TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES

Dimension: px
Commencer à balayer dès la page:

Download "TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES"

Transcription

1 TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES Classe de Seconde Année scolaire : Passage en 1 re ES Exercice 1 Les quatre parties sont indépendantes I) Résoudre les inéquations suivantes: ( x 4)( x 7) 0 ; (x 1)( x ) (x 1)( x 7) ; x 1 II) Déterminer le domaine de définition de : 4x 9 5 x a) f x x x b) g x 9 x 1 x 4 x 1 III) On donne la fonction f définie sur R par: f x x 1 4x 5 Ecrire f x sans le symbole de valeur absolue puis résoudre algébriquement l'inéquation f x 4 IV) On donne les fonctions f et g définie par: f x 4x x 15et Etudier la position relative de la courbe représentative de la fonction g g x x x 15 C f représentative de la fonction f et de la courbe C g Exercice On donne D un polynôme défini par: 5 1 D x m x m x m, où m est un réel 1 1) Déterminer m pour que soit une racine de D 5 Pour le reste de l'exercice, on suppose m D x x ax b où a et b sont des entiers naturels à ) Montrer que D x s'écrit sous la forme calculer en utilisant la méthode d'identification 5x 14x x Q x 5x 1 ) On donne a) Pour quelles valeurs de x, Q x est-elle définie? x x b) Montrer que Q x 5x 1 puis résoudre Q x 0 1/6

2 Exercice On considère la fonction f définie sur l intervalle 5;5 par f x x 16x 1) Algébriquement, déterminer les racines de f puis dresser son tableau de signes ) A l'aide de la calculatrice Tracer sur l'écran de la calculatrice la représentation graphique C f de cette fonction pour x compris entre -5 et 5 et pour y compris entre -50 et 50 a) Confirmer les résultats trouvés au 1) b) Dresser le tableau de variations de f c) Compléter le tableau représentant les coordonnées des points de C f suivant : x y d) Construire, soigneusement, la courbe C f représentative de f ( 1cm correspond à une unité sur (x'x) et 10 unités sur (y'y) ) ) Sans faire aucun calcul,,64 a) Comparer f et f, puis f 0,04 et,9 b) Soient a et b deux réels tels que a b 1 Comparer 4) Soit la fonction g définie par f en justifiant f a et f b g x x 16 Tracer sur l'écran de la calculatrice la représentation graphique C g de cette fonction puis résoudre graphiquement f x g x Exercice 4 Les deux parties de cet exercice sont indépendantes Partie A Dans le repère ci-contre est représentée une fonction g définie sur R par : g(x) = ax + bx + c (a, b et c sont des nombres réels et a est non nul) Donner, en justifiant, le signe de a, b et c Partie B f est une fonction trinôme définie sur R, admettant un maximum au point S( 4; ) et passant par le point B( 1; 0) Donner, en justifiant, l expression de f /6

3 Exercice 5 On considère la fonction h définie sur R par : h(x) = x 4x 1) Dresser le tableau de variations de h et déterminer l équation de l axe de symétrie de sa parabole représentative ) Calculer f (-) puis en déduire les antécédents de 18 par h ) Sans effecteur de calcul, comparer h( ) et h( ) 4) Déterminer la forme canonique de f 5) Encadrer f(x) si 4 < x < Exercice 6 Partie A La parabole P 1 tracée ci-contre représente une fonction g définie par: g x a x Déterminer, puis montrer que a Partie B Soit f la fonction définie sur R par: f x x 6x 1et P 1) Déterminer les coordonnés du sommet R de P ) Etudier les variations de f puis dresser son tableau de variation sur l'intervalle 1;7 ) a) Montrer que f s'écrit sous la forme: f x x b) Encadrer f x, par le calcul, si 1 x c) Déterminer l'intervalle contenant x si 1 f x 6 10 sa parabole représentative 4) a) Compléter le tableau suivant: x f x b) Tracer, sur la même figure de la page annexe, la parabole P sur 1;7 Partie C 1) Déterminer, par le calcul, les coordonnées des points d'intersection de P1 et P ) Déduire graphiquement les solutions de l'inéquation: f x g x /6

4 Exercice 7 Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse, en justifiant : a) Si a 5 alors a 5 b) Si A et B sont deux événements tels que P A 0, et 0,45 B 0,5 P A P B et P A B 0, 4 alors Exercice 8 On considère la fonction f définie sur l intervalle ;1 par f x 1) Tracer, sur l'écran de la calculatrice, la représentation graphique f le minimum de f et où il est atteint ) Dans un repère orthonormé O, i, j M est un point de coordonnées x,0 avec x La droite AM coupe l'axe des ordonnées en N, On donne le point ; x a) Démontrer que les coordonnées de N sont 0; x b) Exprimer l'aire du triangle OMN en fonction de x, puis déduire la position exacte de M pour laquelle l'aire du triangle OMN est minimale Exercice 9 A x x C de cette fonction puis déterminer 1) On donne le polynôme P ( x) x 9x 4x 15 Résoudre l inéquation P (x) < 0 ) ( x 7)(x 5) Déduire le domaine de définition de la fonction f définie par f ( x) P( x) ) Résoudre l équation f ( x) 0 Exercice 10 On donne une fonction polynôme du second degré f et (P) sa parabole représentative dans un repère orthonormé avec : f ( ) 1 A (1 ; -) est un point de (P) Les antécédents de 4 par f sont -6 et 1) Déterminer l axe de symétrie (d) de (P) ) Déterminer les coordonnées du sommet S de (P) ) Déterminer les coordonnées du point A symétrique de A par rapport à (d) 4) Déterminer f ( x ) 4/6

5 Exercice 11 On donne ci-dessous dans un repère orthonormé ( O, i, j) la courbe (C) représentative d une fonction g définie sur R Partie A 1) Déterminer graphiquement, en justifiant : a) L image de -1 b) Les antécédents de ) Résoudre graphiquement l équation g( x) x +1 ) Résoudre graphiquement l inéquation g ( x) 1 4) Soit f la fonction définie par f ( x) g( x) 1 Déterminer le domaine de définition de la fonction f Partie B Dans cette partie on donne g ( x) x x 1 1) Calculer : a) L image de 1 b) Les antécédents de 1 ) On donne x x ( x )( x 1) Résoudre par le calcul l inéquation g ( x) 1 Exercice 1 Un sac contient des billes indiscernables au toucher Il y a 10 billes roses, 7 billes vertes et n billes jaunes 1)On tire au hasard une bille du sac La probabilité de l évènement A : «tirer une bille qui n est pas verte» est 0,7 Calculer le nombre n de billes jaunes dans le sac ) Dans cette question, n 8 On tire au hasard une deuxième bille du sac sans avoir remis la première bille tirée On note : R 1 l évènement «la 1 re bille tirée est rose», J l évènement «la e bille tirée est jaune» a) Montrer que p(r1 ) 0,4 et p(j) 0, b) Décrire l'événement R1 J par une phrase puis calculer p(r1 J ) 5/6

6 Exercice 1 (Les résultats seront donnés sous forme de fractions irréductibles) Une enquête a été réalisé auprès des consommateurs de yaourts Parmi les 50 personnes interrogés: 90 personnes achètent des yaourts à la ferme; Trois dixièmes achètent des yaourts une seule fois par semaine; 45 personnes de ceux qui achètent les yaourts une seule fois par semaine, ne le font pas à la ferme On considère les événements suivants: A : «La personne choisie achète des yaourts une seule fois par semaine» B : «La personne choisie n'achète pas des yaourts à la ferme» 1) Reproduire et compléter le tableau ci-dessous: B A A Total B 90 Total ) On choisit au hasard une personne parmi les 50 acheteurs P A ; P B ; P A B puis P A B a- Calculer b- Décrire par une phrase l'événement A B, puis en déduire sa probabilité ) On choisit au hasard une personne parmi celles qui achètent le yaourt à la ferme, calculer la probabilité qu'elle achète du yaourt une seule fois par semaine 4) On choisit au hasard deux personne parmi les 50 acheteurs Quelle est la probabilité qu'ils n'achètent pas des yaourts à la ferme? Exercice 14 On donne la fonction g définie sur R par ( x) x x repère orthonormé g et P sa représentation graphique dans un 1) Dresser le tableau de variation de la fonction g et déterminer l équation de l axe de symétrie de P ) Déterminer la forme canonique de la fonction g ) Encadrer g (x) dans chacun des cas suivants: a) 1 x ; b) x 4 4) Compléter le tableau représentant les coordonnées des points de P suivant : x y 5) Tracer P sur l intervalle [ - ; 4] 6) a- Développer x 1 x b- Résoudre, par le calcul g ( x) x 1 puis interpréter graphiquement le résultat 6/6

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde - Passage en 1reES Année scolaire :

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde - Passage en 1reES Année scolaire : TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES Classe de Seconde - Passage en rees Année scolaire : 06-07 Exercice Les quatre parties sont indépendantes I) Résoudre dans R: ) ( x) 4 x ; ) x < π ; ) ( x) (

Plus en détail

2 FONCTIONS CARREES 1.0

2 FONCTIONS CARREES 1.0 FONTIONS ARREES Exercices de base : Soit f la fonction carrée. alculer les images par f des nombres réels : 5 00 0 0. 5 6 7 8 9 0 5 5 5 5 9 5 0 6 8x0 7 5 0 8 + 9 8 0 6 Soit f la fonction carrée. Déterminer

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

1 Équations du second degré.

1 Équations du second degré. 1 Équations du second degré. Signe du trinôme ÉQUATINS ; INÉQUATINS DU PREMIER DEGRÉ b L'équation ax b = 0, a \ {0}, b a pour solution x. a Le signe de ax b, a \ {0}, b est donné dans le tableau suivant

Plus en détail

avec α = b 2a 2a 4a b2 4ac [x ] + 25

avec α = b 2a 2a 4a b2 4ac [x ] + 25 13 décembre 016 SECOND DEGRÉ nde 3 I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie sur Ê par fx)=ax + bx+c où a, b, c sont des réels et a 0. EXEMPLES La

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES Ph DEPRESLE 6 juin 05 Table des matières Fonction carré. Fonction x x..................................... Fonction x ax, a 0...............................

Plus en détail

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR.

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR. 1 e S - programme 011 mathématiques ch3 cahier élève Page 1 sur 30 Ch : Fonctions de référence Partir d'un bon pied Exercice n A page 46 : Maîtriser le vocabulaire de base relatif aux fonctions Vrai ou

Plus en détail

LA FONCTION " CARRÉ " et LE SECOND DEGRÉ

LA FONCTION  CARRÉ  et LE SECOND DEGRÉ Index I- Définition... 1 I-1 Rappel... 1 I-2 Définition:... 2 II- Une propriété de la fonction carré:... 2 II-1 Observation... 2 Remarque et définition:... 2 II-2 Interprétation graphique de cette propriété...

Plus en détail

Chapitre 7 Fonction du second degré, algèbre, équations

Chapitre 7 Fonction du second degré, algèbre, équations Chapitre 7 Fonction du second degré, algèbre, équations TABLE DES MATIÈRES page -1 Chapitre 7 Fonction du second degré, algèbre, équations Table des matières I Exercices I-1 1................................................

Plus en détail

Devoir commun de mathématiques Secondes Jeudi 28 janvier Durée : 2 heures - calculatrice autorisée -

Devoir commun de mathématiques Secondes Jeudi 28 janvier Durée : 2 heures - calculatrice autorisée - Devoir commun de mathématiques Secondes Jeudi 28 janvier 2010 - Durée : 2 heures - calculatrice autorisée - Pensez à remettre le sujet avec votre copie. Le soin et la qualité de la rédaction seront pris

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient Mathématiques Préparation à la 1 ère ES - L - STMG Le programme de 1 ère s appuie sur les notions étudiées en 2 nde. L acquisition de ces bases est donc essentielle à la réussite en 1 ère. Pour faciliter

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O.

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O. Chapitre 9 : fonctions du second degré descriptives I. La fonction carré I. 1 Définition Définition La fonction carré est la fonction qui, à tout nombre réel x, associe son carré x. Si on note f la fonction

Plus en détail

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² -

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² - 1 ère ES1 Le second degré Introduction à la factorisation feuille n 1 Partie 1 : correction 1) Factoriser les expressions suivantes : x² - 8x + 16 x² + 6x + 9 16x² - 81 ( 4x 1 )² - 9 ( 2x 1 )² - ( x +

Plus en détail

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2 ETUDES DE FONCTIONS I. Fonctions polynômes de degré 1. Définition Une fonction polynôme de degré f est définie sur IR par des nombres réels donnés et a 0. ax bx c, où a, b et c sont Exemples : - f x x

Plus en détail

Mathématiques. Préparation à la 1 ère ES - L - STMG. Correction. Mathématiques préparation à la 1 ère ES L STMG correction page 1/11

Mathématiques. Préparation à la 1 ère ES - L - STMG. Correction. Mathématiques préparation à la 1 ère ES L STMG correction page 1/11 Mathématiques réparation à la 1 ère ES - L - STMG Correction Mathématiques préparation à la 1 ère ES L STMG correction page 1/11 Notations : «appartient à», symbole utilisé entre un élément et un ensemble

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

Exercices de révision - Niveau seconde

Exercices de révision - Niveau seconde Exercices de révision - Niveau seconde NB: cette fiche d'exercices est à destination des élèves passant en classe de première S et ES. Les exercices portant une étoile * sont exclusivement destinés aux

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE PBP Chapitre M4(A7) Page 1/15 Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE Capacités Utiliser les TIC pour compléter un tableau de valeurs, représenter graphiquement, estimer le maximum ou le minimum

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

Série d exercices Polynomes Hichem Khazri e sc Vrai/Faux POLYNOMES Parmi les 5 affirmations suivantes, dites si elles sont vraies ou fausses. Si elles sont vraies, les démontrer, si elles sont fausses,

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

La fonction carré est strictement décroissante sur ]- ; 0] et strictement croissante sur [0;+ [.

La fonction carré est strictement décroissante sur ]- ; 0] et strictement croissante sur [0;+ [. Seconde Fonctions du second degré Année scolaire 2012/2013 I) Fonction carré : 1) Définition : La fonction f définie sur R, qui à x associe x 2 est appelée fonction carré. Pour tout x R, f( x) = x 2 Exemples

Plus en détail

Exercices corrigés pour améliorer ses techniques

Exercices corrigés pour améliorer ses techniques Exercices corrigés pour améliorer ses techniques Fonction carré Exercices 1 à 9 Fonction inverse Exercices 10 à 16 Un peu de logique Exercice 17 Fonctions polynômes de degré 2 Exercices 18 à 24 Fonctions

Plus en détail

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE 1 ORDRE ET INTERVALLES Exercice 1 Compléter le tableau suivant : Intervalle Inégalité Représentation graphique Lecture de l intervalle Borné ou non

Plus en détail

Livret de mathématiques : vers la Terminale ES

Livret de mathématiques : vers la Terminale ES Livret de mathématiques : vers la Terminale ES Voici les 7 parties du programme de 1ES qui sont indispensables à maîtriser : I. Pourcentage II. Second degré III. Dérivation IV. Variations d une fonction

Plus en détail

DS 5 23 MARS Rappel : tous les résultats seront à justifier sauf avis contraire

DS 5 23 MARS Rappel : tous les résultats seront à justifier sauf avis contraire DS 5 23 MARS 2017 Durée : 2h Avec Calculatrice NOM : Prénom : La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l argumentation. Aucun prêt n est autorisé entre

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2 Lcée JANSON DE SAILLY 04 septembre 014 SECOND DEGRÉ 1 re STID I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie surrpar f)=a + b+c où a, b, c sont des réels

Plus en détail

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15 des Composition de mathématiques h calculatrice autorisée 8IV5 I) Soit f une fonction définie sur [ 0 ; 0] telle que f ( 5)= f (4)=0 et dont le tableau de variations est ci-dessous : x 0 7 0 6 0 var f

Plus en détail

Mathématiques Durée : 3 heures

Mathématiques Durée : 3 heures EABJM BAC BLANC 2 Classes de Terminales ES et L Avril 2014 H. Chauveau D. Dachelet E. Tinelli Mathématiques Durée : 3 heures L utilisation de la calculatrice est autorisée. Le présent sujet devra être

Plus en détail

GENERALITES SUR LES FONCTIONS

GENERALITES SUR LES FONCTIONS GENERALITES SUR LES FONCTIONS I. Notion de fonction numérique : ) Définition, notations et vocabulaire : Soit D une partie de l'ensemble des réels. Lorsqu'à un réel x de D on associe un réel y, on définit

Plus en détail

Fonctions de référence

Fonctions de référence 1ère STI - Chapitre 3: Fonctions de référence Introduction : exercice. Dessiner au tableau le graphique ci-dessous à main levée représentant une courbe de température avec le temps (en heures) en abscisses

Plus en détail

DS 7 27 MAI Quelle est la probabilité d avoir une boule blanche puis une rouge (événement noté p(br))?

DS 7 27 MAI Quelle est la probabilité d avoir une boule blanche puis une rouge (événement noté p(br))? DS 7 7 MAI 016 Durée : h NOM : Prénom : AVEC Calculatrice La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l argumentation. Aucun prêt n est autorisé entre

Plus en détail

Lycée Privé Catholique Maintenon SECONDE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon SECONDE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon SECONDE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2011/2012 M. MAGNE Thème : Calculs Devoir Maison à rendre le : Soit un réel positif.

Plus en détail

NOM : Prénom : Bilan Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 / 30 / 4 / 5 / 3 / 6 / 6 / 6

NOM : Prénom : Bilan Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 / 30 / 4 / 5 / 3 / 6 / 6 / 6 DS JANVIER 206 Durée : 2h Avec Calculatrice NOM : Prénom : Bilan Ex Ex 2 Ex Ex Ex 5 Ex 6 / 0 / / 5 / / 6 / 6 / 6 Déterminer et exploiter la loi d'une variable aléatoire Construire et utiliser un arbre

Plus en détail

SECOND DEGRE ACTIVITES

SECOND DEGRE ACTIVITES SECOND DEGRE ACTIVITES Activité 1 : Forme canonique d un polynôme de degré 2. Définition : f est une fonction polynôme de degré 2 définie sur par : f ( x) ax² bx c ( a 0 ). Nous montrerons à la fin de

Plus en détail

Correction devoir de mathématiques n 3

Correction devoir de mathématiques n 3 Page1 Correction devoir de mathématiques n 3 Calculatrice autorisée. Le sujet contient 4 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des points. Le barème

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

Second degré (1ESL) Page 1/9

Second degré (1ESL) Page 1/9 TRINÔME DU SECOND DEGRÉ Activité de recherche : Résoudre un problème démographique A l issue d une étude, des démographes font des projections concernant la population de deux villages A et B de la campagne

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

Baccalauréat L 2001 L intégrale de juin à septembre 2001

Baccalauréat L 2001 L intégrale de juin à septembre 2001 Baccalauréat L 2001 L intégrale de juin à septembre 2001 Antilles-Guyane juin 2001............................... 3 Métropole juin 2001..................................... 5 Métropole septembre 2001..............................

Plus en détail

Seconde GENERALITES SUR LES FONCTIONS EXERCICES. Exercice 4 (Hyperbole 3p46) La courbe ci-dessous représente une fonction f.

Seconde GENERALITES SUR LES FONCTIONS EXERCICES. Exercice 4 (Hyperbole 3p46) La courbe ci-dessous représente une fonction f. Exercice 1 Déterminer le plus petit ensemble qui correspond aux nombres suivants : Exercice 4 (Hyperbole p46) La courbe ci-dessous représente une fonction f. 2,1 π 2 1, 18 4 2 Exercice 2 Traduire chaque

Plus en détail

COURS N 2 : POLYNÔMES. par ², est appelée polynôme du second degré (ou encore trinôme du second degré).

COURS N 2 : POLYNÔMES. par ², est appelée polynôme du second degré (ou encore trinôme du second degré). II- POLYNÔME DU SECOND DEGRÉ 1) Introduction Exemple : 2) Définition Définition : pour tous réels a, b et c avec a différent de 0. La fonction P définie sur par ², est appelée polynôme du second degré

Plus en détail

Rappels sur les fonctions. Fonctions polynômes du second degré

Rappels sur les fonctions. Fonctions polynômes du second degré Semaine 4 Rappels sur les fonctions. Fonctions polynômes du second degré 1. Rappels : étude de fonctions Généralités Fonctions de référence Études. 2. Fonction polynôme du second degré. Tableau de variation.

Plus en détail

Equations, inéquations et fonctions affines

Equations, inéquations et fonctions affines Equations, inéquations et fonctions affines A) Fonctions affines 1 Définition d une fonction affine Définition : f est une fonction affine, si et seulement si, il existe deux réels a et b tels que : pour

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

Fiche 10 Taux d accroissement Dérivée Variations d une fonction

Fiche 10 Taux d accroissement Dérivée Variations d une fonction Université Paris Est Créteil DAEU Fiche 10 Taux d accroissement Dérivée Variations d une fonction 1 Taux de variation Dans cette fiche on découvre l outil qui permet d obtenir de manière directe les variations

Plus en détail

La fonction carrée et la fonction inverse

La fonction carrée et la fonction inverse 5 février 205 La fonction carrée et la fonction inverse Fonction carrée EXERCICE f est la fonction carrée. Calculer les images par f des nombres suivants : a) 4 b) 00 c) 0 d) 3 4 e) 0, EXERCICE 2 f est

Plus en détail

Contrôle commun 1 re ES et 1 re L - 02/02/ Durée : 2 heures

Contrôle commun 1 re ES et 1 re L - 02/02/ Durée : 2 heures Contrôle commun 1 re ES et 1 re L - - Durée : 2 heures L usage de la calculatrice est autorisé. Tout résultat doit être soigneusement justifié. La qualité de la rédaction et de la présentation seront prises

Plus en détail

Seconde Fiche d objectifs du chapitre

Seconde Fiche d objectifs du chapitre Chapitre 7 : Fonctions affines Seconde Fiche d objectifs du chapitre 7 2016-2017 SAVOIR Variations d une fonction affine Représenter graphiquement une fonction affine Coefficient directeur Ordonnée à l

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

CORRECTION DEVOIR D'ENTREE EN 1èreS

CORRECTION DEVOIR D'ENTREE EN 1èreS CORRECTION DEVOIR D'ENTREE EN 1èreS Exercice 1: Voici trois formes d'une même fonction f : f (x)=2( x 2)( x+4) f (x)=2 (x+1) 2 18 f (x)=2 x 2 +4 x 16 1) Choisir l'expression la mieux adaptée et calculer

Plus en détail

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

x < 6 ou x > 1 ( 2. Le point A 0; 3 )

x < 6 ou x > 1 ( 2. Le point A 0; 3 ) Seconde 8/09/0 Devoir surveillé de mathématiques n o. Eercice n o (7,5 points) On donne ci-dessous la courbe d une fonction f. 7-6 -5 - - - - 0 5 6 7 8 -. Donner le domaine de définition de f. - -. Lire

Plus en détail

Lycée Jehan de Chelles Février 2011

Lycée Jehan de Chelles Février 2011 Seconde Contrôle commun Lycée Jehan de Chelles Février 2011 Nom Prénom :... Classe :... Exercice 1 : (10 points) On donne ci-contre la courbe représentative d une fonction f A l aide du graphique, répondre

Plus en détail

GENERALITES SUR LES FONCTIONS

GENERALITES SUR LES FONCTIONS GENERALITES SUR LES FONCTIONS I. Notion de fonction numérique : 1 1) Définition, notations et vocabulaire : Soit D une partie de l'ensemble des réels. Lorsqu'à un réel x de D on associe un réel y, on définit

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Chapitre A Sommaire I) Vocabulaire................................................. II) Courbe représentative........................................... III) Variation d une fonction..........................................

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

DEVOIR COMMUN. Mathématiques CLASSE DE SECONDE

DEVOIR COMMUN. Mathématiques CLASSE DE SECONDE DEVOIR COMMUN Mathématiques CLASSE DE SECONDE Session 2010/2011 NOM : CLASSE : Consignes Le sujet comporte 5 exercices. Vous devez impérativement le restituer avec votre copie. Vous pouvez pour chaque

Plus en détail

Première STG Chapitre 15 : nombre dérivé et tangente. Page n

Première STG Chapitre 15 : nombre dérivé et tangente. Page n Première STG Chapitre 15 : nombre dérivé et tangente. Page n 1 Un fabricant de matériels informatiques produit, par jour, q appareils d'un modèle A. Le gestionnaire de cette entreprise a établi que le

Plus en détail

EXERCICES 1S DERIVATION

EXERCICES 1S DERIVATION EXERCICES S DERIVATION Nombre dérivé ; utilisation des formules On trouvera les solutions après la liste des exercices Ne les consultez pas trop vite! EX : Calculer la fonction dérivée de la fonction f

Plus en détail

Méthode : on peut raisonner en utilisant le sens de variation de la fonction carré ou en s'aidant d'un dessin.

Méthode : on peut raisonner en utilisant le sens de variation de la fonction carré ou en s'aidant d'un dessin. Fonction carré Exercice 1 Les images par la fonction carré des nombres : sont, dans l'ordre :. Exercice 2 a. Les solutions de l'équation sont 4 et 4. b. Les solutions de l'équation sont et. c. L'équation

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2009 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie et les 2 annexes (1 feuille recto verso) au surveillant

Plus en détail

2. En avril 2008, le cours du brut était de 109,5 $ par baril. Quel était, arrondi au dixième près, le cours du brut en mai 2008?

2. En avril 2008, le cours du brut était de 109,5 $ par baril. Quel était, arrondi au dixième près, le cours du brut en mai 2008? DS 2 5 NOVEMBRE 2015 Durée : 2h Avec Calculatrice NOM : Prénom : La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l argumentation. Aucun prêt n est autorisé

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 1. MATHÉMATIQUES - MATH 101 Pratique des Fonctions Numériques

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 1. MATHÉMATIQUES - MATH 101 Pratique des Fonctions Numériques Année 201-2014 UNIVERSITÉ DE CERGY LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATHÉMATIQUES - MATH 101 Pratique des Fonctions Numériques Enseignant responsable : J. Stéphan CM/TD de C. Andrianasitera,

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

Devoir commun de mathématique

Devoir commun de mathématique Nom. Prénom Classe.. Devoir commun de mathématique Mercredi 27 mai 2015 Durée : 2 heures Exercice n 1 : Un restaurant propose sur sa carte : 2 entrée : terrine (4 ) ; ratatouille (6 ) 3 plats : poulet

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Fonction linéaire. Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire.

Fonction linéaire. Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire. Fonction linéaire Définition : Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire. Exemples : La fonction f définie par f(x) = 2x ; la

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : MATHÉMATIQUES SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S)

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : MATHÉMATIQUES SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S) BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage d une calculatrice est autorisé.

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Chapitre : FONCTIONS. Exercice 1

Chapitre : FONCTIONS. Exercice 1 Exercice 1 Dans un repère ( ; i ; j ) orthonormal, on considère les fonctions f et g définies par f(x) = (x )(x + 3) + 5 et g(x) = x + 3 sur l intervalle [ ; ]. 1) Tracer les courbes représentatives de

Plus en détail

FONCTION RACINE CARREE

FONCTION RACINE CARREE S FONTION RAINE ARREE Ecrire les expressions suivantes sans racines carrées au dénominateur : + x x + x + x x x + x x + x x² 7 x + x Equations : x x 7 x x x x 7 7 x + 0 8 x + x 0.x. 0 x x + Inéquations

Plus en détail

Devoir commun de Mathématiques (2 heures)

Devoir commun de Mathématiques (2 heures) Lycée A. Daudet SUJET A Corrigé Devoir commun de Mathématiques ( heures) Ce sujet comporte 8 pages. La page n 8 est à rendre avec la copie. La qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE L équipe des professeurs de mathématiques Lycée Stendhal J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. Stendhal

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

GENERALITE SUR LES FONCTIONS

GENERALITE SUR LES FONCTIONS 1 GENERALITE SUR LES FONCTIONS I) ACTIVITES Activité 1: Température en fonction de l heure Un appareil a permis de relever la température dans un abri, de manière continue, de 6 heures à 22 heures. Les

Plus en détail

TES Devoir n o 6 durée 2h-20 points. ( 7 points ) Exercice 1

TES Devoir n o 6 durée 2h-20 points. ( 7 points ) Exercice 1 TES Devoir n o 6 durée 2h-20 points Exercice 1 ( 7 points ) Le parc informatique d un lycée est composé d ordinateurs dont : 15% sont considérés comme neufs ; 45% sont considérés comme récents ; les autres

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 1 Soit N un entier naturel non nul. On considère l algorithme ci-contre Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 Tant que

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Session 2013

BACCALAURÉAT TECHNOLOGIQUE Session 2013 BACCALAURÉAT TECHNOLOGIQUE Session 2013 Épreuve : MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU DESIGN ET DES ARTS APPLIQUÉS Le sujet comporte sept pages numérotées de 1 à 7. Les deux annexes (pages

Plus en détail

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou!

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou! 2 nd Fonctions 1 Objectifs : IR, les intervalles. Traduire le lien entre deux quantités par une formule. Pour une fonction définie par une courbe, un tableau de données ou une formule : _ identifier la

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion Année 2012-2013 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH101 : Pratique des Fonctions numériques Enseignant responsable : J. Stéphan Documents

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 28 JANVIER 2012 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les séries statistiques à deux variables

Plus en détail

Exercice n 1. On note An l'évènement " le tirage a lieu dans l'urne U1 à l'étape n " et pn sa probabilité. On a donc p1 = Calculer p2.

Exercice n 1. On note An l'évènement  le tirage a lieu dans l'urne U1 à l'étape n  et pn sa probabilité. On a donc p1 = Calculer p2. Exercice n 1 On considère deux urnes U1 et U2. L'urne U1 contient 17 boules blanches et 3 boules noires indiscernables au toucher. L'urne U2 contient 1 boule blanche et 19 boules noires indiscernables

Plus en détail

Mathématiques Positionnements niveau Lycée

Mathématiques Positionnements niveau Lycée Mathématiques Positionnements niveau Lycée NOM : Prénom : Matériel nécessaire : feuille quadrillée, règle et calculatrice scientifique. L'usage de la calculatrice est autorisé pour tout le positionnement

Plus en détail