[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution."

Transcription

1 Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. b. À l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 de α. c. Démontrer que. 5. Déterminer le signe de g(x) suivant les valeurs de x Partie2 Soit A la fonction définie et dérivable sur [0;+ [ telle que 1. Démontrer que pour tout réel x positif ou nul, A (x) a le même signe que g(x), où g est la fonction définie dans la partie En déduire les variations de la fonction A sur [0;+ [. Partie3 On considère la fonction f définie sur [0;+ [ par f On note(c) sa courbe représentative dans un repère orthonormé Pour tout réel x positif ou nul, on note : M le point de(c) de coordonnées (x ; f(x)), P le point de coordonnées (x ; 0), Q le point de coordonnées (0; f(x)). 1. Démontrer que l aire du rectangle OPMQ est maximale lorsque M a pour abscisse α. On rappelle que le réel α a été défini dans la partie Le point M a pour abscisse α. La tangente (T) en M à la courbe(c) est-elle parallèle à la droite (PQ)? Dans cette question, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation. Cours GAUTIER exercices révision TS exponentielle, suites, probabilité 1

2 Pondichéry avril 2011 Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure. On suppose que les lancers sont indépendants et que le joueur touche la cible à tous les coups. 1. Le joueur lance une fléchette. 5 points 0 point 0 point 3 points On note p 0 la probabilité d obtenir 0 point. On note p 3 la probabilité d obtenir 3 points. On note p 5 la probabilité d obtenir 5 points. On a donc p 0 +p 3 +p 5 =1. Sachant que et que déterminer les valeurs de p 0, p 3 et p 5 2. Une partie de ce jeu consiste à lancer trois fléchettes au maximum. Le joueur gagne la partie s il obtient un total (pour les 3 lancers) supérieur ou égal à 8 points. Si au bout de2 lancers, il a un total supérieur ou égal à 8 points, il ne lance pas la troisième fléchette. On note G 2 l évènement : «le joueur gagne la partie en 2 lancers». On note G 3 l évènement : «le joueur gagne la partie en 3 lancers». On note P l évènement : «le joueur perd la partie». On note p(a) la probabilité d un évènement A. a. Montrer, en utilisant un arbre pondéré, que. On admettra dans la suite que. b. En déduire p(p). 3. Pour une partie, la mise est fixée à 2 Si le joueur gagne en deux lancers, il reçoit 5. S il gagne en trois lancers, il reçoit 3. S il perd, il ne reçoit rien. On note X la variable aléatoire correspondant au gain algébrique du joueur pour une partie. a. donner les valeurs de X b. Donner la loi de probabilité de X. c. Déterminer l espérance mathématique de X. Le jeu est-il favorable au joueur? Cours GAUTIER exercices révision TS exponentielle, suites, probabilité 2

3 Nouvelle Calédonie novembre 2009 Dans un zoo, l unique activité d un manchot est l utilisation d un bassin aquatique équipé d un toboggan et d un plongeoir. On a observé que si un manchot choisit le toboggan, la probabilité qu il le reprenne est 0,3. Si un manchot choisit le plongeoir, la probabilité qu il le reprenne est 0,8. Lors du premier passage les deux équipements ont la même probabilité d être choisis. Pour tout entier naturel n non nul, on considère l évènement : T n : «le manchot utilise le toboggan lors de son n-ième passage.» P n : «le manchot utilise le plongeoir lors de son n-ième passage.» On considère alors la suite (u n ) définie pour tout entier naturel n 1 par : u n =p(t n ) où p(t n ) est la probabilité de l évènement T n 1. a. Donner les valeurs des probabilités p(t 1 ), p(p 1 ) et des probabilités conditionnelles p T1 (T 2 ), p P1 (T 2 ). b. Montrer que p(t 2 )=. c. Démontrer que pour tout entier n 1, u n+1 =0,1u n +0,2. d. À l aide de la calculatrice, émettre une conjecture concernant la limite de la suite (u n ). 2. On considère la suite (v n ) définie pour tout entier naturel n 1 par : v n =u n. a. Démontrer que la suite (v n ) est géométrique de raison. Préciser son premier terme. b. Exprimer v n en fonction de n. En déduire l expression de u n en fonction de n. c. Calculer la limite de la suite (u n ). Ce résultat permet-il de valider la conjecture émise en 1.e.? Antilles-Guyane juin 2011 Le plan complexe est muni d un repère orthonormé direct. On prendra 2cm pour unité graphique. On appelle J le point d affixe i. 1. On considère les points A, B, C, H d affixes respectives a= 3 i, b= 2+4i, c=3 i et h= 2. Placer ces points sur une figure, qui sera complétée au fur et à mesure de l exercice. Cours GAUTIER exercices révision TS exponentielle, suites, probabilité 3

4 2. Montrer que J est le centre du cercle C circonscrit au triangle ABC. Préciser le rayon du cercle C. 3. Calculer, sous forme algébrique, le nombre complexe En déduire que les droites (AH) et (BC) sont perpendiculaires. Dans la suite de l exercice, on admet que H est l orthocentre du triangle ABC, c està-dire le point d intersection des hauteurs du triangle ABC. 4. On note G le centre de gravité du triangle ABC. Déterminer l affixe g du point G. Placer G sur la figure. 5. Montrer que le centre de gravité G, le centre du cercle cironcscrit J et l orthocentre H du triangle ABC sont alignés. Le vérifier sur la figure. 6. On note A le milieu de [BC] et K celui de [AH]. Le point A a pour affixe a. Déterminer l affixe du point K. b. Démontrer que le quadrilatère KHA J est un parallélogramme. Pondichéry avril 2010 On considère la suite (u n ) n N définie par: u 0 =1 et pour tout n N, u n+1 = u n +n Calculer u 1, u 2 et u a. Démontrer que pour tout entier naturel n 4, u n 0. b. En déduire que pour tout entier naturel n 5, u n n 3. c. En déduire la limite de la suite (u n ) n N. 3. On définit la suite (v n ) n N par: pour tout n N, v n = 2u n +3n a. Démontrer que la suite (v n ) n N est une suite géométrique dont on donnera la raison et le premier terme. b. En déduire que: pour tout n N, u n = c. Soit la somme S n définie pour tout entier naturel n par: S n = Déterminer l expression de S n en fonction de n Cours GAUTIER exercices révision TS exponentielle, suites, probabilité 4

5 Centre étrangers juin 2010 Soit f la fonction définie sur l intervalle [0;+ [ par: f(x)= Le but de cet exercice est d étudier des suites (u n ) définies par un premier terme positif ou nul u 0 et vérifiant pour tout entier naturel n : u n+1 =f (u n ). 1. Étude de propriétés de la fonction f a. Étudier le sens de variation de la fonction f sur l intervalle [0;+ [. b. Résoudre dans l intervalle [0;+ [ l équation f(x)=x. On note α la solution. c. Montrer que si x appartient à l intervalle [0 ;α], alors f(x) appartient à l intervalle [0;α]. De même, montrer que si x appartient à l intervalle [α ; + [ alors f(x) appartient à l intervalle [α;+ [. 2. Étude de la suite (u n ) pour u 0 =0 Dans cette question, on considère la suite (u n ) définie par u 0 =0 et pour tout entier naturel n : u n+1 =f (u n ) a. représenter les courbes d équations y=x et y= f(x). Placer le point A0 de coordonnées (u 0 ; 0), et, en utilisant ces courbes, construire à partir de A 0 les points A 1, A 2, A 3 et A 4 d ordonnée nulle et d abscisses respectives u 1, u 2, u 3 et u 4. Quelles conjectures peut-on émettre quant au sens de variation et à la convergence de la suite (u n )? b. Démontrer, par récurrence, que, pour tout entier naturel n, 0 u n u n+1 α. c. En déduire que la suite (u n ) est convergente et déterminer sa limite. Cours GAUTIER exercices révision TS exponentielle, suites, probabilité 5

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6 Du papier millimétré est mis

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE BACCALAUREAT BLANC Série S MATHEMATIQUES SPECIFIQUE Coefficient 7 Durée 4 heures Cesujetcomporte 6pagesnumérotéesde1à6. Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques obligatoire Coefficient 7 Durée 4 heures Le sujet comporte 7 pages. L utilisation de la calculatrice est autorisée. Aucun document n est permis. Le candidat

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Août 2014 MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur Le sujet

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Devoir surveillé de terminales S1-Samedi 22 février durée 3h

Devoir surveillé de terminales S1-Samedi 22 février durée 3h Devoir surveillé de terminales S1-Samedi 22 février durée 3h Exercice 1 : Une urne A contient quatre boules rouges et six boules noires. Une urne B contient une boule rouge et neuf boules noires. Les boules

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 EXERCICE 0 points Commun à tous les candidats Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes c et c 2 représentatives de deux fonctions f et f 2 définies

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Baccalauréat S Polynésie juin 2007

Baccalauréat S Polynésie juin 2007 Baccalauréat S Polynésie juin 007 EXERCICE Commun à tous les candidats Pour réaliser une loterie, un organisateur dispose d une part d un sac contenant exactement un jeton blanc et 9 jetons noirs indiscernables

Plus en détail

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

4. Calculer. En déduire la nature du triangle DAC.

4. Calculer. En déduire la nature du triangle DAC. Nouvelle-alédonie novembre 2011 EXERIE 1 5 points ommun à tous les candidats Le plan complexe est muni d un repère orthonormal direct (O ; u, v). On prendra 1 cm pour unité graphique. 1. Résoudre dans

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats Eercice sur 5 points Cet eercice est commun à tous les candidats Soit f une fonction définie sur ]0 ; + [. On note C f sa courbe représentative dans un repère orthonormal représentée en annee. - La courbe

Plus en détail

Epreuve de Mathématiques - Durée : 4 heures.

Epreuve de Mathématiques - Durée : 4 heures. Lycée Saint-Exupéry BAC BLANC - Février 04 - Terminales S Epreuve de Mathématiques - Durée : 4 heures. Le sujet est composé de exercices communs à tous les candidats, d un exercice réservé aux candidats

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire Epreuve commune mathématiques TS mardi 4 avril 2017 Sujet obligatoire EXERCICE 1 Dans le plan muni d un repère orthonormé ( O, ı, j représentative de la fonction u définie sur l intervalle ]0 ; + [ par

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

DEVOIR COMMUN n 2 Mathématiques LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures

DEVOIR COMMUN n 2 Mathématiques LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures DEVOIR COMMUN n 2 Mathématiques T S LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation. Le sujet est composé

Plus en détail

Exercices de synthèse

Exercices de synthèse Exercices de synthèse Les exercices suivants sont regroupés par thème (Analyse, Géométrie, Probabilités Statistiques, Divers). Ils sont faits pour vous entraîner une fois que le cours est parfaitement

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée ... Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Bac Blanc de mathématiques du lycée Saint Sernin Page 1

Bac Blanc de mathématiques du lycée Saint Sernin Page 1 BAC BLANC DE MATHEMATIQUES DU LYCEE SAINT SERNIN Terminale S Durée : 4 heures février 01 Sujet : mathématiques L utilisation d une calculatrice est autorisée. Le sujet est composé de 4 exercices indépendants.

Plus en détail

DEVOIR SURVEILLÉ N 9

DEVOIR SURVEILLÉ N 9 DEVOIR SURVEILLÉ N 9 Devoir «type Bac» Le 20 mai 2015 Le plus grand soin doit être apporté aux calculs et à la rédaction Soulignez ou encadrez vos résultats Exercice 1 (5 points) On considère la fonction

Plus en détail

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller.

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller. Sujet + Corrigé ANNALES MATHÉMATIQUES BAC S PROBABILITÉS - 2016 SUJET 3 ANTILLES - GUYANE BAC S - 2016 Correction Réalisée Par Alain PILLER alainpiller.fr Sujets Bac Maths 2016 Annales Mathématiques Bac

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014

Baccalauréat S Antilles-Guyane 11 septembre 2014 Durée : 4 heures Baccalauréat S Antilles-Guyane 11 septembre 2014 EXERCICE 1 6 points Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue divers tests

Plus en détail

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC Session 2014 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures Coefficient : 7 MATERIEL AUTORISE OU NON AUTORISE

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques spécialité Coefficient 9 Durée 4 heures Le candidat doit rédiger l exercice de spécialité sur une copie à part Le sujet comporte 5 pages. L utilisation de

Plus en détail

Baccalauréat S Polynésie juin 2009

Baccalauréat S Polynésie juin 2009 Baccalauréat S Polynésie juin 2009 EXERCICE 1 4 points Une entreprise fabrique des lecteurs MP3, dont 6 % sont défectueux. Chaque lecteur MP3 est soumis à une unité de contrôle dont la fiabilité n est

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

Mathématiques obligatoires Terminales S, , Lycée Newton

Mathématiques obligatoires Terminales S, , Lycée Newton Mathématiques obligatoires ---3- Terminales S, -3, Lycée Newton Exercice. reservé aux élèves qui ne suivent pas l enseignement de spécialité 5 points Un joueur lance une bille qui part de A puis emprunte

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 015 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 7 pages numérotées

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

,=LESfCOMPLEXESfAUfBACf2013e

,=LESfCOMPLEXESfAUfBACf2013e ,=LESfCOMPLEXESfAUfBACf0e Antilles-Guyane septembre 0 5 points Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) On considère les points A, B et C d affixes respectives A i ; B i ;

Plus en détail

DEVOIR DE VACANCE TS

DEVOIR DE VACANCE TS DEVOIR DE VACANCE TS EXERCICE 1 Partie A Un grossiste achète des boîtes de thé vert chez deux fournisseurs. Il achète 80% de ses boîtes chez le fournisseur A et 20% chez le fournisseur B. 10% des boîtes

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES. Série S. Enseignement de spécialité

BACCALAUREAT GENERAL MATHEMATIQUES. Série S. Enseignement de spécialité Lycée L Essouriau Session 2013 BACCALAUREAT GENERAL Session 2013 MATHEMATIQUES Série S Enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche

Plus en détail

Bac Blanc Terminale S - Février 2014 Épreuve de Mathématiques (durée 4 heures)

Bac Blanc Terminale S - Février 2014 Épreuve de Mathématiques (durée 4 heures) Bac Blanc Terminale S - Février 014 Épreuve de Mathématiques (durée 4 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Mathématiques obligatoires Terminales S, , Lycée Newton

Mathématiques obligatoires Terminales S, , Lycée Newton Mathématiques obligatoires -6-05-3- Terminales S, 0-03, Lycée Newton Exercice. reservé aux élèves qui ne suivent pas l enseignement de spécialité 5 points Les résultats seront arrondis à 0 près. On s intéresse

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Baccalauréat S Asie 16 juin 2015

Baccalauréat S Asie 16 juin 2015 Exercice 1 Baccalauréat S Asie 16 juin 15 A. P. M. E. P. Les trois parties de cet exercice sont indépendantes. Les probabilités seront arrondies au millième. Partie A Un concurrent participe à un concours

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui ont suivi la spécialité Mathématiques Il comporte

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Bac ES Centres étrangers juin 2010

Bac ES Centres étrangers juin 2010 Bac ES Centres étrangers juin 2010 EXERCICE 1 Pour chacune des questions, une seule des trois réponses a, b ou c est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à

Plus en détail

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC MATHEMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 5 pages numérotées de à 5 Les calculatrices sont autorisées conformément

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

Mars 2006 Baccalauréat blanc TGM

Mars 2006 Baccalauréat blanc TGM Exercice (5 points). Le plan est muni d un repère orthonormal (; u, v ).. Résoudre dans C l équation d inconnue z : z 2 2z + 5 = 0 2. Soit P le polynôme défini par P (z) = z 3 4z 2 + 9z 0. (a) Démontrer

Plus en détail

Kooli Mohamed Hechmi

Kooli Mohamed Hechmi Equations à coefficients complexes 4 eme Sc Expérimentales Dans tous les exercices le plan complexe P est rapporté à un repère orthonormé direct,,. Exercice 1 Résoudre dans l ensemble C des nombres complexes

Plus en détail

Baccalauréat ES (spécialité) Polynésie septembre 2011

Baccalauréat ES (spécialité) Polynésie septembre 2011 Baccalauréat ES spécialité Polynésie septembre EXERCICE Le plan est muni d un repère orthonormal O, ı, j d unité graphique cm. 6 points On s intéresse dans cet exercice à la fonction f définie sur l ensemble

Plus en détail

TS MARINE DEVOIRS DE MATHEMATIQUES SUJETS

TS MARINE DEVOIRS DE MATHEMATIQUES SUJETS TS MARINE 2011-2012 DEVOIRS DE MATHEMATIQUES SUJETS DS1 21/09/2010 page 2 (Complexes forme algébrique) DV 06/10/2010 page 3 (Suites) DS2 19/10/2011 page 4-5 ( Suites - Complexes) DS3 16/11/2011 page 6-8

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

55 questions incontournables

55 questions incontournables 55 questions incontournables 1 On considère la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n par : u n+1 = u n + 1. Montrer que la suite est à termes positifs et qu elle est croissante.

Plus en détail

BBBBBBBBBNNNVVRRVVNNNBBBBBBBBB

BBBBBBBBBNNNVVRRVVNNNBBBBBBBBB S Devoir n 7 lundi 9 mars 05 Eercice : ( points) Soient A, B,C et D des points situés sur le cercle trigonométrique associés respectivement au réels:. a. Déterminer les réels de qui correspondent au points

Plus en détail

BACCALAURÉAT BLANC LYCEE DAUDET SESSION DE 2016 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES COEFFICIENT : 7

BACCALAURÉAT BLANC LYCEE DAUDET SESSION DE 2016 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES COEFFICIENT : 7 BACCALAURÉAT BLANC LYCEE DAUDET SESSION DE 2016 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES COEFFICIENT : 7 Ce sujet comporte 6 pages numérotées de 1 à 6 L utilisation d une calculatrice est

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 9 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Baccalauréat L 2001 L intégrale de juin à septembre 2001

Baccalauréat L 2001 L intégrale de juin à septembre 2001 Baccalauréat L 2001 L intégrale de juin à septembre 2001 Antilles-Guyane juin 2001............................... 3 Métropole juin 2001..................................... 5 Métropole septembre 2001..............................

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2012 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6. Du papier millimétré est mis

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 013-014 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

Baccalauréat S L intégrale de septembre 2010 à juin 2011

Baccalauréat S L intégrale de septembre 2010 à juin 2011 Baccalauréat S 2011 L intégrale de septembre 2010 à juin 2011 Pour un accès direct cliquez sur les liens bleus Antilles Guyane septembre 2010........................ 3 La Réunion septembre 2010.............................

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Cercles et paraboles

Cercles et paraboles Travaux pratiques de Mathématiques Sujet 027 Cercles et paraboles Objectif : Il s agit de déterminer, dans certains cas particuliers, les conditions pour qu une parabole et un cercle soient tangents l

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Baccalauréat ES Polynésie 13 septembre 2012

Baccalauréat ES Polynésie 13 septembre 2012 Baccalauréat ES Polynésie 13 septembre 01 EXERCICE 1 Commun à tous les candidats 4 points Le tableau ci-dessous représente l évolution de l indice du PIB de la Chine de 1985 à 005, base 100 en 1985 année

Plus en détail

MATHÉMATIQUES. Série : S Enseignement spécifique

MATHÉMATIQUES. Série : S Enseignement spécifique BAC BLANC 19 MARS 2013 MATHÉMATIQUES Série : S Enseignement spécifique Durée de l épreuve : 4 heures L utilisation d une calculatrice est autorisée Le sujet comporte 6 pages Le candidat doit traiter les

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4 BACCALAURÉAT BLANC Lycée JANSON DE SAILLY MATHÉMATIQUES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT 7 Ce sujet comporte 4 pages numérotées de 1 à 4 L utilisation de la calculatrice est autorisé SPÉCIALITÉ

Plus en détail

Sommaire

Sommaire Sommaire 01... Nouvelle Calédonie mars 01... Nouvelle Calédonie novembre 01... 4 011... 5 Nouvelle Calédonie mars 011... 5 010... 6 La Réunion juin 010... 6 Métropole juin 010... 7 009... 8 Amérique du

Plus en détail

T ales S - Bac Blanc (4 H) - Le 27/02/ Énoncé

T ales S - Bac Blanc (4 H) - Le 27/02/ Énoncé T ales S - Bac Blanc (4 H) - Le 27/02/2008 - Énoncé Les calculatrices électroniques de poche sont autorisées. Si vous n avez pas choisi l enseignement de spécialité, vous devez traiter les exercices 1,

Plus en détail