs Ainsi, grâce à ces tableaux, on peut facilement répondre aux questions suivantes : «Combien de personnes préfèrent le rouge?» Réponse : 4 «Combien de personnes ne partent jamais en vacances?» Réponse : 9 «Combien de personnes partent moins de 2 fois par an?» Réponse : = 18 Ces tableaux s appellent des séries statistiques B) GRAPHIQUES : On peut aussi représenter des données par des graphiques. Il y en a plusieurs types : 1) Le graphique cartésien Ce graphique nous permet par exemple de répondre aux questions suivantes : «Quelle distance a-t-on parcourue en 1 heure?» Réponse : 4km «Combien de temps s est-on arrêté?» Réponse : 1h «Quelle distance a-t-on parcouru au total?» Réponse : 10 km 2) Le diagramme en barre : Ci-contre le diagramme en barre tracé à partir des données du tableau du A) On y lit qu il y a bien 5 personnes qui partent 2 fois par an en vacances Distance (km) 6 Effectifs Une longue promenade Temps (h) Les départs en vacances par an Nombre de départs 3) Le diagramme circulaire : Ci-dessous, un diagramme circulaire tracé à partir des données du tableau en A) On y lit bien que la majorité des personnes a répondu bleu. Jaune Bleu Rouge Vert Blanc Noir La couleur préférée

19 5ème STATISTIQUES, FREQUENCE ET GRAPHIQUES N17 A) FREQUENCE : 1) Classer une population en série statistique : On interroge une classe de 25 élèves. On pose la question suivante : «Quelle est votre matière préférée?». On regroupe les réponses dans un tableau : Matière Mathématiques Français Histoire géographie Effectifs ) Fréquence: La fréquence est la proportion que représente une réponse parmi toutes les réponses données. Par exemple, la fréquence de la réponse «Mathématiques» est de 10 réponses sur les 25 réponses données. Autrement dit, c est la fraction 10, que l on peut calculer 10 : 25 = 0,4. 25 Effectif On peut retenir la formule Fréquence = Effectif total 3) Fréquence en pourcentage : La fréquence en pourcentage est le pourcentage d une réponse parmi toutes les réponses données. Par exemple, la fréquence en % de la réponse «Mathématiques» est de = 0,4 100 = 40% 25 Effectif On peut retenir la formule Fréquence en % = 100 = Fréquence 100 Effectif total On résume le tout dans le tableau suivant : Matière Mathématiques Français Histoire géographie Effectifs Fréquence 10/25 = 0,4 7/25 = 0,28 8/25 = 0,32 Fréquence en % 40% 28% 32% Remarque : la somme totale de toutes les fréquences doit être égale à 1 et la somme de tous les pourcentages à 100% Diagramme en barre (Effectifs en fonction de la matière préférée) B) REPRESENTATION GRAPHIQUE : ) Diagramme en barre : Représentons par un diagramme en barre la série statistique précédente. 2) Diagramme en bande : Effectif La taille des bandes dépend proportionnellement de l effectif. Ainsi, si une bande de 20 cm représente les 25 personnes, alors pour 1 personne, il faut une bande de 20: 25 = 0,8cm. La réponse «Mathématiques» correspond à une bande de 10 0,8 = 8cm La réponse «Français» correspond à une bande de 7 0,8 = 5,6cm La réponse «Histoire Géographie» correspond à une bande de 8 0,8 = 6,4cm 0 Mathematiques Français Hist-Géo, Matière 3) Diagramme semi-circulaire : La mesure de chaque angle formant les «parts de disque» dépend proportionnellement de l effectif. Ainsi, les 25 personnes sont représentées par le demi disque entier, c'està-dire par un angle de personne est donc représentée par un angle de 180 : 25 = 7,2 La réponse «Mathématiques» correspond à un angle de 7,2 10 =72 La réponse «Français» correspond à un angle de 7,2 7 =50,4 La réponse «Mathématiques» correspond à un angle de 7,2 8 =57,6

20 4ème MOYENNE N18 A) MOYENNE A PARTIR D UNE LISTE: On pose la question suivante à 10 personnes : «Quel est votre salaire?» Les réponses sont : La moyenne correspond à la somme que toucheraient ces 10 personnes si elles devaient se partager équitablement la somme totale des salaires. Cette somme totale est égale à = La moyenne est donc M = : 10 = 1295 Remarque : la moyenne est obligatoirement comprise entre la plus petite et la plus grande des valeurs relevées, ici entre 900 et B) MOYENNE A PARTIR D UN TABLEAU : On pose la question suivante à 80 personnes : «Combien avez-vous de téléviseurs?» On range les réponses dans le tableau suivant : Nombre de TV Effectifs La moyenne correspond au nombre de téléviseurs que chacun posséderait si ces 100 personnes en avaient le même nombre. Le nombre total de téléviseurs est = 183 téléviseurs. La moyenne est donc M= 183 : 80 = 2,2875 téléviseurs. Remarque : la moyenne n est pas toujours un nombre «réel» : ici, cela n a pas de sens de parler de décimales de téléviseurs! La moyenne sert avant tout à «résumer» la série des réponses. C) MOYENNE DANS LE CAS DES INTERVALLES : On pose la question suivante à 200 personnes : «Quelle est votre taille? (en cm)» On range les réponses dans le tableau suivant : Taille t (en cm) 140 t< t< t< t<180 Effectifs t<150 signifie que la taille est entre 140 cm et 150 cm, 140 inclus et 150 exclu Pour calculer la moyenne, il faut supposer par exemple que les 12 personnes dont la taille est comprise entre 140 cm et 150 cm ont la même taille : 145cm. On fait de même pour les autres classes. On pourra alors calculer une valeur approchée de la moyenne (qui n est pas exacte car on ne connaît pas précisément la taille de chaque personne) M ( ) : 200 = 165,8 cm Remarque : Les valeurs 145 ; 155 ; 165 et 175 sont appelées centres des classes D) MOYENNE A PARTIR DE FREQUENCES (EN %): Voici un diagramme donnant la répartition des élèves d un collège en fonction du nombre de frères qu a chacun. Nombre de frères Pour calculer la moyenne du nombre de frères, on va alors supposer que l effectif total est de 100 élèves. Ainsi, on suppose qu il y a eu 15 réponses «0 frères», 30 réponses «1 frère», 25 réponses «2 frères» etc 30,00% 15,00% 10,00% 20,00% La moyenne est alors : M = ( ) : 100 = 1,8 frère. 25,00%

21 3ème MEDIANE, QUARTILES ET ETENDUE N19 A) DEFINITIONS: 1) Médiane : La médiane m d une série statistique est une valeur (de la série ou non) telle que : - Au moins 50% des valeurs de la série sont supérieures ou égales à la médiane m. - Au moins 50% des valeurs de la série sont inférieures ou égales à la médiane m. 2) Quartiles : Le premier quartile Q 1 d une série statistique est la valeur de la série telle que : - Au moins 25% des valeurs de la série sont inférieures ou égales à Q 1. Le troisième quartile Q 3 d une série statistique est la valeur de la série telle que : - Au moins 75% des valeurs de la série sont inférieures ou égales à Q 3. 3) Etendue : L étendue e d une série statistique est la différence entre la plus grande et la plus petite des valeurs de la série. B) EXEMPLES : 1) Sous forme de liste : On pose la question suivante : «Combien de fois allez vous chez le coiffeur par an?» Les réponses sont : On range les réponses dans l ordre croissant : L effectif total est 11, et donc impair. 11 = , donc la médiane est la 6 ème valeur de la série. Donc m = 5 fois C'est-à-dire qu au moins la moitié des personnes va chez le coiffeur au maximum 5 fois par an et au moins la moitié des personnes y va au minimum 5 fois par an. 11 : 4 = 2,75. Le premier quartile est donc la 3 ème valeur de la série. Donc Q 1 = 4 fois 11 : 4 3 = 8,25. Le troisième quartile est donc la 9 ème valeur de la série. Donc Q 3 = 7 fois C'est-à-dire qu au moins un quart des personnes va chez le coiffeur 4 fois par an au maximum, et les trois quarts des personnes y vont 7 fois au maximum. L étendue e quant à elle vaut : e = 10 2 = 8 fois. 2) Sous forme de tableau: On pose la question suivante : «Combien allez vous de fois au cinéma par an?» Les réponses sont rangées dans le tableau suivant : Nombre de fois Effectifs L effectif total est 3710 et donc pair = , donc la médiane est entre la 1855 ème et 1856 ème valeur =1855, la 1855 ème valeur est dans la classe «2 fois» et la 1856 ème dans la classe «3 fois». Donc m = 2,5 fois : 4 = 927,5 donc Q 1 est la 928 ème valeur qui est dans la classe «0 fois» Donc Q 1 = 0 fois : 4 3 = 2782,5 donc Q 3 est la 2783 ème valeur de la série =2280 et =3125. La 2783 ème valeur est donc dans la classe «4 fois». Donc Q 3 = 4 fois. L étendue e = 6 0 = 6 fois.

22 5ème CALCUL LITTERAL ET EQUATION N20 A) EXPRESSION LITTERALE : 1) Définition : Une expression littérale est un calcul comportant une lettre appelée variable. Cette lettre peut généralement être remplacée par n importe quel nombre. 2) Exemple : Exprimons en fonction de x l aire A du polygone ABCDEG. Il se décompose en 3 rectangles dont les aires se calculent grâce à la formule Longueur largeur. L aire de ABCH vaut 5 2 = 10cm² L aire de CEDF vaut 2 x L aire de HCFG vaut 5 x L aire totale est donc A = x + 5 x 3) Calculer pour une valeur donnée : Il s agit de remplacer la lettre d une expression par une valeur et de la calculer. En reprenant l exemple ci-dessus, calculons l expression A pour x=3cm. A = x + 5 x A = A = = 31cm². B) REDUIRE UNE EXPRESSION : Réduire une expression, c est effectuer les calculs autorisés afin de rendre plus simple l expression. 1) Réduire un produit : E = 4 3 x 5 y (dans un produit, l ordre des facteurs peut être changé) E = x y (on multiplie les nombres ensemble et les lettres ensemble) E = 60 x y E = 60xy (on peut supprimer le symbole entre 2 lettres ou 1 nombre et une lettre) 2) Réduire une somme : E = 3x x 3 x +6 (on calcule séparément les termes en x et les nombres) E = 3x x 3 1x +6 (remarque : on peut remplacer 1x par x) 3x + 2x 1x = 4x = 7 donc E = 4x + 7 3) Développer un produit : C est utiliser les formules de développement (voir BAO N9) avec des lettres. E = 5 ( 2x + 3) E = 5 2x E = 10x + 15 F = 6(8 3x) F = x F = 48 18x (on peut supprimer le symbole entre un nombre et une parenthèse) 4) Exemple : un calcul magique. PROGRAMME DE CALCUL EXEMPLE : EXPLICATION : Choisis un nombre au hasard Ajoute lui = 13 J appelle x mon nombre choisi x + 1 Multiplie le résultat par = 26 (x + 1) 2 = x = 2x + 2 Retire le double du nombre choisi = = 2 2x + 2-2x = 2 MAGIQUE :On obtient toujours 2. Le résultat est toujours 2. C) EQUATION : 1) Définition simplifiée : Une équation est une «opération à trou» dans laquelle le nombre inconnu est remplacé par une lettre. 2) Exemples : x + 4 = 10 Pour trouver le nombre x, il faut faire la soustraction 10 4 = 6. Vérification: = 10, donc x = 6 est la solution de l équation 5 a = 20 Pour trouver le nombre a, il faut faire la division 20 : 5 = 4 Vérification : 5 4 = 20, donc a = 4 est la solution de l équation.

23 4ème CALCUL LITTERAL : DEVELOPPER ET REDUIRE N21 A) REDUIRE UNE EXPRESSION: 1) Sans parenthèses : (voir BAO N20) On calcule séparément les termes en x², en x, et les nombres. Ex : A = 5x² + 4x 3 + x² 7x + 6 A = 5x² + 4x 3 + x² 7x + 6 A = 6x² 3x + 3 2) Avec parenthèses (sans produit): a) Parenthèses en début de calcul ou précédées d un «+». On peut supprimer ces parenthèses, ainsi que le signe «+», sans changer l expression. Ex : B = (2x + 1) + (-4x + 3) + (8x 6) (les parenthèses sont précédées d un «+») B = (2x + 1) + ( -4x + 3 ) + (+8x 6) B = 2x + 1 4x x 6 B = 6x 2 (on recopie seules les expressions entre parenthèses) (on réduit l expression) b) Parenthèses précédées d un «-» Soustraire une expression, c est additionner son opposé. On transforme donc d abord les soustractions en additions, avant de supprimer les parenthèses. Ex C = 2x (-2x + 1) (8x 6) (les parenthèses sont précédées d un «-») C = 2x + (+2x 1) + (-8x + 6) C = 2x +2x 1-8x + 6 C = -4x + 5 (on transforme les soustractions en additions) (on retrouve le cas précédent) B) DEVELOPPER UN PRODUIT : 1) Réduire un produit : (voir BAO N20) Ex : D = -3x 5 = -15x E = (-4x) (-2x) = 8x² 2) Développement simple : k ( a + b) = k a + k b avec k, a, b des nombres relatifs. Ex : F = -3x ( 5 7x) F = -3x ( +5 7x ) F = -15x + 21x² F = 21x² 15x On calcule mentalement (ou au brouillon) (-3x) (+5) =( -15x) (-3x) (-7x) = (+21x²) puis on recopie les résultats, en les ordonnant (les x² avant les x ) 3) Développement double : ( a + b)(c + d) = ac + ad + bc + bd avec a,b,c et d des nombres relatifs. Ex : C) EXEMPLE F = (4x 3)(2 5x) F = ( +4x 3 )( +2 5x ) F = 8x 20x² x F = -20x² + 23x 6 On calcule mentalement (ou au brouillon) (+4x) (+2) = (+8x) (+4x) (-5x) = (-20x²) (-3) (+2) = (-6) (-3) (-5x) +(15x) puis on réduit. a) Exprimer en fonction de x l aire A colorée de la figure ci-contre. b) Développer et réduire l expression obtenue. c) Calculer A quand x = 5cm. a) A = x ( x + 10) 2x ( x 1) (C est l aire du grand rectangle auquel on retire l aire du petit rectangle) c) A = - 5² = = 35 cm² b) On commence par repérer les développements que l on met entre crochets A = [ x ( x + 10) ] [ 2x ( x 1) ] A = [ x² + 10x ] [ 2x² 2x ] A = [ x² + 10x ] + [ -2x² + 2x ] A = x² + 10x - 2 x² + 2 x A = - x² + 12x

24 3ème LES IDENTITES REMARQUABLES N22 Dans la suite, a et b sont des nombres relatifs A) LE CARRE D UNE SOMME : ( a + b )² = a² + 2ab + b² Ex : (2x + 3)² = (2x)² + 2 2x 3 + 3² = 4x² + 12x + 9 B) LE CARRE D UNE DIFFERENCE : ( a b )² = a² 2ab + b² Ex : (4 3x)² = 4² 2 4 3x + (3x)² = 16 24x + 9x² = 9x² 24x + 16 C) PRODUIT DE LA SOMME PAR LA DIFFERENCE : D) PROBLEMES : ( a + b )(a b) = a² b² Ex : (5x + 2)(5x 2) = 25x² 4 1) Calcul mental : Calculer mentalement le produit de 102 par = ( ) (100 2) = 100² 2² = = ) Programme de calcul : -Choisis un nombre entier. -Calcule le carré de l entier suivant le nombre choisi. -Retire au résultat le carré de l entier précédant le nombre choisi. Explique pourquoi le résultat est toujours un multiple de 4 (c est-à-dire dans la table de multiplication par 4). Essai : je choisis 9 L entier suivant est 10 ; l entier précédant est 8. On calcule donc 10² 8² = = 36, ce nombre est bien un multiple de 4. Cas général : je choisis un nombre n L entier suivant est n + 1 ; l entier précédant est n 1 On calcule donc (n + 1)² (n 1)² On développe et on réduit : [ n² + 2n + 1 ] [ n² 2n + 1 ] = n² + 2n + 1 n² + 2n 1 = 4n Ce nombre est bien un multiple de 4. 3) En géométrie : Quelle doit être la valeur de x pour que l aire A comprise entre les deux carrés soit égale à 10 cm²? A = (x + 2)² x² = 10 cm² x² + 4x + 4 x² = 10 4x + 4 = 10 4x = 6 x = 6 : 4 = 1,5cm Il faut donc que x soit égal à 1,5cm pour obtenir une aire A de 10cm².

25 4ème PUISSANCES N23 A) DEFINITION: 1) Puissance d un nombre quelconque : x est un nombre quelconque et n est un nombre entier positif. x n = x x x x x x - n = 1 x 1 x 1 x 1 x 1 x 1 n fois le facteur x n fois le facteur x n est appelé l exposant de la puissance. Exemples : 5 3 = = = = 1 16 = 0,0625 2) Cas particuliers: les puissances de 10 : 10 n = n = 0, n zéros n zéros Exemples : 10 6 = = 0,0001 3) Multiplier par une puissance de 10. Quand on multiplie un nombre par une puissance de 10 : d exposant n positif, on décale sa virgule de n rangs vers la droite. d exposant n négatif, on décale sa virgule de n rangs vers la gauche. Exemples : 5, = , = 0,0234 4) Ecriture scientifique : Tout nombre peut s écrire sous la forme x 10 n où x est un nombre relatif et n un entier. Quand x n a qu un seul chiffre différent de 0 avant la virgule, on dit qu il s agit de l écriture scientifique. Exemples : = ,00056 = 0, = 52, = = 5, = 5, Les 2 dernières écritures sont les écritures scientifiques de et 0, B) CALCULER AVEC LES PUISSANCES : 1) Formules : a et b étant deux nombres relatifs, n et p deux nombres entiers. a n a p = a n+p a n a p = a n-p ( a n ) p = a n p ( a b ) n = a n b n ( a b )n = an b n 2) Exemples : = = 8-7 (6 100 ) 2 = ( 2 3 )3 = = ) Exercice «type brevet» Calculer et donner l écriture scientifique de A A = (10 6 ) -3 = = = = (-18) = = 2, = 2,

26 4ème RESOLUTION D EQUATIONS N24 A) RESOUDRE UNE EQUATION : 1) Définition : Une équation d inconnue x est une égalité entre 2 expressions littérales dont la variable est x. Ces deux expressions sont appelées membres de l équation. L égalité peut être vérifiée ou pas : tout dépend de la valeur de l inconnue x. Dans le cas où l égalité est vérifiée, on dit que x est une solution de l équation. Exemple : x = -3 est il solution de l équation x² + 2x + 1 = 5x 4? Le membre de gauche vaut (-3)² +2 (-3) + 1 = 9 + (-6) + 1 = 4 Le membre de droite vaut 5 (-3) 4 = = -19 Donc -3 n est pas solution de l équation. 2) Méthode de résolution : «la balance» 3) Méthode de résolution : la transposition. B) PROBLEMES A METTRE EN EQUATION: 1) Numérique : Avec la même somme, je peux m acheter soit 4 cahiers et 3 crayons à 0,4 l unité, soit 2 cahiers et 8 gommes à 0,3 l unité. Quel est le prix d un cahier? On appelle x le prix d un cahier. On a alors : 4x + 3 0,4 = 2x + 8 0,3 4x + 1,2 = 2x + 2,4 4x 2x = 2,4 1,2 2x = 1,2 x = 1,2 : 2 = 0,6 Un cahier coûte 0,6. 2) Géométrique : Calculer AM. On pose AM = x (MN)//(BC) M [AB] N [AC] D après le théorème de Thalès x x+1 = 3 On utilise alors le produit en croix (3+1,5) 4,5x = 3(x +1) Il faut d abord développer. 4,5x = 3x + 3 4,5x 3x = 3 1,5x = 3 x = 3 :1,5 = 2 Donc AM = 2cm

27 3ème FACTORISATIONS N25 A) GENERALITES : 1) Définition : Factoriser une expression, c est transformer une somme en produit en utilisant les formules de développement «à l envers». 2) Exemple numérique: 45 99, ,02 = 45 (99,98 + 0,02) = = 4500 K A + K B = K ( A + B ) B) FACTORISER UNE EXPRESSION LITTERALE EN UTILISANT KA + KB = K(A+B) : 1) Exemple 1 : 2x 3 2x 4x = 2x ( 3 4x ) K A K B = K ( A B ) K est appelé le facteur commun de l expression. 2) Exemple 2 : ( 4x + 5) ( 2x + 3) + (x 4 ) (4x + 5) = (4x + 5) [ (2x + 3) + (x 4) ] K A + B K = K ( A + B ) = (4x + 5) ( 2x x 4 ) = (4x + 5) ( 3x 1) C) FACTORISER UNE EXPRESSION LITTERALE EN UTILISANT LES IDENTITES REMARQUABLES : 1) a² + b² + 2ab = (a + b)² : 4x² + 12x + 9 = (2x + 3)² a² + 2ab + b² avec a = 2x ; b = 3 et 2ab = 2 2x 3 = 12x Attention! On ne peut pas toujours factoriser une expression. x² + 5x + 16 a² + 2ab + b² avec a = x ; b = 4 et 2ab = 2 x 4 = 8x 5x donc on ne peut pas factoriser cette expression. 2) a² b² = (a + b) (a b): D) APPLICATIONS : (4x 5)² 25 = [ (4x 5) + 5 ] [ (4x 5) 5 ] A² B² = [ A + B ] [ A B ] avec A = 4x 5 et B = 5 = ( 4x ) ( 4x 5 5 ) = 4x ( 4x 10) Résoudre l équation 2x (5x + 2) (5x + 2)(x + 6) = 0 On ne peut pas résoudre cette équation en l état : il faut d abord factoriser le membre de gauche. 2x ( 5x + 2) (5x + 2)(x + 6) = (5x + 2) [ 2x (x + 6) ] = (5x + 2) ( 2x x 6) = (5x + 2) ( x 6 ) Il suffit alors de résoudre l équation produit nul (5x + 2)(x 6) = 0 (Voir BAO N26) 5x + 2 = 0 ou x 6= 0 5x = -2 x = 6 x = -2 : 5 = -0,4 Les solutions de l équation sont x = -0,4 et x = 6

28 3ème EQUATIONS DIVERSES ET INEQUATION N26 A) EQUATION : La résolution des équations suivantes suppose que l on maîtrise les techniques de la BAO N24 1) Du second degré : 4x² + 1 = 2x² +7 4x² - 2x² = 7 1 2x² = 6 x² = 3 x = 3 ou x = - 3 Les solutions de cette équation sont 3 et - 3 2x² + 4 = -3 6x² 2x² + 6x² = x² = -7 x² = -7/8 Cette équation n a pas de solution car x² est toujours positif. 2) Produit en croix : 5x + 3 2x 1 = 4 3 On écrit l égalité des produits en croix : (5x + 3) 3 = (2x 1) 4 On développe et on résout : 15x + 9 = 8x 4 15x 8x = x = -13 x = = ) Produit nul : Un produit est nul signifie qu obligatoirement, l un de ses facteurs est nul. (4x + 3) ( 2x 5) = 0 signifie que 4x + 3 = 0 ou 2x 5 =0 4x = - 3 2x = 5 3x² + 4x 3 = x + 5 On ne peut généralement pas résoudre cette équation au collège Une solution consisterait à factoriser si cela est possible (voir BAO N25). x = -3 4 x = 5 2 Les solutions de cette équation sont donc -3 4 et 5 2. B) INEQUATION : 1) Règle: On ne change pas une inégalité : -En additionnant (ou soustrayant) à chacun de ses membres un même nombre relatif. -En multipliant (ou divisant) chacun de ses membres par un même nombre strictement positif. Si on multiplie (ou divise) ses membres par un nombre négatif, alors on change le sens de l inégalité. 2) Exemple : Résoudre une inéquation d inconnue x, c est trouver toutes les valeurs de x vérifiant l inégalité. Comme il y en a généralement une infinité, on les représente sur une droite graduée par un coloriage. La technique est la même que pour les équations : il faut juste faire attention à la dernière division. 5x + 3 < 3x + 8 5x 3x < 8 3 2x < 5 x < 5 : 2 (on ne change pas le sens car 2 est positif) x < 2,5 2x 4 6x x 6x x 14 x 14 : (-4) (on change le sens car -4 est négatif) x -3,5 Le crochet tourné vers l extérieur du coloriage car la valeur 2,5 ne vérifie pas l inégalité. Le crochet tourné vers l intérieur du coloriage car la valeur -3,5 vérifie l inégalité.

29 3ème SYSTEMES N27 A) SYSTEME DE DEUX EQUATIONS A DEUX INCONNUES: 1) Définition : Une solution d un système de deux équations à deux inconnues x et y est un couple (x ; y) de valeurs qui sont solutions de la première équation et de la deuxième équation. 2) Exemple : 5x + 2y = 17 2x + 4y = 10 Le couple (3 ; 1) est solution du système car =17 et =10 Le couple (1 ; 6) n est pas solution du système car =17 mais =26 10 B) RESOLUTION PAR SUBSTITUTIONS : 1) Cas favorable : On utilisera cette méthode lorsqu on peut isoler facilement l une des deux inconnues. 2) Exemple : 3x + y = 10 E1 2x + 0,5y = 4 E2 On isole y dans l équation E1 : y = 10 3x On remplace y dans E2 par l expression obtenue : 2x + 0,5(10 3x) = 4 On obtient une équation à une inconnue que l on peut résoudre facilement après développement. 2x + 0,5 10 0,5 3x = 4 2x + 5 1,5x = 4 0,5x = -1 x = -2 On remplace le résultat obtenu dans l expression du début : y = 10 3 (-2) = 16 3 ( 2 ) + 16 = 10 On fait la vérification dans E1 et E2 : 2 ( 2 ) + 0,5 16 = 4 donc (-2 ; 16) est solution du système. C) RESOLUTION PAR COMBINAISONS : 1) Propriété : Si on multiplie ou on divise les membres d une équation par un même nombre non nul, alors on obtient une nouvelle équation qui admet le même ensemble de solutions. Si on additionne ou soustrait membre à membre les termes de deux équations qui admettent le même ensemble de solutions, alors on obtient une nouvelle équation qui admet le même ensemble de solutions. 2) Exemple : 3( x + 2 ) + 2y = 5 x 4y + 2x = 3 + y On présente chaque équation sous la «bonne» forme : les inconnues dans le membre de gauche et les nombres dans le membre de droite. 3x y + x = 5 4y + 2x y = 3 4x + 2y = 1 donc E1 2x + 3y = 3 E2 On veut «éliminer» l inconnue x. On veut «éliminer» l inconnue y. 4x + 2y = 1 E1 12x + 6y = 3 3 E1-4x + 6y = 6 2 E2-4x + 6y = 6 2 E2-4y = -7 8x = -9 y = -7-4 = 1,75 x = -9 8 = -1,125 4 ( 1,125 ) + 2 1,75 = 1 Vérification : 2 ( 1,125 ) + 3 1,75 = 3 donc (-1,125 ; 1,75) est solution du système.

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro. Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Technique opératoire de la division (1)

Technique opératoire de la division (1) Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Sommaire de la séquence 8

Sommaire de la séquence 8 Sommaire de la séquence 8 Séance 1........................................................................................................ Je prends un bon départ.......................................................................................

Plus en détail

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Glossaire des nombres

Glossaire des nombres Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer

Plus en détail

Carré parfait et son côté

Carré parfait et son côté LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM. Responsable : Nathalie Villa villa@univ-tlse2

Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM. Responsable : Nathalie Villa villa@univ-tlse2 Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM Responsable : Nathalie Villa villa@univ-tlse2 Arithmétique et numération : Exercices Nombres entiers naturels et

Plus en détail

THEME : CLES DE CONTROLE. Division euclidienne

THEME : CLES DE CONTROLE. Division euclidienne THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Codage d information. Codage d information : -Définition-

Codage d information. Codage d information : -Définition- Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale

Plus en détail

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,

Plus en détail

LES NOMBRES DECIMAUX. I. Les programmes

LES NOMBRES DECIMAUX. I. Les programmes LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.

Plus en détail

Plus petit, plus grand, ranger et comparer

Plus petit, plus grand, ranger et comparer Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Fractions. Pour s y remettre. 66 5 Division 67. Dans ce chapitre, on apprendra à :

Fractions. Pour s y remettre. 66 5 Division 67. Dans ce chapitre, on apprendra à : Dans ce chapitre, on apprendra à : Fractions Repérer des fractions sur une demi-droite graduée. Identifier une fraction comme le quotient de deux nombres entiers. Reconnaître que deux fractions peuvent

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Initiation à la programmation en Python

Initiation à la programmation en Python I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

EQUATIONS ET INEQUATIONS Exercices 1/8

EQUATIONS ET INEQUATIONS Exercices 1/8 EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0

Plus en détail

Définition : On appelle : rapport de deux nombres, "a" et "b" le quotient exact (résultat de la division) de ces deux nombres :

Définition : On appelle : rapport de deux nombres, a et b le quotient exact (résultat de la division) de ces deux nombres : A) LES RAPPORTS Définition : On appelle : rapport de deux nombres, "a" et "b" le quotient exact (résultat de la division) de ces deux nombres : a b = q ; 36 / 15 = 2,4 ; 8 10 = 0,8 ; 10 = 50 / 5 ; 12,5

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi! Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de

Plus en détail

Chapitre N2 : Calcul littéral et équations

Chapitre N2 : Calcul littéral et équations hapitre N : alcul littéral et équations Sujet 1 : Le problème des deux tours Deux tours, hautes de 0 m et de 0 m, sont distantes de 0 m. Un puits est situé entre les deux tours. Deux oiseaux s'envolent

Plus en détail

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un

Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un Pour monter un escalier, on peut, à chaque pas, choisir de monter une marche ou de monter deux marches. Combien y a-t-il de façons de monter un escalier de 1 marche? De 2 marches? De 3 marches? De 4 marches?

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

V- Manipulations de nombres en binaire

V- Manipulations de nombres en binaire 1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail