Projet 1 : Résolution de l équation instationnaire de la chaleur 1D

Dimension: px
Commencer à balayer dès la page:

Download "Projet 1 : Résolution de l équation instationnaire de la chaleur 1D"

Transcription

1 Université Pierre et Marie Curie Paris 6 Projet Informatique scientifique en C++ Soutenance : 9 Mars 25 Nicoas Lantos Juie Panchon. Projet : Résoution de équation instationnaire de a chaeur D Probème physique et modéisation Considérons e probème d un mur d épaisseur, qui se trouve initiaement à une température uniforme θ (température de a chambre. À instant t =, a température extérieure (en x = monte brusquement à θ s > θ, vaeur maintenue constante par une source de chaeur. On suppose que a température à x = est gardée à sa vaeur initiae θ. La propagation de a chaeur dans e mur (de diffusivité thermique κ sera décrite par équation de a chaeur : t u κ 2 =, ( x2 avec inconnue u(x,t = θ(x,t θ, a condition initiae u (x = et es conditions aux imites de Dirichet : u(,t = θ s θ = u s, u(,t =, t >. (2 Anayse mathématique Q Cas du domaine infini : Pour un mur d épaisseur infinie ( on va chercher a soution sous a forme : u(x,t = f(η, avec η = x 2 κt. (3 Montrons que a fonction f vérifie EDO suivante : On a : η = x 2 κt donc η x = 2 κt et η t d 2 f + 2η df dη 2 dη =. = x2 8κt 2 η = x 4 κt 3/2 On a aors t = df η dη t x = 4 df κt 3/2 dη x = df η dη x = 2 κt df dη donc 2 u x 2 = x ( 2 κt df dη = 2 κt x ( df dη = 4κt d 2 f dη 2 Comme t u κ 2 x 2 =, on a aors x 4 df κt 3/2 dη κ d 2 f 4κt dη 2 = soit d 2 f dη 2 + 4xt 4 df κt 3/2 dη = c est-à-dire d2 f dη 2 + x df κt dη = On obtient donc: d 2 f df + 2η dη2 dη =.

2 2 En introduisant a fonction suivante, appeée fonction erreur erf(z = 2 π z e ζ2 dζ, (4 qui vérifie erf( = et erf( =, trouver a soution de équation de a chaeur pour : D après, et donc x u(x,t = [ erf( 2 ]u(,t. (5 κt d 2 f df + 2η dη2 dη = donc df dη = Ae η2 f(η = B + A η e s2 ds où A et B sont des constantes. Or f( = B et u(,t = pour tout t >, donc avec on obtient: et on a donc f( =. u(,t = [ erf( ]u(,t =. π 2. De pus erf( =, soit e s2 ds = Ainsi, f( = f( + A e s2 ds = f( + A Finaement, π 2 =, d où A = 2 π f(. f(η = f( 2 η f( e s2 ds = [ 2 η e s2 ds] f(. π π C est-à-dire u(x,t = [ erf(η] u(,t. Q2 Cas du domaine fini : Pour un mur d épaisseur finie, on va utiiser a décomposition en ondes simpes u(x,t = û k (tφ k (x, φ k (x = sin( kπ x. (6 Écrire et résoudre EDO vérifiée par chaque fonction û k : On a t (x,t = dû k dt (tφ k(x Comme Ainsi, φ k (x = sin( kπ x on a d 2 φ k dx 2 (x = (kπ 2 φ k (x. 2 u x 2 (x,t = û k (t d2 φ k dx 2 (x = ( kπ 2 û k (tφ k (x Or t κ 2 u x 2 = Donc EDO vérifiée pour chaque û k est : dû k dt (tφ k(x + κ( kπ 2 û k (tφ k (x =.

3 Résoution de cette EDO: dû k dt (tφ k(x + κ( kπ 2 û k (tφ k (x = donc û k (t = A k exp( κ( kπ 2 t, où κ = ici. On a, 2Vérifier que a soution de équation de a chaeur avec es conditions aux imites (2 s écrit sous a forme : u(x,t = ( x u s + ( ( kπ 2t A k exp φ k (x. (7 t (x,t = Et, us x (x,t = + A k exp Donc 2 u x 2 (x,t = ( ( kπ A k exp Ici κ =, on a: t = 2 u x 2 A k ( kπ 2 exp A k ( kπ ( 2 exp 2t ( ( kπ dφ k dx (x. ( kπ 2t φ k (x. 2t d 2 φ k dx 2 (x = A k ( kπ ( ( kπ 2 exp ( ( kπ 2t φ k (x + Vérifions que cette équation vérifie bien es conditions aux imites (2: Comme φ k ( = φ k ( =, on a u(,t = u s + ( A k exp ( kπ 2t φ k ( = u s et u(,t = ( A k exp ( kπ 2t φ k ( = A k ( kπ 2 exp ( ( kπ 2t φ k (x. 2t φ k (x =. 3 Montrons que A k = 2u s kπ. u(x,t = ( x u s + ( ( kπ A k exp 2t φ k (x. (8 Et, Donc = u(x, = ( x u s + A k sin( kπ x ( x u s = A k sin( kπ x C est une série de Fourier de coefficient A k qui est défini par : A k = /2 ( x u s sin( kπ [ ( x u s x dx ] kπ cos(kπ x + 2 u s cos( kπ x = 2 = 2u [ s ( x ] kπ cos(kπ x + 2u [ s (kπ 2 sin( kπ ] x = 2u s kπ kπ dx

4 Considérons a discrétisation du probème en espace et en temps [,] = On note u n m = u(x m,t n. M m= Résoution numérique [x m,x m + h], x m = mδx, m =,,...,M, δx = /M, (9 [,t max ] = N n= [t n,t n + δt], t n = nδt, δt = t max /N. ( Q3 Considérons e schéma expicite centré suivant : u n+ m La condition de stabiité du schéma est : u n m δt κ un m+ 2un m + u m j δx 2 =. ( κ δt δx 2 2 (2 Écrire un programme pour a résoution du probème de a propagation de a chaeur dans un mur d épaisseur finie. On prendra κ =, =, u s =, M = 5 points de discrétisation en espace et e pas de temps δt donné par (2. Tracer a soution numérique pour différents instants de temps et comparer avec a soution exacte (8 (une bonne approximation de cette dernière est obtenue en prenant es 2 premiers nombres d onde k. q3stabe.dat u :3 q3stabe.dat u : FIG. : Résoution de a propagation de a chaeur dans un mur d épaisseur finie. (En vert,a soution exacte (8; en rouge, a soution approchée en fonction de x. 2 Comparer égaement avec a soution (6 obtenue pour un domaine infini. Commenter es résutats pour t petit et pour t grand.

5 "q3.dat" u :3 "q3.dat" u : FIG. 2 : Résoution de a propagation de a chaeur dans un mur d épaisseur finie. En vert,a soution(6 obtenue pour un domaine infini; en rouge, a soution approchée en fonction de x. L erreur finae entre a soution numérique et a soution exacte sur e domaine infinie est de Nous avons ensuite afficher es erreurs:.8.6 q3stabeerr.dat u :2 q3stabeerr.dat u :3.4 essaierr.dat u 2: FIG. 3 : Erreurs entre e schéma et es soutions -.3 exactes en fonction du temps (en norme 2. (En vert, erreur avec a soution (6 obtenue pour un domaine fini; en rouge, erreur avec cee du domaine infini. FIG. 4 : Différence des erreurs. (err(finie- Dans es deux cas, après 4 itérations err(infinie( en fonction du nombre d itérations Pour a figure 3 on a seuement pris une petite période de temps, pour pouvoir observer évoution de erreur pour e domaine finie qui tend très rapidement vers. Pour e domaine infini, cette erreur décroît pour des temps petits, et augmente ensuite fortement. Comme e montre a figure 4, es erreurs pour des temps petits sont quasiment simiaires justqu à environ

6 a 3ième itération, avant d augmenter. Q4 Reprendre e programme précédent pour u s = et a condition initiae u (x = u(x, = sin( π x + 4 sin(π x. (3 Comparer a soution numérique avec a soution anaytique donnée par (7. Décrire amortissement des ondes présentes dans a condition initiae. 2 q4stabebis.dat u :3 q4stabebis.dat u : FIG. 5 : Résoution de a propagation de a chaeur dans un mur d épaisseur finie. graphe de a soution exacte identiquement nue (en vert et de a soution approchée (en rouge avec a condition initiae en sin et us= en fonction de x 8 q4stabeerr.dat u : FIG. 6 : Cacu de erreur en norme 2 entre a soution exacte et a soution approchée On remarque que a soution approchée converge vers a soution exacte.

7 2 q4stabeerr.dat u 3: FIG. 7 : Amortissement d une onde en fonction des itérations. On a recherché indice de a soution du maximum et on a affiché en fonction des itérations, a vaeur du schéma numérique pour cet indice. On observe ainsi amortissement. qui s estompe rapidement, en itérations. Q5 Ecrire e schéma impicite correspondant à ( et répondre aux questions Q3 et Q4 en utiisant ce schéma. Que est avantage du schéma impicite? On considère e shéma impicite suivant: Donc u n m = u n+ m u n m δt ( κ δt u n+ δx 2 m+ 2un+ m + u n+ m. u n+ m κ un+ m+ 2un+ m + u n+ m δx 2 =. Soit u n m = κ δt δt δx 2 un+ m+ + ( + 2κ δx 2 un+ m κ δt δx 2 un+ m. On met es conditions aux imites dans a matrice. + 2κ δt δx 2 κ δt δx 2 κ δt δx 2 κ δt + 2κ δt δx 2 δx 2 u n+ u n+. u n+ M u n+ M = u n u n. u n M u n M On résout ce système inéaire par a méthode LU.

8 "q53.dat" u :3 "q53.dat" u : FIG. 8 : Résoution de a propagation de a chaeur dans un mur d épaisseur finie avec un schéma impicite. ( Cas de a question 3 (en rouge, soution approchée. En vert a soution exacte..35 q5err.dat u :2 q5err.dat u : FIG. 9 : graphe pour LU (de a question 3 des erreurs en norme 2 entre a soution numérique et es 2 soutions exactes (en fonction du temps

9 2 q54.dat u :3 q54.dat u : FIG. : Résoution de a propagation de a chaeur dans un mur d épaisseur finie avec e schéma impicite en fonction de x. Cas de a question 4 7 q5err.dat u : FIG. : graphe pour LU (de a question 4 des erreurs en norme 2 entre a soution numérique et a soution exacte en fonction du temps. Résoution des questions 3 et 4 avec a condition de stabiité non vérifiée ( c est-à-dire avec cf=..

10 4e+32 q3instabe.dat u :3 q3instabe.dat u :4 3e+32 2e+32 e+32 -e+32-2e+32-3e+32-4e FIG. 2 : Cas de a question 3 ( cf=. en fonction de x.5e+34 q4instabe.dat u :3 q4instabe.dat u :4 e+34 5e+33-5e+33 -e e FIG. 3 : Cas de a question 4 (avec cf=. Dans es deux cas, question 3 ou 4, pour e schéma impicite appiquée avec un indice cf de. (juste au-dessus de a condition de stabiité on observe une exposion des résutats.

11 "q53.dat" u :3 "q53.dat" u : FIG. 4 : A titre de comparaison, voici a soution pour schéma impicite pour cf=. pour question3 en fonction de x. Soution approchée en rouge, soution exacte en vert Avantage du schéma impicite: Le schema impicite, comme nous observons pour ce cas, n a besoin d aucune condition de stabiite pour converger, contrairement au schema expicite. Ce resutat est ogique, dans e sens où cette méthode est pus difficie à impémenter: en effet pour a méthode directe e résutat est immédiat.pour e cas impicite, i faut en effet résoudre à chaque itération un système. Cea permet donc d augmenter e pas de discrétisation pour ainsi réduire e nombre d itération et par à-même e temps de cacu. Le temps de cacu est obtenu à aide de a commande: time./monprogrammecompié. Par exempe, on va comparer es méthodes impicite et expicite: Pour a méthode expicite de a question 3, avec e coefficient cf= (condition de stabiité maximae, on obtient arret par a condition d erreur entre deux itérations de i ( e-: nombre d itération = 28; temps rée correspondant = 2, 56 s ; temps CPU = 2.9 s. Pour a méthode impicite de a question 5, avec e coefficient cf=, et pour a même condition nombre d itération = 35; temps rée correspondant = 2, 7 s ; temps CPU =.26 s On observe que pour un temps physique proche, e nombre d itération est fois moindre, et e temps de cacu est fois moins important, ce qui prouve sur un exempe intéret de a méthode impicite par rapport à expicite.

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Lexmark Print Management

Lexmark Print Management Lexmark Print Management Optimisez impression en réseau et accès à vos informations avec une soution fexibe. Impression des documents sûre et pratique Fexibe. Libérez es travaux d impression à partir de

Plus en détail

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012 Master Actuariat-Finance Master Actuariat-Prévoyance Sociae Prof ABDELKADER SALMI 2012 Actuaire L étymoogie du mot "actuaire" est atine (comptabe, rédacteur des ivres de comptes acta), ce terme n'apparaît

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

MÉCANIQUE DES STRUCTURES

MÉCANIQUE DES STRUCTURES SCIENCES SUP Aide-mémoire IUT Licence Master MÉCANIQUE DES STRUCTURES Résistance des matériaux Arnaud Deapace Fabrice Gatuingt Frédéric Ragueneau AIDE-MÉMOIRE MÉCANIQUE DES STRUCTURES Résistance des matériaux

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Manuel d'utilisation de Wapam

Manuel d'utilisation de Wapam Manue de 'utiisateur de Wapam Tabe des matières 1Wapam, une recherche de motifs par automates pondérés...3 2Tutorie : un exempe simpe d'utiisation...3 Utiisation avec Rdisk...3 Utiisation sans Rdisk...6

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Une introduction à l analyse discriminante avec SPSS pour Windows

Une introduction à l analyse discriminante avec SPSS pour Windows Une introduction à anayse discriminante avec SPSS pour Windows Dominique DESBOIS INRA-ESR Nancy et SCEES 5 rue de Vaugirard, 7573 Paris Cedex 5. Fax : +33 49 55 85 00 Mé :desbois@jouy.inra.fr RÉSUMÉ :

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Equations aux dérivées partielles

Equations aux dérivées partielles Chapite 3 Equations aux déivées patiees 3.1 Qu est-ce qu une EDP? Soit u = u(x, y,... une fonction de pusieus vaiabes indépendantes en nombe fini. Une EDP pou a fonction u est une eation qui ie : es vaiabes

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

1.1.1 Signaux à variation temporelle continue-discrète

1.1.1 Signaux à variation temporelle continue-discrète Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

On ne peut pas entendre la forme d un tambour

On ne peut pas entendre la forme d un tambour On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

La fonction d onde et l équation de Schrödinger

La fonction d onde et l équation de Schrödinger Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Aide - mémoire gnuplot 4.0

Aide - mémoire gnuplot 4.0 Aide - mémoire gnuplot 4.0 Nicolas Kielbasiewicz 20 juin 2008 L objet de cet aide-mémoire est de présenter les commandes de base pour faire rapidement de très jolis graphiques et courbes à l aide du logiciel

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles

LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles E Chapitre I : appes générau. Chapitre 3 es câbes 38 Cacuer une structure : de a théorie à 'eempe Iustration au recto et photos ci-dessous : Mât haubané de mètres servant de soutien au tieu cassé de Doyon

Plus en détail

Onveutetudierl'equationdierentiellesuivante

Onveutetudierl'equationdierentiellesuivante Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

LES MÉTHODES DE POINT INTÉRIEUR 1

LES MÉTHODES DE POINT INTÉRIEUR 1 Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences

Plus en détail

Transferts thermiques en écoulements oscillants laminaires incompressibles

Transferts thermiques en écoulements oscillants laminaires incompressibles Internationa Journa of Refrieration 8 (005) 353 367 www.esevier.com/ocate/ijrefri Transferts thermiques en écouements osciants aminaires incompressibes Phiippe Nika*, Yannick Baiy, François Lanzetta Département

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

THEORIE DE LA RELATIVITE RESTREINTE : NOTION DE TEMPS PROPRE, DE TEMPS IMPROPRE ET DE SIMULTANEITE

THEORIE DE LA RELATIVITE RESTREINTE : NOTION DE TEMPS PROPRE, DE TEMPS IMPROPRE ET DE SIMULTANEITE THEORIE DE LA RELATIVITE RESTREINTE : NOTION DE TEMPS PROPRE, DE TEMPS IMPROPRE ET DE SIMULTANEITE. Introduction Dans la compréhension de la relativité restreinte (RR par la suite), beaucoup de difficultés

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. . MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision

Plus en détail

1 Introduction et modèle mathématique

1 Introduction et modèle mathématique Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant . INTRODUCTION On voit apparaître depuis queques années des codes de cacu de tenue à a mer des navires par a méthode des singuarités utiisant a fonction de Green de diffraction-radiation avec vitesse d

Plus en détail

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA La gestion de a reation cient au sein de a PME Laurent Warichet 2006 SOGID. Tous droits réservés Le CRM outi pour es PME? Contenu de a présentation Qu est-ce que e CRM? Pourquoi a gestion cient? CRM :

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales Incertitudes expérimentales F.-X. Bally et J.-M. Berroir Février 2013 Table des matières Introduction 4 1 Erreur et incertitude 4 1.1 Erreurs............................................. 4 1.1.1 Définition

Plus en détail