Partie 1 : de la notion de stabilité

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1 : de la notion de stabilité"

Transcription

1 p. 1/21 Théorie de Lyapunov pour les Σ autonomes Partie 1 : de la notion de stabilité Vincent MAHOUT

2 Le coupable...sergei Milkhailovich Lyapunov p. 2/21 Mathématicien Russe ( ) Contemporain à H.Poincaré qui développa également beaucoup de théorie dans ce domaine

3 Le coupable...sergei Milkhailovich Lyapunov p. 2/21 Mathématicien Russe ( ) Contemporain à H.Poincaré qui développa également beaucoup de théorie dans ce domaine Nombreux travaux sur la notion de stabilité du mouvement

4 p. 3/21 La stabilité, c est quoi? Qu est ce qui est stable? : un point d équilibre, une trajectoire, un système dynamique... Peut on "réduire" la stabilité à la non-instabilité? Si le système n explose pas, il est stable? La stabilité est-elle liée à l immobilité? Lyapunov a proposé un cadre mathématique précis à la notion de stabilité : on parle alors de système stable au sens de Lyapunov.

5 p. 4/21 Stabilité d un PE : notion intuitive Un point d équilibre est stable si lorsque on écarte le système de ce point d équilibre il y revient "naturellement" A B

6 p. 5/21 Type de système étudié? Les outils et méthodes présentés dans ce cours ne s appliquent qu à des systèmes non linéaires décrits par des EDO : Ẋ = f(x,γ f,t)

7 p. 5/21 Type de système étudié? Les outils et méthodes présentés dans ce cours ne s appliquent qu à des systèmes non linéaires décrits par des EDO : Ẋ = f(x,γ f,t) f est un champs de vecteur de dimension n

8 p. 5/21 Type de système étudié? Les outils et méthodes présentés dans ce cours ne s appliquent qu à des systèmes non linéaires décrits par des EDO : Ẋ = f(x,γ f,t) f est un champs de vecteur de dimension n X est l état et Γ f les paramètres de f

9 p. 5/21 Type de système étudié? Les outils et méthodes présentés dans ce cours ne s appliquent qu à des systèmes non linéaires décrits par des EDO : Ẋ = f(x,γ f,t) f est un champs de vecteur de dimension n X est l état et Γ f les paramètres de f Hypothèse : On considère que f possède une solution unique sur [0, ] pour chaque condition initiale X 0 Cette solution, notée X(t,Γ f,x 0 ) s appelle la trajectoire de phase ou trajectoire d état du système.

10 p. 6/21 Restriction au système autonome Dans cette partie : uniquement étude du cas des systèmes autonomes.

11 p. 6/21 Restriction au système autonome Dans cette partie : uniquement étude du cas des systèmes autonomes. Définition 1.1 ( Système autonome) Le système Ẋ = f(x,γ) où x est l état et Γ le vecteur paramètre, est dit autonome lorsque la fonction f ne dépend pas explicitement du temps.

12 En ne s intéressant qu aux systèmes autonomes, il est alors impossible de pouvoir traiter de la stabilité d un système excité par un signal non constant (en boucle ouverte) ou décrivant une trajectoire de référence (en boucle fermée). p. 6/21 Restriction au système autonome Dans cette partie : uniquement étude du cas des systèmes autonomes. Définition 1.1 ( Système autonome) Le système Ẋ = f(x,γ) où x est l état et Γ le vecteur paramètre, est dit autonome lorsque la fonction f ne dépend pas explicitement du temps. Définition 1.2 (Système non autonome ) Le système ẋ = f(x,γ,t) est dit non autonome lorsque la fonction f dépend explicitement du temps t.

13 p. 7/21 Et la commande? Les équations précédentes ne font pas intervenir le commande... En automatique ce qui nous intéresse c est l étude des système qui font intervenir une commande U comme : Ẋ = f(x,u,γ f )

14 p. 7/21 Et la commande? Les équations précédentes ne font pas intervenir le commande... En automatique ce qui nous intéresse c est l étude des système qui font intervenir une commande U comme : Ẋ = f(x,u,γ f ) Dans ce cours, on ne s intéresse ici qu à l analyse.

15 p. 7/21 Et la commande? Les équations précédentes ne font pas intervenir le commande... En automatique ce qui nous intéresse c est l étude des système qui font intervenir une commande U comme : Ẋ = f(x,u,γ f ) Dans ce cours, on ne s intéresse ici qu à l analyse. Boucle ouverte U = G bo (t,γ g ) Ẋ = f(x,g bo(t,γ g ),Γ f )

16 p. 7/21 Et la commande? Les équations précédentes ne font pas intervenir le commande... En automatique ce qui nous intéresse c est l étude des système qui font intervenir une commande U comme : Ẋ = f(x,u,γ f ) Dans ce cours, on ne s intéresse ici qu à l analyse. Boucle ouverte U = G bo (t,γ g ) Ẋ = f(x,g bo(t,γ g ),Γ f ) Boucle fermée U = G bf (t,x,γ g ) Ẋ = f(x,g bf(t,x,γ g ),Γ f )

17 p. 7/21 Et la commande? Les équations précédentes ne font pas intervenir le commande... En automatique ce qui nous intéresse c est l étude des système qui font intervenir une commande U comme : Ẋ = f(x,u,γ f ) Dans ce cours, on ne s intéresse ici qu à l analyse. Boucle ouverte U = G bo (t,γ g ) Ẋ = f(x,g bo(t,γ g ),Γ f ) Boucle fermée U = G bf (t,x,γ g ) Ẋ = f(x,g bf(t,x,γ g ),Γ f ) Dans les deux cas on se ramène à un système où la commande disparaît, mais NON AUTONOME

18 p. 8/21 L endroit où toutes les vitesses s annulent. Point d équilibre Définition 1.3 (Point équilibre) Un état X est un point d équilibre (ou singularité ou point fixe ou point critique) d un système s il vérifie dans le cas autonome. f(x,γ) = 0

19 p. 8/21 L endroit où toutes les vitesses s annulent. Point d équilibre Définition 1.3 (Point équilibre) Un état X est un point d équilibre (ou singularité ou point fixe ou point critique) d un système s il vérifie dans le cas autonome. f(x,γ) = 0 Cas linéaire : Ẋ = AX= 0 l origine (A régulière) ou infinité de solutions (A singulière)

20 p. 9/21 Exemple du pendule simple On considère le pendule libre de masse M, de longueur L et subissant un frottement b. Système mécanique à 1DDL Système dynamique ordre 2. La position x 1 = θ repère l angle avec la verticale et x 2 = θ est la vitesse angulaire. b L M

21 p. 9/21 Exemple du pendule simple On considère le pendule libre de masse M, de longueur L et subissant un frottement b. Système mécanique à 1DDL Système dynamique ordre 2. La position x 1 = θ repère l angle avec la verticale et x 2 = θ est la vitesse angulaire. b L Γ = d dt ( ) L θ L θ avec L = E c E p { ẋ1 = x 2 ẋ 2 = b ML 2 x 2 g L sin(x 1) M

22 p. 10/21 Modèle du pendule Energie potentielle : E p = 0 C(α)dα = 0 MLgsin(α)dα = θ θ [MgLcos(α)]0 θ E p = MgL(1 cos(θ)) Energie cinétique : E c = 1 2 Mv2 = 1 2 M (L θ) 2 (il vient de là le L 2 ) Lagrangien : L = E c E p = 1 2 ML2 θ2 MgL(1 cos(θ)) ( ) Equations du système : Γ = d L dt θ L θ ( b θ = d ML 2 θ ) (MgL( sin(θ))) dt θ = b ML 2 θ g L sin(θ)

23 p. 11/21 PE du pendule Pour le pendule ẋ = 0 { 0 = x2 0 = b ML 2 x 2 g L sin(x 1) Ce qui induit 2 familles de PE : (0[2π],0) (π[2π],0) Il n y a que deux positions mécaniques d équilibre mais une infinité mathématiquement parlant.

24 p. 12/21 Translation sur l origine On cherche à caractériser l équilibre (stable ou instable) Par facilité d écriture on ne s occupe que de la stabilité de l origine X = 0 Ce cas reste générique puisqu on peut toujours s y ramener par translation :

25 p. 12/21 Translation sur l origine On cherche à caractériser l équilibre (stable ou instable) Par facilité d écriture on ne s occupe que de la stabilité de l origine X = 0 Ce cas reste générique puisqu on peut toujours s y ramener par translation : Si X 0 est un PE pour le système f(x ) = 0 On pose : ξ = X X ξ = Ẋ = f(x) = f(ξ +X )

26 p. 12/21 Translation sur l origine On cherche à caractériser l équilibre (stable ou instable) Par facilité d écriture on ne s occupe que de la stabilité de l origine X = 0 Ce cas reste générique puisqu on peut toujours s y ramener par translation : Si X 0 est un PE pour le système f(x ) = 0 On pose : En notant g(ξ) = f(ξ +X ) ξ = X X ξ = Ẋ = f(x) = f(ξ +X )

27 p. 12/21 Translation sur l origine On cherche à caractériser l équilibre (stable ou instable) Par facilité d écriture on ne s occupe que de la stabilité de l origine X = 0 Ce cas reste générique puisqu on peut toujours s y ramener par translation : Si X 0 est un PE pour le système f(x ) = 0 On pose : En notant g(ξ) = f(ξ +X ) ξ = X X ξ = Ẋ = f(x) = f(ξ +X ) f(x ) = 0 est équivalent à étudier g(0) = 0, donc la stabilité de l origine

28 p. 13/21 Stabilité d une trajectoire Pas envisageable pour les systèmes autonomes Équivalent à une recherche de stabilité d un point d équilibre pour un système non autonome

29 p. 13/21 Stabilité d une trajectoire Pas envisageable pour les systèmes autonomes Équivalent à une recherche de stabilité d un point d équilibre pour un système non autonome En posant ε = X(t) X d (t) où X d (t) représente une trajectoire de référence à réaliser tq Ẋd = f(x d )

30 p. 13/21 Stabilité d une trajectoire Pas envisageable pour les systèmes autonomes Équivalent à une recherche de stabilité d un point d équilibre pour un système non autonome En posant ε = X(t) X d (t) où X d (t) représente une trajectoire de référence à réaliser tq Ẋd = f(x d ) On a pour le point initial X(0) = X d (0)+δ : ε = f(x d +ε,t) f(x d,t) = g(ε,t,x d (t))

31 p. 13/21 Stabilité d une trajectoire Pas envisageable pour les systèmes autonomes Équivalent à une recherche de stabilité d un point d équilibre pour un système non autonome En posant ε = X(t) X d (t) où X d (t) représente une trajectoire de référence à réaliser tq Ẋd = f(x d ) On a pour le point initial X(0) = X d (0)+δ : ε = f(x d +ε,t) f(x d,t) = g(ε,t,x d (t)) La recherche de stabilité du point d équilibre ε tq g(ε,t,x d (t) = 0 est équivalent à la recherche de stabilité en suivi de trajectoire. Si on vérifie que ε 0 quand t alors on vérifie que X(t) X d (t)

32 p. 14/21 Définition de la stabilité simple Définition 1.4 (Stabilité simple) Le point d équilibre x est simplement stable au sens de Lyapunov si ǫ 0, α > 0, x(0) x α x(t) x ǫ. Si le point d équilibre n est pas stable, alors il est instable.

33 p. 14/21 Définition de la stabilité simple Définition 1.4 (Stabilité simple) Le point d équilibre x est simplement stable au sens de Lyapunov si ǫ 0, α > 0, x(0) x α x(t) x ǫ. Si le point d équilibre n est pas stable, alors il est instable. Cette définition introduit la notion de norme (distance). On utilisera ici toujours des normes de type l p : X p = ( n i=1 x i p )1 p Application pour la norme Euclidienne (p = 2) : X = n i=1 x 2 i

34 p. 15/21 Définition de la stabilité simple Interprétation géométrique : Origine est simplement stable Origine est instable

35 p. 16/21 Stabilité simple vs instabilité Exemple de l oscillateur de Van Der Pol Van der Pol Equation XY Graph 1-u(1)^2 x 2 x 1 1/s 1/s x_ 1 Scope x_ 2

36 p. 17/21 Stabilité simple vs instabilité Plan de phase : existence d un cycle limite. On reste à proximité de l origine L origine n est pas simplement stable : si ǫ définie un cercle intérieur au cycle limite, il n existe pas α pour vérifier la condition de stabilité!! Attention!! Cela ne veut pas dire que le système est instable, mais que l origine n est pas simplement stable!

37 Stabilité simple vs instabilité p. 18/21

38 p. 19/21 Définition de la stabilité asymptotique Définition 1.5 (Stabilité asymptotique ) Le point d équilibre x est asymptotiquement stable s il est stable et si on peut choisir α tel que : x(0) x α lim t + x(t) = x

39 p. 19/21 Définition de la stabilité asymptotique Définition 1.5 (Stabilité asymptotique ) Le point d équilibre x est asymptotiquement stable s il est stable et si on peut choisir α tel que : x(0) x α lim t + x(t) = x Origine est stable asymptotiquement

40 p. 19/21 Définition de la stabilité asymptotique Définition 1.5 (Stabilité asymptotique ) Le point d équilibre x est asymptotiquement stable s il est stable et si on peut choisir α tel que : x(0) x α lim t + x(t) = x Origine est stable asymptotiquement Stabilité asymptotique = Stabilité + CONVERGENCE

41 p. 20/21 Définition de la stabilité exponentielle Définition 1.6 (Stabilité exponentielle) Le point d équilibre x est exponentiellement stable s il est asymptotiquement stable et s il existe 2 réels positifs ǫ et λ tels que x(0) x α x(t) x ǫ x(0) x e λt, t 0 λ est appelé taux de convergence. On impose une rapidité de convergence au système. Très difficile à trouver ou à prouver dans le cas général.

42 p. 21/21 Locale ou globale? Les définitions précédentes correspondent à des comportements locaux autour des points d équilibre La stabilité globale implique que toutes les trajectoires de phase convergent vers ce PE

43 p. 21/21 Locale ou globale? Les définitions précédentes correspondent à des comportements locaux autour des points d équilibre La stabilité globale implique que toutes les trajectoires de phase convergent vers ce PE Définition 1.7 (Stabilité globale) Si la condition de stabilité asymptotique (resp. exponentielle) est vérifiée dans tout R n (cad ǫ), le point d équilibre est globalement asymptotiquement (resp. exponentiellement) stable.

44 p. 21/21 Locale ou globale? Les définitions précédentes correspondent à des comportements locaux autour des points d équilibre La stabilité globale implique que toutes les trajectoires de phase convergent vers ce PE Définition 1.7 (Stabilité globale) Si la condition de stabilité asymptotique (resp. exponentielle) est vérifiée dans tout R n (cad ǫ), le point d équilibre est globalement asymptotiquement (resp. exponentiellement) stable. Un PE globalement asymptotiquement stable est obligatoirement unique.

Partie 2 : preuve de stabilité

Partie 2 : preuve de stabilité vincent.mahout@insa-toulouse.fr p. 1/29 Théorie de Lyapunov pour les Σ autonomes Partie 2 : preuve de stabilité Vincent MAHOUT vincent.mahout@insa-toulouse.fr p. 2/29 1er méthode de Lyapunov : principe

Plus en détail

... quelques éléments

... quelques éléments vincent.mahout@insa-toulouse.fr p. 1/25 Théorie de Lyapunov pour les Σ non linéaires non autonome... quelques éléments Vincent MAHOUT vincent.mahout@insa-toulouse.fr p. 2/25 Où est le problème? Que se

Plus en détail

Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques

Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques Stabilité des systèmes dynamiques 2 ➊ Concept crucial pour la commande des systèmes dynamiques Stabilité des systèmes

Plus en détail

Mécanique analytique 18 novembre 2013

Mécanique analytique 18 novembre 2013 Mécanique analytique 18 novembre 2013 De nombreuses questions peuvent être traitées indépendamment. Prière de rédiger les réponses aux différents problèmes (I, II et III) sur des feuilles séparées. I.

Plus en détail

Feuille 7 - Equations différentielles

Feuille 7 - Equations différentielles Feuille 7 - Equations différentielles Exercice 1. Un exemple d introduction On considère le problème suivant : {. X(t) = F(X(t)), X(0) = X ini, où X(t) est un vecteur (qui dépend du temps) et F une application

Plus en détail

Corrigé 4. Points fixes, linéarisation

Corrigé 4. Points fixes, linéarisation Corrigé 4. Points fixes, linéarisation Exercice 6. Systèmes dynamiques linéaires Soit le système dynamique linéaire ẋ = Ax, A. = [ ] 0 0 et x = (x, y) La solution de condition initiale x 0 est x(t) = e

Plus en détail

Mécanique Analytique, Partiel 1

Mécanique Analytique, Partiel 1 Mécanique Analytique, Partiel 1 009-010 Epreuve du avril 010 ; durée : 110 minutes ; sans document ni calculatrice Exercice 1 : Lagrange (6 points) Soit un système de trois masses m a, m b et M dans un

Plus en détail

Analyse Numérique Equations différentielles ordinaires

Analyse Numérique Equations différentielles ordinaires 1 Master Mathématiques et Applications 1ère année Aix-Marseille Université Année 2010-2011 Analyse Numérique Equations différentielles ordinaires Exercice 1 Résoudre les équations différentielles suivantes

Plus en détail

Faculté des sciences et ingénierie (Toulouse III) Département de mathématiques M1 MAF Introduction à la modélisation

Faculté des sciences et ingénierie (Toulouse III) Département de mathématiques M1 MAF Introduction à la modélisation Faculté des sciences et ingénierie (Toulouse III) Année universitaire Département de mathématiques M1 MAF 2012-2013 Introduction à la modélisation TP n o 4 Introduction à la résolution approchée d EDOs

Plus en détail

Plan Général du Cours Stabilité des structures

Plan Général du Cours Stabilité des structures 1 Plan Général du Cours Stabilité des structures Définition de la stabilité, bifurcation Système à un degré de liberté Système à nombre fini de ddls Extension au continu (interface fluide,...) Applications

Plus en détail

Dynamique et Vibrations

Dynamique et Vibrations Plan du cours Chapitre 5: Vibrations Institut Montpelliérain Alexander Grothendieck Université de Montpellier Cours HLME 301 2015-2016 Plan du cours Introduction 1 Introduction 2 Motivations Introduction

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

G x n+1. = y n, = y n+1.

G x n+1. = y n, = y n+1. Phénomènes Non-Linéaires et Chaos I Exercices 2008 Série 1. Fonctions Génératrices Exercice 1. Billard (Stade de Bunimovich) Soit une application T : (x n,y n ) (x n+1,y n+1 ). On appelle fonction génératrice

Plus en détail

Etude du mouvement du pendule couplé

Etude du mouvement du pendule couplé Etude du mouvement du pendule couplé Matthieu Schaller matthieu.schaller@epfl.ch 12 novembre 2007 Table des matières 1 Introduction 2 2 Equations du mouvement 2 2.1 Formalisme de Lagrange.....................

Plus en détail

Systèmes Linéaires: Analyse moderne des systèmes dynamiques 5: Stabilité des systèmes dynamiques. Antoine Drouin. October 2013

Systèmes Linéaires: Analyse moderne des systèmes dynamiques 5: Stabilité des systèmes dynamiques. Antoine Drouin. October 2013 Systèmes Linéaires: Analyse moderne des systèmes dynamiques 5: Stabilité des systèmes dynamiques Antoine Drouin (drouin@recherche.enac.fr) ENAC/MAIAA October 2013 Antoine Drouin (ENAC/MAIAA) Systèmes Linéaires

Plus en détail

Courbes planes parametrées et polaires

Courbes planes parametrées et polaires CPGE My Youssef, Rabat Õæ k QË@ á Ô g QË@ é

Plus en détail

Cours de mécanique. M13-Oscillateurs

Cours de mécanique. M13-Oscillateurs Cours de mécanique M13-Oscillateurs 1 Introduction Nous étudierons dans ce chapitre en premier lieu l oscillateur harmonique solide-ressort horizontale, nous introduirons donc la force de rappel du ressort

Plus en détail

MECA MÉCANIQUE RATIONNELLE

MECA MÉCANIQUE RATIONNELLE L G L G Août 011 MECA0003-1 - MÉCANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Durée de l épreuve : 4h. Répondez aux différentes questions sur des feuilles séparées. Indiquez sur chacune de vos feuilles vos

Plus en détail

Arrivée eau Départ eau

Arrivée eau Départ eau Etude d exemples Système intégrateur 1 er exemple Eau stockée Niveau maxi régulation Niveau mini Pompe Arrivée eau Départ eau Autre exemple q e (t) h(t) variable d entrée : q e (t) variable de sortie :

Plus en détail

Mat307 Feuille d exercices 2 : équations différentielles UGA

Mat307 Feuille d exercices 2 : équations différentielles UGA Mat37 Feuille d exercices 2 : équations différentielles UGA Exercice 1. 1. Résoudre l équation différentielle suivante x x + cos(t ; x( 1. 2. Tracer la solution et étudier son comportement en et en +.

Plus en détail

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens.

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens. I - Systèmes oscillants et mouvement sinusoïdal 1) Système mécanique oscillant Oscillateurs On appelle système mécanique oscillant un système matériel pouvant évoluer de part et d'autre d'une position

Plus en détail

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système

Plus en détail

UGA 2016/17 Feuille d exercices 1 : courbes mat307

UGA 2016/17 Feuille d exercices 1 : courbes mat307 UGA 2016/17 Feuille d exercices 1 : courbes mat307 Exercice 0, rappels de géométrie analytique, complexes et trigonométrie 1. Déterminer la pente, le vecteur directeur et l équation cartésienne de la tangente

Plus en détail

Représentation d'état:

Représentation d'état: Représentation d'état: Analyse moderne des systèmes dynamiques 4: Stabilité des systèmes dynamiques Antoine Drouin (drouin@recherche.enac.fr) ENAC/MAIAA Octobre 2014 Antoine Drouin (ENAC/MAIAA) Représentation

Plus en détail

Par Jean-Christophe Yoccoz

Par Jean-Christophe Yoccoz Une erreur féconde du mathématicien Henri Poincaré, Par Jean-Christophe Yoccoz UPJV, Amiens, le 8 février 2012 Préconférence par Véronique Martin, Samuel Petite, Emmanuelle Sebert, Barbara Schapira, Gabriel

Plus en détail

Méthodes numériques de résolution d équations différentielles

Méthodes numériques de résolution d équations différentielles Méthodes numériques de résolution d équations différentielles Motivation. Quelques exemples de problèmes différentiels Modèle malthusien de croissance de population Modélisation de l évolution d une population

Plus en détail

Loi du moment cinétique

Loi du moment cinétique Loi du moment cinétique Cas d un point matériel, d un système de points matériels et d un solide en rotation autour d un axe fixe Introduction...3 I Quelques rappels sur la mécanique du solide...4 1 Les

Plus en détail

CHAPITRE 2. Courbes paramétrées

CHAPITRE 2. Courbes paramétrées CHAPITRE Courbes paramétrées Dans tout ce chapitre nous choisissons un repère du plan affine ce qui permet d identifier les points du plan avec les éléments de R (par leurs coordonnées) et les vecteurs

Plus en détail

Changement de référentiels

Changement de référentiels 1 MP*1-2015/2016 Changement de référentiels Une horloge est constituée d un pendule de longueur L, le fil étant sans masse, attaché en O au bout duquel est attachée en M une masse ponctuelle m. Il oscille

Plus en détail

Corrigé exercices Systèmes Dynamiques Master (M1) de Physique Feuille 1

Corrigé exercices Systèmes Dynamiques Master (M1) de Physique Feuille 1 Corrigé exercices Systèmes Dynamiques aster de Physique Feuille a Equation d Euler-Lagrange : d L d L mẋ dt dt V k sin[kx] mẍ + V k sin[kx] b La quantité de mouvement associée à x est p L/ ẋ, et l hamiltonien

Plus en détail

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu)

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu) Corrections 1 Paramétrage Cartésien Correction de l exercice 1.1 (La cycloïde) Soit (Γ) la courbe définie par la représentation x(t) = 3(t sin(t)), y(t) = 3(1 cos(t)). 1. x(t) et y(t) sont bien définies

Plus en détail

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document Examen de Mécanique Analytique Professeur: P. De Los Rios Epreuve du 2 février 27 - Durée: 4 heures - Sans document Exercice 1 Plan incliné (6 points On considère une masse m glissant sans frottement sur

Plus en détail

Mécanique C6 Loi du moment cinétique appliquée au solide

Mécanique C6 Loi du moment cinétique appliquée au solide Lycée Kerichen MPSI 2 2013-2014 Mécanique C6 Loi du moment cinétique appliquée au solide Dans le chapitre précédent, nous avons utilisé un nouvel outil bien pratique pour décrire le mouvement des systèmes

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

REPETITION 2: Mise en équations et linéarisation

REPETITION 2: Mise en équations et linéarisation Document mis à jour le 10 septembre 2009 Infos: gdrion@ulg.ac.be UNIVERSITÉ DE LIÈGE INSTITUT MONTEFIORE ANALYSE ET SYNTHÈSE DES SYSTÈMES Prof. R. Sepulchre - Prof E. Bullinger REPETITION 2: Mise en équations

Plus en détail

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE Hiver 2009 Remarques sur le texte. 1- Les définitions principales et les théorèmes

Plus en détail

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS Amphi 6 RAPPEL Mise en ligne des documents : PC 5 : Les fichiers.m matlab dont le corrigé : TD5d.m: http://www.ensta-paristech.fr/

Plus en détail

Deuxième séance de regroupement PHR004

Deuxième séance de regroupement PHR004 Deuxième séance de regroupement PHR4 Rappels de cours (Leçons 3 à 5) Commentaires sur les exercices Questions / Réponses Dynamique du point matériel Rappels On nomme "Référentiel" un système d'axes, pouvant

Plus en détail

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base MATHÉMATIQUES II Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base canonique (, ij) On notera o = (,) 00 l origine du plan Tout élément ( xy, ) de IP peut s interpréter

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

oscillateurs et ondes progressive

oscillateurs et ondes progressive oscillateurs et ondes progressive Ce cours reprend le cours de madame Grenier de 2007, il constitue une aide et en aucun cas une référence pour le concours! C est un résumé du cours de madame Grenier,

Plus en détail

Examen terminal (Éléments de correction)

Examen terminal (Éléments de correction) Université Rennes 1, ENS Cachan Bretagne Mercredi 25 avril 2012 Cours Équations différentielles 2 L3, Math 1ère année Examen terminal (Éléments de correction) Durée: 2 heures Examen sans document ni calculatrice.

Plus en détail

Gabriel Scherer, TS3 LE PENDULE PESANT

Gabriel Scherer, TS3 LE PENDULE PESANT Gabriel Scherer, TS3 LE PENDULE PESANT Rappels Données : 'l' est la longueur du pendule, et g l'accélération due à la pesanteur, considéré constante sur tout le mouvement du pendule. Période : Équation

Plus en détail

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S.

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Systèmes oscillants I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Les oscillateurs étudiés en terminale S sont : - le pendule pesant (simple) - le

Plus en détail

Thermodynamique et systèmes réactionnels : du rêve à la réalité. Denis Dochain CESAME Université catholique de Louvain, Belgique

Thermodynamique et systèmes réactionnels : du rêve à la réalité. Denis Dochain CESAME Université catholique de Louvain, Belgique Thermodynamique et systèmes réactionnels : du rêve à la réalité Denis Dochain CESAME Université catholique de Louvain, Belgique La thermodynamique est-elle utile pour l analyse des systèmes réactionnels?

Plus en détail

Compléments mathématiques : Vecteurs et Torseurs

Compléments mathématiques : Vecteurs et Torseurs Compléments mathématiques : Vecteurs et Torseurs 1 Rappels et compléments sur les vecteurs 1.1 Grandeurs physiques et vecteurs Les théories de la mécanique utilisent des grandeurs mécaniques qui peuvent

Plus en détail

Mathématiques - département MP, S2

Mathématiques - département MP, S2 Mathématiques - département MP, S 11 mars 006 Table des matières 1 Courbes paramétrées 1.1 Équation cartésienne, équation paramétrique, équation polaire 1.1.1 La droite.......................... 4 1.1.

Plus en détail

TP Oscillateur de torsion

TP Oscillateur de torsion TP Oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Exercice I. Linéarisation et stabilité

Exercice I. Linéarisation et stabilité Cours MAP434, Contrôle e moèles ynamiques Séance 3, 26 avril 217 Stabilisation. Temps optimalité Exercice I. Linéarisation et stabilité On consière (x(t), y(t)) solution u système ẋ = 1 (x 2 + y 2 ) ẏ

Plus en détail

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie Exercice 1: Pendule dans une voiture Un fil de plomb de longueur l, de masse m100g (figure 1) est suspendu

Plus en détail

Introduction à la théorie des systèmes dynamiques à temps discret

Introduction à la théorie des systèmes dynamiques à temps discret Introduction à la théorie des systèmes dynamiques à temps discret Anna Désilles 24 septembre 2003 Table des matières 1 Notions générales de la théorie des systèmes dynamiques 5 1 Introduction............................

Plus en détail

Différentielle seconde, extremums.

Différentielle seconde, extremums. Différentielle seconde, extremums Exercice 1 Soit A une matrice de taille n n Pour tout x R n, on pose qx) = x, Ax Montrer que q est C et calculer son gradient et sa matrice hessienne Indication On remarquera

Plus en détail

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques Résumé de Cours 18 Courbes et Coniques Ici, P est le plan euclidien rapporté à un repère orthonormé R := (O, i, j). I Etude affine Une courbe paramétrée est une application γ = M d un intervalle I dans

Plus en détail

EPREUVE DE MATHEMATIQUES GROUPEMENT B

EPREUVE DE MATHEMATIQUES GROUPEMENT B BTS SESSION 20 EPREUVE DE MATHEMATIQUES GROUPEMENT B EPREUVE DE MATHEMATIQUES GROUPEMENT B Exercice : 2 points Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution

Plus en détail

Travaux dirigés d OPTIMISATION. x cosy y sinx x y. (x,y) f(x,y) =

Travaux dirigés d OPTIMISATION. x cosy y sinx x y. (x,y) f(x,y) = 1 Dérivation 1.1 Exercice 2ème Année TR Travaux dirigés d OPTIMISATION Donner la dérivée première de la fonction 1.2 Exercice f : R 2 R 3 (x,y) f(x,y) = x cosy y sinx x y 1. Soit X un espace vectoriel

Plus en détail

Lycée Galilée Gennevilliers. chap. 10. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 10. Jallu Laurent ycée alilée ennevilliers chap. 10 Jallu aurent I. Présentation d oscillateurs libres... 1. e pendule simple... Définition... a période du pendule simple.... e pendule élastique... 3 Définition... 3 a période

Plus en détail

Recherche des extremums d une fonction

Recherche des extremums d une fonction DOCUMENT 32 Recherche des etremums d une fonction 1. Introduction De nombreuses situations issues des mathématiques, des sciences epérimentales ou de la vie économique et sociale conduisent à la recherche

Plus en détail

Cours de Robotique 2 (GMEE 322)

Cours de Robotique 2 (GMEE 322) Université Montpellier 2 24 / 25 Faculté des sciences Département EEA Master 2 : Robotique Cours de Robotique 2 (GMEE 322) Cours 3 Commande robuste par mode glissant A. Chemori LIRMM - UMR 556 6, Rue Ada

Plus en détail

2/19. Hayate Khennouf. Bouclage. fonctionnel. Laplace. Fonction de transfert. Associations 4/19. Hayate Khennouf. Bouclage. fonctionnel.

2/19. Hayate Khennouf. Bouclage. fonctionnel. Laplace. Fonction de transfert. Associations 4/19. Hayate Khennouf. Bouclage. fonctionnel. /9 2/9 Chapitre I : des systèmes un système est une boîte noire qui possède des entrées sur lesquelles nous allons pouvoir agir les actions et des sorties qui nous permettent d observer les réactions induites

Plus en détail

Feuille TD n 1 : Calcul approché

Feuille TD n 1 : Calcul approché Feuille TD n : Calcul approché Exercice. Convertir (.) 2 en hexadécimal, octal et décimal. Exercice 2. Proposer une méthode pour éviter la perte de précision dans les calculs suivants :. e x sin(x) cos(x)

Plus en détail

Cinématique du point

Cinématique du point Notes de Cours PS 91 Cinématique du point La cinématique du point est l étude du mouvement d un point matériel indépendamment des causes de ce mouvement. En pratique l approximation du point matériel peut

Plus en détail

TD Mécanique du solide

TD Mécanique du solide TPC2 TD Mécanique du solide Solide en rotation autour d un axe fixe Exercice n o 1 : Ordres de grandeur des moments cinétiques 1 Le moment d inertie de la Terre en rotation uniforme autour de l axe passant

Plus en détail

Baccalauréat S Polynésie juin 2004

Baccalauréat S Polynésie juin 2004 Baccalauréat S Polynésie juin 4 L utilisation d une calculatrice est autorisée. Du papier millimétré est mis à la disposition des candidats. EXERCICE 1 4 points Le laboratoire de physique d un lycée dispose

Plus en détail

COURBES PARAMÉTRÉES. t + 1. t +

COURBES PARAMÉTRÉES. t + 1. t + COUBES PAAMÉTÉES 1 Propriétés géométriques des courbes paramétrées Soit n = 2 ou 3 et une norme sur n Soit I un intervalle de Dénition 11 Soit k N et c : I n une application de classe C k sur I Alors c

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2015/2016 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0.

i=1 x iy i On a bien i=1 x2 i > 0 quand x 0. Chapitre 3 Produit scalaire, espaces vectoriels euclidiens 3.1 Produit scalaire, norme euclidienne Définition 3.1 Soit E un espace vectoriel réel. Un produit scalaire sur E est une forme bilinéaire symétrique

Plus en détail

Changement de référentiels

Changement de référentiels 1 Changement de référentiels Une horloge est constituée d un pendule de longueur L, le fil étant sans masse, attaché en O au bout duquel est attachée en M une masse ponctuelle m. Il oscille dans le référentiel

Plus en détail

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit Terminale S Chapitre 0 «Nombres complexes ème partie» Page sur 9 I) Forme exponentielle ) Argument du produit Propriété : Soient deux nombres complexes et d'arguments respectifs θ et θ. A B A B Alors un

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Equations Paraboliques

Equations Paraboliques Chapitre 3 Equations Paraboliques Nous allons nous intéresser dans ce chapitre à des équations dont le modèle est l équation de la chaleur : 3.1 t 1 u x = 0 associée à la donnée initiale : dans 0,T 3.

Plus en détail

affines à un pas est appelée équation affine aux différences linéaire, d ordre 1

affines à un pas est appelée équation affine aux différences linéaire, d ordre 1 EQUATIONS AUX DIFFÉRENCES (II/II) 1. Rappels théoriques : équations linéaires affines à un pas 1.1. Équations linéaires affines à un pas. Définition. Soient a R, a 0 et b R deux constants. L équation (1)

Plus en détail

Introduction Système, Equilibre et Particularités

Introduction Système, Equilibre et Particularités Introduction Système, Equilibre et Particularités Analyse et Commande des Systèmes Non Linéaires Cours SM II () Enseignant: Dr. Ph. Müllhaupt 1 / 14 Leçon 1 1 Systèmes avec entrées et sorties 2 Classe

Plus en détail

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50 Fonctions réelles de deux variables () Fonctions réelles de deux variables 1 / 50 1 Fonctions de deux variables réelles à valeurs dans R 2 Calcul différentiel 3 Extrema d une fonction de deux variables

Plus en détail

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1 ) «Evoluer de façon alternative et périodique» signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène

Plus en détail

ÉTUDE DU MOUVEMENT D UN MÉTRONOME AVEC MAPLE

ÉTUDE DU MOUVEMENT D UN MÉTRONOME AVEC MAPLE ÉTUDE DU MOUVEMENT D UN MÉTRONOME AVEC MAPLE DISCIPLINE : Mathématiques COURS : Calcul différentiel et intégral III (201-FEG-05) LOGICIEL UTILISÉ : Maple NATURE : Problème THÈME PRINCIPAL ABORDÉ : La modélisation

Plus en détail

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES E. S. I. E. E. Année 2013/2014 Mécanique du point SFP-1003 Contrôle final Temps : 3h Mercredi 15/01/2014 Sans documents - calculatrice autorisée E. Algré LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE

Plus en détail

Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés

Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés Cours 4 : Analyse de stabilité et de performances des systèmes linéaires bouclés Olivier Sename GIPSA-lab Septembre 2017 Olivier Sename (GIPSA-lab) Asservissement Septembre 2017 1 / 26 O. Sename [GIPSA-lab]

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

Courbes en coordonnées polaires

Courbes en coordonnées polaires Chapitre II Courbes en coordonnées polaires A Étude et tracé de courbes définies en coordonnées polaires On suppose le plan muni d un repère orthonormal O, ı, j ). A.1 Représentation d une courbe en coordonnées

Plus en détail

Chapitre II Oscillations libres amorties des systèmes à un seul degré

Chapitre II Oscillations libres amorties des systèmes à un seul degré Chapitre II Oscillations libres amorties des systèmes à un seul degré de liberté 1. Introduction : Oscillations libres amortis des mouvements oscillatoires dont l amplitude diminue au cours du temps jusqu

Plus en détail

Mécanique Chapitre 1 : Cinématique du point matériel

Mécanique Chapitre 1 : Cinématique du point matériel Lycée François Arago Perpignan M.P.S.I. 2012-2013 Mécanique Chapitre 1 : Cinématique du point matériel On se place dans le cadre de la mécanique classique (newtonienne) qui convient très bien pour expliquer

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

UFR des Sciences, Département EEA. M2 EEAII Parcours ViRob. Fabio MORBIDI

UFR des Sciences, Département EEA. M2 EEAII Parcours ViRob. Fabio MORBIDI UFR des Sciences, Département EEA M2 EEAII Parcours ViRob Fabio MORBIDI Laboratoire MIS! Équipe Perception et Robotique! E-mail: fabio.morbidi@u-picardie.fr! Semestre 9, 2014/2015 Plan du cours 1ère partie:

Plus en détail

Simulation numérique, contexte

Simulation numérique, contexte Introduction à la Simulation Numérique Jérémie Gressier Septembre 21 1 / 41 Plan 1 Présentation 2 Différences Finies 3 Intégration d un problème de Cauchy 4 Conclusion 2 / 41 Simulation numérique, contexte

Plus en détail

Exercices sur les Coniques

Exercices sur les Coniques Exercices sur les Coniques Christian CYRILLE 5 novembre 008 Racontez l odyssée d une jeune conique en mal d excentricité qui, échappée de ses foyers, y est ramenée par une amie de la directrice grâce à

Plus en détail

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies.

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies. COURS MA103 Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies Patrick Joly 1 Equation aux dérivées partielles : équation dont l inconnue est

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

A- MOUVEMENT CIRCULAIRE

A- MOUVEMENT CIRCULAIRE CHAPITRE 3 MOUVEMENTS PARTICULIERS A- Mouvement circulaire B- Mouvement oscillatoire Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 5-6 SVI-STU A- MOUVEMENT

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

PC 3 & 4 Commande d un drone multirotor

PC 3 & 4 Commande d un drone multirotor Présentation du système PC 3 & 4 Commande d un drone multirotor On souhaite concevoir un contrôleur pour piloter un drone multirotor (Fig.1) comportant huit hélices agencées comme précisé Fig.2. La masse

Plus en détail

Stabilité des systèmes dynamiques

Stabilité des systèmes dynamiques 225 Annexe B Stabilité des systèmes dynamiques Sommaire B1 Stabilité d un point fixe 225 B2 Stabilité des solutions périodiques 226 B21 La matrice de Monodromie 226 B22 La section de Poincaré 227 B23 Calcul

Plus en détail

(1) Valeurs propres réelles et distinctes négatives : noeud

(1) Valeurs propres réelles et distinctes négatives : noeud MODÉLISATION ET SIMULATION TP 6 : DESSIN QUALITATIF DES PORTRAITS DE PHASE (III/IV). Récapitulatif des différents cas () Valeurs propres réelles et distinctes négatives : noeud stable λ = 3, λ 2 = 0.8

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

MATHÉMATIQUES II. On appellera conique toute partie (vide ou non) de P ayant une équation de la forme

MATHÉMATIQUES II. On appellera conique toute partie (vide ou non) de P ayant une équation de la forme MATHÉMATIQUES II Dans tout le problème, P désigne le plan affine euclidien IR muni de son produit scalaire canonique, de son repère orthonormé canonique ( O ; i, j) de son orientation canonique et de son

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Les fonctions réciproques

Les fonctions réciproques DOCUMENT 28 Les fonctions réciproques 1. Introduction et définition Pour tout ensemble E, il existe une loi de composition naturelle sur l ensemble des applications de E dans E qui est la composition des

Plus en détail