Equations aux dérivées partielles

Dimension: px
Commencer à balayer dès la page:

Download "Equations aux dérivées partielles"

Transcription

1 Chapite 3 Equations aux déivées patiees 3.1 Qu est-ce qu une EDP? Soit u = u(x, y,... une fonction de pusieus vaiabes indépendantes en nombe fini. Une EDP pou a fonction u est une eation qui ie : es vaiabes indépendantes (x, y,... a fonction "inconnue" u (vaiabe dépendante. un nombe fini de déivées patiees de u. F(x, y,..., u, u x, u y, 2 u,... = (3.1 x2 u est soution de EDP si, apès subsitution, a eation F(x, y,..., u, u x, u y, 2 u x 2,... = est satisfaite pou x, y,... appatenant à une cetaine égion Ω de espace des vaiabes indépendantes. y x Remaque Sauf mention contaie, on exige que a fonction u et es déivées patiees intevenant dans EDP soient continues su Ω. Les EDP inteviennent tès souvent dans es pobèmes physiques : en éectomagnétisme (équations de Maxwe, en mécanique des fuides (équation de Navie-Stokes, en mécanique quantique (équation de Schödinge i Ψ 2 t (x, t = 2 Ψ 2m (x, t+v(xψ(x, t,... x 2 59

2 6 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Exempe u x 2 u =avec u = u(x, y (équation de diffusion y2 u 1 (x, y =2x + y 2 soution dans tout R 2. u 2 (x, y =e x sin (y soution dans R 2. { u 3 (x, y = 1 x> e y2 4x soution dans Ω 4πx y R Fig. 3.1 u 3 (x, y avec x =2 u 3 (x, y dy = 1 4πx = 1 π =1 e y2 4x dy on pose u = e u2 du y 2 x

3 3.1. QU EST-CE QU UNE EDP? 61 Remaque 1 I = e u2 du ( ( I 2 = e u2 du e v2 dv = e (u2 +v 2 du dv =2π e 2 d = π Remaque 2 im x +u 3(x, y est a distibution de Diac. 2 u x u =où u = u(x, y y2 ( La fonction u : (x, y n x 2 + y 2 est soution dans R 2 \{} { Rq : Considéons coodonnées poaies θ ũ(, θ =u(x, y et 2 u x u y 2 = 2 ũ ũ ũ 2 θ 2 On cheche une soution ũ adiae, c est-à-die indépendante de θ. 2 ũ ũ = ũ = α (α R ũ( =α n (+β (β R u(x, y = α 2 n ( x 2 + y 2 + β Remaque Signification du Lapacien. 2 u x u =avec u = u(x, y y2 Soit ε> u(x ε, y =u(x, y ε u x (x, y+1 2 ε2 2 u x 2 (x, y+o( ε 3

4 62 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES u(x + ε, y =u(x, y+ε u x (x, y+1 2 ε2 2 u x 2 (x, y+o( ε 3 2 u u(x ε, y 2u(x, y+u(x + ε, y = x2 ε 2 +O(ε 2 u u(x, y ε 2u(x, y+u(x, y + ε = y2 ε 2 +O(ε 2 u x u u(x ε, y+u(x + ε, y+u(x, y ε+u(x, y + ε 4u(x, y = y2 ε 2 +O(ε Si u est soution de u =,aos: u(x, y = 1 [ ] u(x ε, y+u(x + ε, y+u(x, y ε+u(x, y + ε 4 u =signifie que a vaeu de u en un point est égae à a vaeu moyenne de u su es quate pus poches voisins (voi schéma. (x,y+ε (x ε,y (x+ε,y (x,y ε u ne peut pas ête extemum en (x,y. u est soution de 2 u x u =dans Ω. y2 Pus généaement, su un ouvet connexe, on monte que : u(x,y = 1 u(x, yd = 1 2π u(x + cos θ, y + sin θdθ 2πR C R (x,y 2π Pincipe du Maximum Soit u(x, y, une fonction soution de 2 u x u =dans un ouvet boné connexe Ω de y2 R 2. On note Ω a fontièe de Ω. On suppose de pus u continue dans Ω Ω qui est une égion femée du pan. Si u n est pas une fonction constante su Ω Ω aos a vaeu maximae de u et a vaeu minimae de u sont atteintes uniquement su Ω.

5 3.2. GÉNÉRALITÉS SUR LES EDP 63 (x,y C (x,y Exempe u :(x, y, z 1 x 2 + y 2 + z 2 est soution de u =dans R3 \{(,, } On peut considée ici anaogie avec une chage à oigine. 3.2 Généaités su es EDP Définition On appee ode d une EDP ode e pus éevé des déivées patiees intevenant dans EDP. Exempe u x + u y = 1e ode. Définition Si u et ses déivées patiees appaaissent sépaément et "à a puissance 1" dans EDP, cee-ci est dite inéaie. Exempe u = u(x, y u x + u y = 1e ode inéaie. u x + u +sinu = y 1e ode non-inéaie. u x + u u 2 y 2 = 2ème ode non-inéaie.

6 64 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Remaque cos ( xy 2 u u y2 x x = tan ( x 2 + y 2 1 e ode, inéaie, inhomogène. Pou une EDP } inéaie homogène : u 1 soution λu 1 + µu 2 est soution. u 2 soution 3.3 EDP inéaies du 1 e ode A(x, y u +B(x, y u +C(x, yu =D(x, y x y { inéaie est a fome a pus généae pou une EDP 1 e ode Exempe (1 u x + u y = du = u u u dx + dy = ( dy dx x y y Si dx et dy sont eiés pa dx dy =,aos du = Su chacune des coubes de a famie y x = ξ u ne dépend de que ξ. (ξ R, a fonction u est constante. Donc u(x, y =f(ξ =f(x y où f est une fonction abitaie d une seue vaiabe, de casse C 1 (R Les doites y x = ξ sont es caactéistiques de EDP considéée. y x (2 u x + y u y =avec u = u(x, y, est une EDP du 1e ode, inéaie, homogène. du = u u dx + x y dy = ( y dx + dy u y

7 3.3. EDP LINÉAIRES DU 1 ER ORDRE 65 Si du et dx sont eiés pa y dx + dy =,aosdu =. u est constante e ong des coubes y = ξe x. y ξ x Concusion La soution généae de u x + y u =est de a fome : y u(x, y =f(ye x où f est C 1 (R (3 x u x +2 u 2u = y du = u u dx + x y dy = u x dx + 1 ( 2u x u dy 2 x = u ( dx 12 x x dy + u dy Si dx et dy sont eiés pa dx 1 x dy =,aos du = u dy. 2 y x x = ξe y 2. Su chacune de ces coubes, u = cste.e y

8 66 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Concusion : La soution généae est de a fome : u(x, y =e y f Poposition ( xe y 2 Si on impose es vaeus de u su une coube Γ qui n est pas une caactéistique de EDP, aos on peut identifie a fonction f. y Γ x Si on impose : u(x, y ==ϕ(x (ϕ est donnée aos i vient : u(x, y ==f(x =ϕ(x( x R et pa suite : ( f ϕ et u(x, y =e y.ϕ xe y 2 d où : ( u (x, y =e y.ϕ xe y 2 Remaque Si on impose u(x, y ==ϕ(x uniquement su x [ a, b] aos : ( x à a zone hachuée, u(x, y =e y.ϕ xe y 2 En dehos de a zone hachuée, a soution est de a fome u(x, y =e y f(xe y 2 avec f indéteminée (comme on exige u continue, i faut que : im (x =ϕ (a x a f im (x =ϕ (b x b +f 3.4 Cassification des EDP inéaies du 2 nd ode, à coefficients constants A 2 u x 2 +B 2 u y x +C 2 u y 2 +D u x +E u y +Fu +G= Les tois pemies temes coespondent à a patie pincipae. A,B,...,G sont des constantes. Le type de EDP dépend du signe de B 2 4AC.

9 3.5. CONDITIONS AUX FRONTIÈRES ET PROBLÈME "BIEN POSÉ" 67 y x e -y/2 = a a b x x e -y/2 = b Cassification : Si B 2 4AC >, aos EDP est dite hypeboique. Si B 2 4AC =, aos EDP est dite paaboique. Si B 2 4AC <, aos EDP est dite eiptique. Exempe (i 2 u y 2 c2 2 u =avec c> x2 B 2 4AC = 4c 2 >. Ainsi équation des ondes est hypeboique. (ii u t u d 2 =avec d> x2 B 2 4AC =. Ainsi équation de a diffusion est paaboique. (iii 2 u x u y 2 = B 2 4AC = 4 <. Ainsi équation de Lapace est eiptique. (iv y 2 u x 2 2 u =: Equation de Ticomi. y2 y> EDP est hypeboique. y = EDP est paaboique. y< EDP est eiptique. 3.5 Conditions aux fontièes et pobème "bien posé" Soient u = u(x, y et une EDP vaide dans Ω domaine (ouvet connexe. Tois types de conditions aux fontièes existent : 1. On impose a vaeu de u su Ω. C est a condition de Diichet. 2. On impose a vaeu de u ( n = gad u. n. C est a condition de Neumann.

10 68 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES 3. On impose ces deux conditions su Ω. C est a condition de Cauchy. Remaque Si EDP est vaide dans tout espace, i n y a pas de fontièe. (On impose aos souvent des conditions à infini. Pobème "bien posé" Soit une EDP vaide dans Ω, munie de conditions aux fontièes. Le pobème est bien posé si : 1. i existe une soution de EDP satisfaisant es conditions fontièes (existence. 2. a soution doit ête unique (unicité. 3. a soution doit ête stabe pa appot aux conditions aux fontièes imposées (stabiité. Exempe Equation de Lapace en deux dimensions : 2 u x u =avec Ω={ <x< + ; y>} y2 Conditions aux fontièes : (Cauchy u(x, y ==f(x x R u (x, y ==g(x y x R Ω δω Remaque Si f = g = u g On consièe (i f(x = 1 x cos (nx n R, n N Aos u(x, y = 1 n cos(nxch(ny Losque n est gand, a condition u(x, y == 1 cos(nx diffèe peu de a condition n u(x, y ==. La soution, ee, diffèe beaucoup à cause du cosinus hypeboique, e pobème n est pas stabe et donc i est "ma posé".

11 3.6. EQUATION DES ONDES 69 Tabeau écapituatif Pou une EDP du second ode inéaie à coefficient constants, on a un pobème bien posé dans es cas suivants (conditions suffisantes : 3.6 Equation des ondes Type Fontièe Conditions Hypeboique ouvete Cauchy Paaboique ouvete Diichet ou Neumann Eiptique femée Diichet ou Neumann x R, 2 u t 2 c2 2 u x 2 = Soution généae : { ξ = x ct η = x + ct 2 U U(ξ,η =u(x, t ainsi = : fome canonique. ξ η U(ξ,η =f (ξ+g (η f,g sont des fonctions abitaies de casse C 2 (R u(x, t =f(x ct+g(x + ct Toute patie pincipae d une soution d une équation hypeboique peut ête mise sous cette fome. On impose es conditions aux imites : u(x, = φ(x, avecφ de casse C 2 (R u t (x, = ψ(x, avecψ de casse C1 (R Soution de d Aembet : u(x, t = 1 2 [φ(x ct+φ(x + ct] + 1 2c x+ct x ct ψ(sds En un point (x, t avec t>, avaeudeu(x, t dépend uniquement des vaeus de φ en x ct et x + ct et des vaeus de ψ dans intevae [x ct, x + ct]. L intevae [x-ct,x+ct] est dit ête intevae de dépendance du point (x,t. D un point de vue invese : es vaeus de u et de u t en (x = x,t =n infuent su u(x, t que si (x, t appatient à a zone hachuée. 3.7 Equation de diffusion Equation de diffusion su ensembe de a doite R u t u D 2 = (D> x2

12 7 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES t (x,t (x-ct, (x+ct, x t x Condition initiae : u(x, = φ(x avec x R, φ étant continue et bonée. On va monte que a soution est : u(x, t = + 1 φ(y e (x y2 4Dt 4πDt dy Poposition u(x, t ci-dessus est C su { <x<+,t>} On définit : G(x, t = 1 4πDt e x2 4Dt x R et t> G est a soution fondamentae ou "fonction de Geen" pou équation de Diffusion. On a : + G(x, t dx = 1, pou t>. On peut aos écie : u(x, t = + φ(yg(x y, t dy

13 3.7. EQUATION DE DIFFUSION 71 onde.nb Fig. 3.2 Soution de d Aembet à équation des ondes (x en hoizonta, ct en pofondeu dans e cas où φ =exp( 1 1 x 2 si x < 1 et sinon

14 72 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Remaques I s agit d un poduit de convoution. La "vaie" fonction de Geen est : g(x, t =H(t e x 2 4Dt 4πDt définie su R x R (g se éduit à G su R x R +. Démonstation On utiise a tansfomée de Fouie : En penant a tansfomée de Fouie, û(k, t = 1 + u(x, te ikx dx 2π u t u û D 2 = = x2 t D(ik2 û = û t = Dk2 û = û(k, t =û(k, e Dk2 t O, en notant ˆφ a tansfomée de Fouie de φ, û(k, = ˆφ(k donc û(k, t = ˆφ(ke Dk2 t u(x, t = F 1 [ ˆφ(ke Dk2t ] 1 1 = φ(y e (x y2 4Dt 2π 2Dt dy Rappe F 1 [e Dk2t ]= 1 e x2 4Dt 2Dt Remaques Cette démonstation pa a TF suppose que φ L 1, mais e ésutat este vai si φ n est que continue et bonée. + 1 Siφ(x est continue pa moceaux et bonée aos a fonction u(x, t = φ(y e (x y2 4Dt dy 4πDt est soution de équation : u t u D 2 x 2 =. Mais quand t +, a fonction u(x, t 1 2 (φ(x +φ(x +, quand x est un point de discontinuité de φ. u(x, t este C su { <x<+,t>}.

15 3.7. EQUATION DE DIFFUSION 73 ϕ(x u(x,t t= u(x,t> x a b a b x { > su [a, b] Siφ(x = aos u(x, t > x R (t > en dehos de [a, b] Cea coespond à une "vitesse de popagation infinie". Cas{ paticuie : 1 si x < 1 φ(x = si x > 1 On a aos (pou tout t> u(x, t = 1 { ( ( } 1 x (1 x ef 2 2 ef t 2 t (voi figue 3.3 où ef(x = 2 x e β2 dβ est a fonction eeu. π Remaque : im t + u(x =1,t=1 2 im t + u(x = 1,t= Equation de diffusion avec un teme souce On cheche à ésoude e pobème de diffusion en incuant un teme souce f(x, t u t u D 2 = f(x, t x R,t>,f continue x2 u(x, = φ(x x R Pa inéaité, on peut sépae e pobème en deux : u Pobème A t u D 2 =x R,t> x2 u(x, = φ(x x R u Pobème B t u D 2 = f(x, t x R,t>,f continue x2 u(x, = x R Pobème A : u(x, t = + φ(yg(x y, t dy

16 74 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Untited Fig. 3.3 Soution de équation de diffusion à t =,.1 et 1 dans e cas φ(x =1si x < 1 et si x > 1

17 3.7. EQUATION DE DIFFUSION 75 Pobème B : On empace e teme souce pa une condition initiae. v(x, t est soution de équation de diffusion. v Pobème B t D 2 v =x R,t>τ x2 v(x, t = τ =f(x, t = τ x R Soit v(x, t = τ a soution du pobème B. Poposition (Pincipe de Duhame v(x, t = τ = La fonction u définie pa u(x, t = Soution du pobème initia u(x, t = + φ(yg(x y, t dy + + t t G(x y, t τf(y, τ dy ( v(x, t, τdτ est soution du pobème B. + G(x y, t τf(y, τ dydτ Soution éémentaie (fonction de Geen de opéateu de diffusion Distibution dans R n (n N On appee D(R n ensembe des fonctions de R n dans C indéfiniment déivabes et à suppot boné. Exempe (n=3 ζ : R 3 R 1 exp( si <1 (x 1,x 2,x 3 ζ(x 1,x 2,x 3 = 1 2 si 1 = x x2 2 + x2 3 ζ D(R3 Définition On appee distibution de R n un éément de ensembe des fonctionnees inéaies et continues su D(R n. Exempe Soit f une fonction de R n C, ocaement sommabe. On peut ui associe une distibution éguièe T f tee que : T f,ϕ = f(x 1,..., x n ϕ(x 1,..., x n dµ(x 1...dµ(x n ϕ D(R n

18 76 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Distibution de Diac : δ : D(R n C ϕ(x 1,..., x n ϕ(,..., Déivées patiees dans D (R n Soit T D (R n ( ensembe des distibutions su R n. Aos, T x i,ϕ = T, ϕ x i ϕ D (R n C est a déivée patiee de a distibution. Remaques Soit T D (R n aos T δ =T Soit T D (R n, S D (R n. On suppose que T S existe. Aos Définition (T S = T S=T S x i x i x i Soit L un opéateu difféentie inéaie, d ode n (n N, à coefficients constants. Une distibution E de D (R n satisfaisant à : LE = δ est dite soution fondamentae de opéateu L. Remaque Si E est une soution fondamentae de L et si E D (R n est te que LE =,aos E+E est aussi soution fondamentae pou L. Poposition Tout opéateu difféentie inéaie à coefficients constants admet une soution fondamentae (dans D (R n. Poposition Soit L un opéateu difféentie à coefficients constants d ode n. Soit E une soution fondamentae de L(E D (R n /LE = δ. SoitF D (R n tee que E F existe dans D (R n aos a distibution U=E F est soution de LU = F.

19 3.7. EQUATION DE DIFFUSION Soution fondamentae de opéateu de diffusion Considéons a fonction : L= t D 2 x 2 = g : R 2 R (x, t H(t e x2 4Dt 4πDt H(t est a fonction de Heavyside. La fonction g(x, t étant ocaement sommabe su R 2, on peut ui asssocie une distibution éguièe notée T g. Cacuons T g,ϕ = g(x, tϕ(x, tdµ(xdµ(t ϕ D(R n 1 = e x2 4Dt ϕ(x, t dx dt 4πDt ( x D 2 t 2 T g : x R t [,+ [ ( x D 2 t 2 T g,ϕ = T g, ϕ ϕ t +D 2 x 2 = x R t [,+ [ e x2 ( 4Dt ϕ ϕ 4πDt t +D 2 x 2 dx dt x R t [,+ [ Pa intégation pa paties, e x2 4Dt 4πDt ϕ t ( + dx dt = im ε R ε = im ε I ε e x2 4Dt ϕ 4πDt t dt dx I ε = 1 16π x R t [,+ [ ( x 2 2t e x2 e x2 4Dε t 3 4Dt ϕ(x, t dx dt ϕ(x, ε dx 2 R 4πDε De même, x R t [,+ [ e x2 4Dt Apès deux intégations pa paties (vaiabe x, J ε = 1 16π x R t [,+ [ 2 ϕ dx dt = im 4πDt x2 ( x 2 2t 5 2 ε J ε 1 e x2 t 3 4Dt ϕ(x, t dx dt 2

20 78 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES e x2 4Dε I ε +J ε = ϕ(x, ε dx R 4πDε ( x 2 t 2 T g,ϕ = im I ε +J ε ε + = im ε + = im ε + = ϕ(, R R e x 2 4Dε ϕ(x, ε dx on pose y 2 = x2 4πDε 4ε e ϕ(2 εy, ε y2 dy π Donc, ( x 2 t 2 T g = δ dans D (R 2 où δ est a distibution de Diac : <δ,ϕ>= ϕ(,, ϕ D(R 2 T g est donc une soution éémentaie de opéateu de diffusion. Remaque ( Soit F D (R 2 dont e poduit de convoution avec T g existe, aos F T g satisfait t D 2 x 2 F T g =F. Cas paticuie : F est une distibution éguièe, notée T f, associée à une fonction f de R n C ocaement sommabe. F T g =T f T g =T f g ( t D 2 x 2 T f g =T f On peut aos die que : ( t D 2 x 2 (f g(x, t =f(x, t x R, t R Equation de diffusion su R + u t u D 2 x 2 = avec x R+, t R + On impose u(x =,t=, quand t>. La condition initiae est : u(x, = φ(x, x> On définit :

21 3.7. EQUATION DE DIFFUSION 79 ϕ(x u(x, u(x,t φ(x si x> ψ(x si x = φ( x si x< Remaque ψ( = 1 2 [ψ(+ +ψ( ] = Ψ(x x v v(x, t est soution de t D 2 v =,x R,t> x2 v(x, = ψ(x,x R ϕ(x ϕ(x,t x + v(x, t = g(x y, tψ(y dy v(x =,t> =

22 8 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES im t + v(x, t =ψ(x La estiction de v(x, t à x> est bien a fonction u(x, t echechée. Pou t>, x> : u(x, t = + g(x y, tψ(y dy = + (g(x y, t g(x + y, tφ(y dy Donc, u(x, t = 1 + (e (x y2 4Dt 4πDt e (x+y2 4Dt φ(y dy Cas paticuie φ(x =1pou x> u(x, t = 2 π x 4Dt e 2 d x = ef( 4Dt où ef(y = 2 π y e 2 d est a fonction eeu. 3.8 Equation de diffusion su un domaine spatia boné u t u D 2 = pou <x<, t> x2 u(x =,t=,t> u(x =, t =,t> u(x, = ϕ(x pou <x< On utiise a méthode de sépaation des vaiabes en posant u(x, t =f(xg(t. L équation de diffusion devient donc : f(xg (t Df (xy(t = 1 g (t D g(t = f (x = cste = λ f(x λ R { g (t = Dλg(t Soit f (x = λf(x On se amène donc à des équations difféentiees odinaies. x == f(g(t = x = = f(g(t = On ne etient que a soution f( = f( =, en ejetant a soution g(t =.

23 3.8. EQUATION DE DIFFUSION SUR UN DOMAINE SPATIAL BORNÉ 81 Ef.nb Fig. 3.4 Fonction ef ( x 4Dt en fonction de x et Dt

24 82 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Fonction f(x { f (x = λf(x La fonction f est soution du pobème f(x == f(x = = I s agit d un cas paticuie d un pobème pus généa : e pobème de Stum-Liouvie. Les vaeus de λ pou esquees i existe une soution non nue sont dites vaeus popes. Les fonctions f associées sont dites fonctions popes. Si λ =: f(x =ax + b f( = f( == a = b = λ =n est donc pas vaeu pope. Si λ< : λ = k 2 f(x =ae kx + be kx f( = f( == a = b = λ< n est donc pas vaeu pope. Si λ> : λ =+k 2 f(x =a cos kx + b sin kx f( = f( == a =et b sin k =donc k = k n = nπ avec n Z On a donc λ = λ n = n2 π 2 2 avec n N ( nπx Les fonctions popes sont donc f = f n = b sin avec n N. Fonction g(t g (t = Dλg(t = g(t =cste e λdt Pou n N, g(t =g n (t =c n e n2 π 2 2 Dt Soution généae ( u = u n (x, t =c n e n2 π 2 2 Dt nπx sin avec n N Afin de détemine es c n, on utiise a condition initiae u(x, = ϕ(x. Comme + ( u(x, t = c n e n2 π 2 2 Dt nπx sin n=1 I vient, u(x, t == + n=1 ( nπx c n sin = ϕ(x

25 3.8. EQUATION DE DIFFUSION SUR UN DOMAINE SPATIAL BORNÉ 83 ( mπx ϕ(xsin dx = n=1 = = 2 + n=1 + ( + ( nπx c n sin n=1 ( ( nπx c n sin n=1 c n δ n,m sin sin ( mπx ( mπx dx dx = 2 c m Donc c n = 2 ( nπx ϕ(xsin dx : i s agit des coefficients de Fouie de ϕ. La soution echechée est donc : + [ 2 ( ( nπx u(x, t = ϕ(xsin dx ]e n2 π 2 2 Dt nπx sin Conditions suffisantes Si, ϕ est continue su [,] ϕ est continue pa moceaux su [,] ϕ( = ϕ( = Aos + ( nπx c n sin convege unifomément et absoument ves ϕ(x su [,]. Unicité n=1 On mutipie es 2 membes équation de diffusion pa u. u u t u Du 2 x 2 = 1 u 2 u 2 t =Du 2 x 2 Pa intégation pa paties, on obtient : 1 u 2 2 [ u [u dx =D 2 x 2 =D u ] ( u 2 x] dx = D } {{ } x = Donc on a une fonction décoissante : ( u 2 dx x 1 u 2 (x, t dx 1 u 2 (x, dx 2 2 Soient u 1 (x, t et u 2 (x, t deux soutions du pobème. Soit v(x, t =u 1 (x, t u 2 (x, t aos v est soution de : v t D 2 v = pou <x<, t> x2 v(x =,t=,t>

26 84 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES v(x =, t =,t> v(x, = pou <x< O on a : 1 v 2 (x, t dx Donc : v =et u 1 = u 2. v 2 (x, dx = Exempes (a ϕ(x =x(π x u t 2 u =,avec <x<π x2 u(,t=u(π, t =,pou t> c n = 2 π ( nπx x(x πsin =4 1 ( 1n π π n 3 π u(x, t = 8 π 1 sin((2m 1x (2m 1 3 e (2m 12 Dt (b ϕ(x =x Remaque ϕ(x pou x = π π c n = 2 x sin(nx dx = 2 π n ( 1n u(x, t = ( 2 n=1 n ( 1n sin(nxe n2 Dt Remaque Retou { su a diffusion su tout R. u t u D 2 x 2 x R, t>u(x, = ϕ(x x R Ici pas de CL donc pas de estictions su k. + ( u(x, t = dk a(k cos(kx +b(k sin(kx e k2 Dt + ( o ϕ(x = dk a(k cos(kx+b(ksin(kx et ϕ(x = 1 + a(k = 1 ˆϕ(k dke ikx ˆϕ(k d où 2π 2π b(k = i ˆϕ(k 2π + u(x, t = dk ˆϕ(k e ikx e k2dt = 1 dξϕ(ξ dke ikx e ikξ e k2 Dt 2π 2π 1 + o dke ik(ξ x e k2dt = 1 e (x ξ2 4Dt 2π 2Dt

27 3.9. SOLUTION FONDAMENTALE DE L OPÉRATEUR DE HELMHOLTZ DANS R 2 85 u(x, t = + 1 dξϕ(ξ e (x ξ2 4πDt 4Dt t> 3.9 Soution fondamentae de opéateu de Hemhotz dans R 2 Soit : f : R 3 C tee que ( ( + k 2 2 f = x 2 1 +k 2 (k R On cheche E te que dans D (R 3 : ( + k 2 E = δ Rappe : δ, ϕ = ϕ(,, ϕ D(R x x 2 f(x 1,x 2,x 3 +k 2 f(x 1,x 2,x 3 3 Remaque f = f( fonction adiae ( + k 2 f = f = f (+ 2 f (+k 2 f( = On pose g( =f( donc g est soution de g (+k 2 g( =. cos k Apès cacus, on obtient : f( =C 1 Attention : 1 cos k et +C 2 sin k sont ocaement intégabes dans R 3. avec (C 1, C 2 C C 1 cos k ( sin k cos k sin k +C 2,ϕ = dx 1 dx 2 dx 3 C 1 +C 2 ϕ(x 1,x 2,x 3 R 3 1( + k 2 sin k ( + k 2 sin k,ϕ = = = = sin k, ( + k 2 ϕ d 3 sin k x ( + k 2 ϕ(x 1,x 2,x 3 ( ( + k 2 sin k ϕ(x 1,x 2,x 3 d 3 x en effectuant des intégations pa paties et ca ( + k 2 sin k =dans tout R 3.

28 86 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES ( + k 2 sin k = O avec O a distibution nue 2( + k 2 cos k ( + k 2 cos k,ϕ = = cos k, ( + k 2 ϕ d 3 sin k x ( + k 2 ϕ(x 1,x 2,x 3 ( ( + k 2 sin k ϕ(x 1,x 2,x 3 d 3 x L intégation pa paties ne mache pas ca es déivées patiees secondes de ne sont pas ocaement sommabes. d 3 cos k x ( + k 2 ϕ(x 1,x 2,x 3 = im ε, >ε = im ε I ε I ε = d 3 x >ε cos k ( + k 2 ϕ(x 1,x 2,x 3 cos k cos k dx 1 dx 2 dx 3 ( + k 2 ϕ(x 1,x 2,x 3 Rappe : d 3 cos k x ϕ = >ε >ε avec dσ ε = ε 2 sin θdθdϕ. ( cos k d 3 x ( cos k ϕ ϕ + =ε + ϕ Pou obteni cette égaité, on a utiisé e théoème de Geen. I ε = =ε ( cos k ϕ + ϕ ( cos k dσ ε (cos k dσ ε ( Soit dω =sinθdθdϕ cos k sin k cos k = k ϕ I ε = ε cos kε dω kε sin kε im ε =++( 4πϕ( ϕdω cos kε ϕdω ( + k 2 cos k = 4πδ dans D (R 3

29 3.1. ESPACE FONCTIONNEL 87 La soution fondamentae est donc : Remaques : ( + k 2 e±ikx = δ ( 4π 1 = 4πδ ( 1 = δ 4π cos k 4π 3.1 Espace fonctionne Soit [a, b] un intevae de R L 2 (a, b est ensembe des fonctions de caé sommabe su [a, b]. f(x 2 dµ(x < Remaque [a,b] Pou a constuction de L 2 (a, b, deux fonctions égaes pesque patout su [a; b] sont considéées comme identiques. L 2 (a, b est un espace vectoie de dimension. On peut muni L 2 (a, b de a nome suivante : f L 2 (a,b =( f(x 2 dµ(x 1 2 [a,b] Poposition L espace L 2 (a, b muni de a nome ci-dessus est un espace de Banach (Toute suite de Cauchy convege ves un éément de cet espace vectoie. L espace vectoie L 2 (a, b nomé est compet. La nome ci-dessus déive du poduit scaaie : (f,g L 2 (a,b = f(x g(xdµ(x Poposition L 2 (a, b estunespacedehibet. [a,b] Définition

30 88 CHAPITRE 3. EQUATIONS AUX DÉRIVÉES PARTIELLES Soit f 1,f 2,.. L 2 (a, b On dit que cette suite de fonctions convege en moyenne quadatique ves un éément f L 2 (a, b si : im f n f L n 2 (a,b = Poposition Soit φ 1,φ 2,... L 2 (a, b te que : 1. (φ n,φ m L 2 (a,b =si n m. 2. La seue fonction g L 2 (a, b tee que (g, φ n L 2 (a,b = n =1, 2,... est a fonction nue. Aos ensembe φ 1,φ 2,... fome une base othogonae de L 2 (a, b. Exempe ( πx Les fonctions sin, sin L 2 (,. ( 2πx, sin ( 3πx,... foment une base othogonae de Poposition f L 2 (a, b, soitφ 1,φ 2,... une base othogonae de L 2 (a, b. Les coefficients de fouie de f sont : C n = (f,φ n (φ n,φ n On monte que a séie + C n (fφ n convege en moyenne quadatique ves f : n=1 im p + p C n (fφ n f = L 2 (a,b n=1 Remaque La poposition ne dit pas que a somme convege simpement ves a fonction f, ise peut que : ( p im C n (fφ n (x f(x p + n=1

Cours de Mathématiques E.S.P.C.I Deuxième année 2013-2014. Elie Raphaël Polycopié des élèves rédigé à partir du cours

Cours de Mathématiques E.S.P.C.I Deuxième année 2013-2014. Elie Raphaël Polycopié des élèves rédigé à partir du cours Cours de Mathématiques E.S.P.C.I Deuxième année 2013-2014 Elie Raphaël Polycopié des élèves rédigé à partir du cours 2 Ce polycopié a été rédigé sous L A TEX2e par Julien Berthaud, Cyrille Boullier, Régis

Plus en détail

Analyse Discriminante Décisionnelle

Analyse Discriminante Décisionnelle 1 Anayse Disciminante Décisionnee Anayse Disciminante Décisionnee Résumé Une vaiabe quaitative Y à m modaités est modéisé pa p vaiabes quantitatives X j, j = 1,..., p. L objectif est a pévision de a casse

Plus en détail

L3 Phytem Outils mathématiques Correction du TD n o 7 Distributions

L3 Phytem Outils mathématiques Correction du TD n o 7 Distributions ENS de Cachan 13-14 L3 Phytem Outils mathématiques Coection du TD n o 7 Distibutions Execice 1. Soient p et q deux enties natuels. Calcule la distibution T = x p δ q où δ i est la déivée i ième de la mesue

Plus en détail

8. Équations aux dérivées partielles

8. Équations aux dérivées partielles 77 8. Équations aux dérivées partiees Beaucoup de probèmes de physique font intervenir a résoution d équations aux dérivées partiees. Nous aons étudier dans ce chapitre es équations es pus utiisées. Ce

Plus en détail

III Enonce du principe fondamental de la statique (ou P.F.S)

III Enonce du principe fondamental de la statique (ou P.F.S) Rèf : st Pincipe fondamental de la statique STI G.E. I Hypothèse de la statique En statique, les solides sont supposés géométiquement pafaits, indéfomables, homogènes et isotopes. Géométie : les aspéités,

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C.

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C. CHAPITRE 1 SUITES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autes sciences. Nous veons dans ce cous et les tavaux diigés dives exemples

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Cours d électromagnétisme EM15-Champ magnétique

Cours d électromagnétisme EM15-Champ magnétique Cous d électomagnétisme EM15-Champ magnétique Table des matièes 1 Intoduction 2 2 Action d un champ électomagnétique su une paticule chagée 2 2.1 Foce de Loentz.................................. 2 2.2

Plus en détail

Construire une image médicale

Construire une image médicale Vol. 10 hive pintemps 2015 6 Autefois, on passait des adiogaphies. Maintenant, on va aussi passe un examen pa scanne : la technique s appelle la tomodensitométie axiale. Dans les deux cas, ce sont des

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

INITIATION A LA MESURE ----

INITIATION A LA MESURE ---- INITIATION A LA MSUR ---- Le but de ce TP est : - de mesue la foce électomotice et la ésistance intene d'une pile, - d'évalue, en tenant compte des incetitudes de mesue et des caactéistiques de l'appaeil

Plus en détail

CHAPITRE II MAGNETOSTATIQUE

CHAPITRE II MAGNETOSTATIQUE Chapite : Magnétostatique CAPTRE MAGNETOTATQUE Une chage électique immobile cée un champ électique seulement; Une chage en mouvement (un couant) cée un champ électique et un champ magnétique. Définition

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic Équations aux Dérivées Partielles Pedro Ferreira et Sylvie Mas-Gallic 11 décembre 21 Table des matières 1 Introduction 3 1.1 Exemple d une équation aux dérivées partielles........... 3 1.2 Rappels sur

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Quantité de mouvement Les systèmes de masse variable

Quantité de mouvement Les systèmes de masse variable 3 ème os DYNAMIQUE Théoie Quantité de mouvement Les systèmes de masse vaiable Intoduction À pati du Moyen Âge, on s'est endu compte que la vitesse ne suffisait pas à explique toutes les caactéistiques

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

Chapitre I. Description des milieux continus

Chapitre I. Description des milieux continus Chapite I Desciption des milieu continus OBJET Ce chapite est consacé à la desciption des milieu continus. On intoduia les notions fondamentales de desciption du mouvement au sens de Lagange et d Eule,

Plus en détail

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance STTIQUE 1.- Quel est l objectif de la statique? Pou étudie les conditions d équilibe des solides indéfomables. Remaques : - Un solide est considéé indéfomable tant que les défomations estent faibles. -

Plus en détail

Chapitre VIII Ondes électromagnétiques et fibres optiques

Chapitre VIII Ondes électromagnétiques et fibres optiques Chapite VIII Ondes électomagnétiques et fibes optiques I Les Ondes Electomagnétiques II Les lois de l optique géométique III La fibe optique : un guide de lumièe I Les Ondes Electomagnétiques I.1 Le champ

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Actionneurs Electriques

Actionneurs Electriques Plan Actionneus éluctants Actionneus électodynamiques Actionneus électomagnétique Actionneus hybides ou éluctants polaisés Actionneus classiques 1 Actionneus éluctants ou machine à éluctance vaiable Pas

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Chapite 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Se epote à la bibliogaphie pou le détail des démonstations et la desciption de l expéience de Sten et Gelach. 3.1 Définitions a- Considéons

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Conduction électrique

Conduction électrique Conduction éectrique. Courant éectrique.1. Intensité Dans a première partie de ce cours nous nous sommes intéressés aux charges éectriques immobies (éectrostatique). Or i existe des miieux avec des charges

Plus en détail

Spé 2008-2009 Devoir n 8 OPTIQUE

Spé 2008-2009 Devoir n 8 OPTIQUE Spé 8-9 Devoi n 8 OPTIQUE ETRALE PSI 8 A Pou que deux ondes poduisent des inteféences, il faut qu elles soient cohéentes, c est-à-die igoueusement synchones Pou obteni expéimentalement cette condition

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Exemples d antennes (9)

Exemples d antennes (9) Exemples d antennes (9) II. Le pincipe des images : Pemet de considée le cas de souces placées au dessus d un sol qui peut ête assimilé à un conducteu pafait (en BF : σ >> ωε ). a) Cas d une antenne filaie

Plus en détail

TRAVAUX DIRIGES 2004-2005 Méca I :Mécanique des Structures CORRIGES TD 1 à 3

TRAVAUX DIRIGES 2004-2005 Méca I :Mécanique des Structures CORRIGES TD 1 à 3 Ecoe entae Pais - ous de Mécanique I Mécanique des Stuctues - TD-004-005 1 TRVUX DIRIGES 004-005 Méca I :Mécanique des Stuctues ORRIGES TD 1 à Ecoe entae Pais - ous de Mécanique I Mécanique des Stuctues

Plus en détail

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 Exercice 1. Déterminer les solutions aux problèmes homogènes suivants : (a) y (x) = x y(x) (b) y (x) = 1 x y(x) (c) y (x) = x 2 y(x)

Plus en détail

Exercices : 19 - Champ électrostatique

Exercices : 19 - Champ électrostatique 1 Execices : 19 - Champ électostatique Sciences Physiques MP 2015-2016 Execices : 19 - Champ électostatique A. Calculs de champ et de potentiel 1. Théoème de supeposition Une sphèe de ayon b pote une chage

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS.

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 1. DEFINITION Soit l'équation différentielle du second ordre à coefficients constants ay + by + cy = ϕ( x) ( I) a R, b

Plus en détail

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE CIRCUITS COUPLES PAR UTUELLE INDUCTANCE Philippe ROUX 4 CIRCUITS RLC COUPLES PAR UTUELLE INDUCTANCE PARTIE : PRESENTATION DES CIRCUITS COUPLES ) LES FLUX DES CHAPS AGNETIQUES DANS DEUX BOBINAGES COUPLES

Plus en détail

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques L3 PAPP Physique Quantique et applications UE A3 Chapite VII PLAN Moment cinétique de spin Addition de moments cinétiques I) Expéience de ten et Gelach (9) ) L expéience ) Valeus numéiques 3) Matices de

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Robot industriel IRB.60

Robot industriel IRB.60 Noguet - Lycée Blaise Pascal Colma - Robot industiel IRB - D apès Mécanique 1 P. Agati ED. Dunod - 24/02/05-1/5 EXERCICES D APPLICATION CINEMATIQUE Chapite 4 : Etude du mouvement ciculaie 1. Pésentation

Plus en détail

Système d ouverture de porte de TGV

Système d ouverture de porte de TGV Le sujet se compose de : TD MP-PSI REVISION CINEMATIQUE Système d ouvetue de pote de TGV 6 pages dactylogaphiées ; 2 pages d annexe ; 2 pages de document éponse Objet de l étude Le tanspot feoviaie, concuencé

Plus en détail

Distributions. Chapitre Espace fonctionnel Définition Fonctionnelle

Distributions. Chapitre Espace fonctionnel Définition Fonctionnelle 53 Chapitre 5 Distributions 5. Espace fonctionnel 5.. Définition On appelle espace fonctionnel un ensemble F de fonctions ayant une structure d espace vectoriel. L (IR) et L (IR) forment des espaces fonctionnels.

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Université 08 mai 1945 Guelma - Algérie. cours de MODELISATION DE LA PHYSIQUE DES FLUIDES ) par. Hisao FUJITA YASHIMA

Université 08 mai 1945 Guelma - Algérie. cours de MODELISATION DE LA PHYSIQUE DES FLUIDES ) par. Hisao FUJITA YASHIMA Univesité 8 mai 1945 Guelma - Algéie cous de MODELISATION DE LA PHYSIQUE DES FLUIDES pofessé pa Hisao FUJITA YASHIMA 29-21 - Le cous a été dédié à des modèles mathématiques de phénomènes atmosphéiques

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement LPHY 1113 B & D, Physique généale 1 - Leçon 4 (Mécanique, Eic Deleesnijde, www.eicd.be) L4.1 1. Intoduction (Benson 6.1) Leçon 4: Fottement On pose su une table hoizontale un objet de masse m. Si l'objet

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Extrema locaux (ou relatifs)

Extrema locaux (ou relatifs) Chapitre 3 Extrema locaux (ou relatifs) 3.0.77 DÉFINITION Soit f : U! R une fonction, U ouvert d un espace vectoriel normé E et a 2 U. On dit que f présente un minimum local (respectivement un maximum

Plus en détail

Transformation de Fourier

Transformation de Fourier 4 Chapitre 3 Transformation de Fourier 3. Définition et premières propriétés 3.. Définition Définition : Soit f une fonction de L (IR. On appelle transformée de Fourier de f la fonction de la variable

Plus en détail

Chap. 6 PROBLEMES D'ELECTROMAGNETISME

Chap. 6 PROBLEMES D'ELECTROMAGNETISME Chap. 6 PROBLEMES D'ELECTROMAGNETISME Poblème 1 Condensateu en égime vaiable (extait de l'examen S3SMPE 2002-2003) On considèe un condensateu plan à amatues ciculaies, de ayon a, distantes de d, alimenté

Plus en détail

Projet 1 : Résolution de l équation instationnaire de la chaleur 1D

Projet 1 : Résolution de l équation instationnaire de la chaleur 1D Université Pierre et Marie Curie Paris 6 Projet Informatique scientifique en C++ Soutenance : 9 Mars 25 Nicoas Lantos Juie Panchon. Projet : Résoution de équation instationnaire de a chaeur D Probème physique

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24)

Espaces de Sobolev. Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002. medp-sobolev.tex (2001nov24) Espaces de Sobolev Résumé du cours de MEDP Maîtrise de mathématiques 2001 2002 medp-sobolevtex (2001nov24) Sauf mention explicite du contraire, toutes les fonctions considérées seront à valeurs réelles

Plus en détail

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S MECA NI QUE L yc ée F.B UISS N PTS I MUVEMENT D UNE PARTICULE SUMISE A UNE F R C E C E N T R A L E C N S E R V A T I V E. A P P L I CA T I N A U X R B I T E S C I R C U L A I R E S PRELUDE Dans ce chapite,

Plus en détail

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Préface. Le but de ce cours est d introduire les transformées de Laplace et Fourier et d en présenter les applications les plus usuelles.

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

Mathématiques appliquées à la topographie - niveau 1

Mathématiques appliquées à la topographie - niveau 1 VILLE DE LIEGE INSTITUT DE TRAVAUX PUBLICS Enseignement de pomotion sociale Mathématiques appliquées à la topogaphie - niveau 1 Notes de cous povisoies Jean-Luc Becke Tigonométie plane Mathématiques appliquées

Plus en détail

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées.

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées. I- PREAMBULE : La mécanique des fluides est l étude du compotement des fluides (liquides et gaz) et des foces intenes associées. Elle se divise en statique des fluides, l étude des fluides au epos, qui

Plus en détail

Exercices du chapitre IX avec corrigé succinct

Exercices du chapitre IX avec corrigé succinct Exercices du chapitre IX avec corrigé succinct Exercice IX.1 Ch9-Exercice1 L équation différentielle du premier ordre admet comme solution x IR, y (x) = y(x) x 2, ϕ(x) = Ce x + x 2 + 2x + 2, C IR. A quoi

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

ANALYSE III. Hiver Calculer les dérivées partielles et le gradient de f pour tout point et le vecteur normal à S en 1 2 (2 2, 1, 1).

ANALYSE III. Hiver Calculer les dérivées partielles et le gradient de f pour tout point et le vecteur normal à S en 1 2 (2 2, 1, 1). Séie 1 ANALYSE III Hive 009-010 infomations: http://cag.epfl.ch sections IN + SC Execice 1. (1) Soit f(x, y, z) = x 4 + y + z 1. Quelle est la fome géométique de la suface S = f 1 (0)? Calcule les déivées

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse. Approximation des équations aux dérivées partielles, 24h de cours, 24h de TDs

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse. Approximation des équations aux dérivées partielles, 24h de cours, 24h de TDs Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Approximation des équations aux dérivées partielles, 24h de cours, 24h de TDs Marie Hélène Vignal Université Paul Sabatier, UPS,

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2 Cours de filière MAM, ISTIL deuxième année Ionel Sorin CIUPERCA Le but de ce cours est d introduire un outil très utilisé dans la modélisation mathématique

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS DIFFÉRENTIELLES ÉQUATIONS DIFFÉRENTIELLES Table des matières I Équations différentielles d ordre 1 2 I.1 Solution générale de l équation sans second membre....................... 2 I.2 Solution particulière de l équation

Plus en détail

Année universitaire 2012/2013

Année universitaire 2012/2013 Année univesitaie 1/13 Examen Electomagnétisme PEIP Aix-Maseille Univesité 15 janvie 13 5 poblèmes - ecto veso / Duée e l épeuve heues alculettes stanas autoisées / Fomulaie Page A4 autoisée 1. (4pts Quate

Plus en détail

Correction d examen. UNIVERSITÉ DE GABÈS A.U. : FACULTÉ DES SCIENCES DE GABÈS. Hedi Regeiba. Section: MRMa 1 Épreuve de : Analyse de Fourier

Correction d examen. UNIVERSITÉ DE GABÈS A.U. : FACULTÉ DES SCIENCES DE GABÈS. Hedi Regeiba. Section: MRMa 1 Épreuve de : Analyse de Fourier UNIVERSITÉ DE GABÈS A.U. : 205-206 FACULTÉ DES SCIENCES DE GABÈS Correction d examen. Hedi Regeiba. Section: MRMa Épreuve de : Analyse de Fourier Questions du cours. Il est évident que l application F

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail