Chapitre 4 Les nombres complexes : 1ère Partie

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 4 Les nombres complexes : 1ère Partie"

Transcription

1 Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo Cardano), puis étudiés plus rigoureusement par Raphaël Bombelli en Au départ, le but était de trouver une expression mathématique, qui ne pouvait pas être un nombre réel, pour les solutions de l'équation x² + 1 = 0. Cette invention a permis d'exprimer aussi les solutions des équations du second degré avec un discriminant négatif. En effet, l'invention d'un nombre imaginaire i tel que i² = -1 permet d'exprimer par exdemple la racine carrée de -9 comme étant 3i, celle de -13 par i 13 etc... On trouve ainsi le moyen d'exprimer tout polynôme comme le produit de polynômes de degré 1, ce qui fait de l'ensemble des complexes un ensemble "algébriquement clos". 2) Définition a) On note C l'ensemble des nombres complexes. Un nombre complexe s'écrit z =a bi, où a et b sont des réels et i est le nombre imaginaire tel que i² = -1. Cette écriture est dite "forme algébrique" du nombre complexe. a est la partie réelle, et b la partie imaginaire de z. b) Cas particuliers Si b = 0, z est un nombre réel. On peut ainsi considérer l'ensemble des réels comme une partie de l'ensemble des complexes : R C. Si a = 0, z est dit "imaginaire pur". 4, -15, 1/3 sont des réels 1 i ; 3 2i sont des complexes i ; -i ; 5i ; -3i sont des imaginaires purs. c) Conjugué d'un complexe On appelle complexe conjugué, ou conjugué de z=a bi, et on note z, que l'on prononce "z barre" le nombre z=a bi. 3) Égalité de deux complexes Deux complexes sont égaux si et seulement si leurs parties réelles sont égales et leurs parties imaginaires sont égales. Soient z = a + b i et z' = a' + b' i : on aura : z = z' <=> a = a' et b = b' a + b i = a + b' i <=> a = a et b = b Page 1/9

2 B) Opérations sur les complexes 1) Addition et soustraction Les règles sont les mêmes qu'en calcul littéral habituel, comme si on remplaçait i par x : Exemples Calculer : a) (2 3 i) + (3 2 i) b) (1 + 2 i) (13 12 i) c) (13 12 i) + ( i) d) (1 + 2 i) - ( i) (a + bi) + (a + b i) = (a + a ) + (b + b )i (a + bi) - (a + b i) = (a - a ) + (b - b )i Cas particuliers: Quand on additionne ou soustrait deux complexes conjugués z = a + b i et z = a b i : z+ẕ = 2a z = 2 3 i : calculer z + z et z z. z ẕ = 2 b i 2) Multiplication Les règles sont aussi les règles habituelles, mais quand on trouve i², on le remplace par -1, puisque par définition, i² = -1. Donc, (a + bi) (a + b i) = a a' + a b' i' + b i a' + b i b' i = a a' + b a' i + a b' i + a' b i + b b' i² = a a' + (a b' + a' b) i b b' = (a a' b b') + (a b' + a' b) i Exemples Calculer : a) (2 3 i) * (3 2 i) b) (1 + 2 i) * (13 12 i) c) (13 12 i) * ( i) d) (1 + 2 i) * ( i) (a + b i) (a + b i) = (a a - b b ) + (a b + a b)i Cas particuliers: Quand on multiplie deux complexes conjugués z = a + b i et z = a b i : z z = (a + b i) (a - b) i = a² (b i)² = a² b² i² = a² + b² : c'est un réel positif. Calculer z z : a) z = 3 2 i b) z = 2 i c) z = 12 + i z z = a² + b² Page 2/9

3 3) Division Le problème est ici de se "débarrasser" de la partie imaginaire qui figure au dénominateur. Pour cela, on multiplie en haut et en bas par le complexe conjugué du dénominateur : a +b i (a+b i)(a' b' i) ' b' i) = =(a+bi)(a a' +b' i (a'+b ' i)(a' b' i ) a' ²+b' ² Calculer les quotients suivants : 1 3i a) 2+i 2+1 c) 1 i 1 e) 1 i C) Représentation géométrique 1) Définition b) 1+i 1 1 d) 2 7i 7 i f) 1 2 3i Un nombre complexe est totalement défini par deux nombres réels, sa partie réelle et sa partie imaginaire. Or dans un plan à repère orthonormé, un point est totalement défini par son abscisse et son ordonnée, deux nombres réels aussi. On peut donc faire correspondre à chaque complexe un point et vice-versa. On dit alors que le point a pour affixe ce complexe, et que ce point est le point image du complexe. De même, on peut assimiler un vecteur (vecteur image) dans le plan à un complexe, puisque un vecteur aussi est caractérisé par ses deux coordonnées. Dans un repère orthonormé (O, A, B) placer les points : C d'affixe c =2 i, D (d = i), E (e = i 1) Trouver l'affixe de O, A, B et celles de I, milieu de [AB] et J milieu de [CD]. 2) Affixe d'un vecteur Si A a pour affixe z A et B a pour affixe z B, alors AB a pour affixe z A z A. Avec les données de l'exemple précédent, calculer les affixes de : OC, CD, OA et OB. 3)Points particuliers Les points images des nombres réels sont tous sur l'axe des abscisses, à gauche pour les négatifs et à droite pour les positifs. Les points images des nombres imaginaires purs sont tous sur l'axe des ordonnées, en haut pour les parties imaginaires négatives et à droite pour les positives. Les complexes conjugués ont des points images symétriques par rapport à l'axe des abscisses. Page 3/9

4 4) Correspondances des opérations L'addition des complexes correspond à l'addition des vecteurs. En effet on additionne ensemble les parties réelles et les parties imaginaires, ce qui veut dire pour les vecteurs additionner les abscisses ensemble et les ordonnées ensemble. Donc, si u a pour affixe z u et v a pour affixe z v, u+ v aura pour affixe z u + z v. Avec les données de l'exemple précédent, calculer les affixes de : OC+ CD, DE+ EC et OA+ OB. 5) Longueur d'un vecteur et module d"un complexe On sait que si u a pur coordonnées (x ; y), la longueur de u, u, est égale à x 2 + y 2. On sait aussi que pour tout complexe z = x + y i, z z = x² + y². Si z est l'affixe de u, on aura donc : u = z ẕ. On appelle cette valeur le module de z, que l'on notera z. Avec les données de l'exemple précédent, calculer les longueurs de : CD, DE et AB. 6) Distance entre deux points Comme la distance entre deux points A et B est égale à la longueur du vecteur AB, on peut en conclure si l'affixe de A est z A et celle de B est z B, l'affixe de AB sera zb z A, et que la longueur de AB sera AB= AB = x 2 + y 2 en posant z b z A = x + y i. Avec les données de l'exemple précédent, calculer les distances entre : A et B, D et E et C et D. 7) Affixe d'un milieu Soient deux points A et B où l'affixe de A est z A et celle de B est z B, l'affixe du milieu I du segment [AB] sera z I = z A+z B 2. Avec les données de l'exemple précédent, calculer l'affixe du milieu de A et B, D et E et C et D. 8) Applications a) Soit les complexes a = -2 i, b = 3 + i, c = 6 + 4i et d = i. Montrer par les complexes que ABCD est un parallélogramme (A d'affixe a, B d'affixe b etc...). b) Soit de plus e = 1 : montrer que E(e) est le milieu de [AB]. c) Trouver l'affixe f d'un point F tel que ABF soit un triangle équilatéral (2 solutions). Page 4/9

5 Chapitre 4 Les nombres complexes : 2ème Partie D) Forme trigonométrique 1) Définition On a vu que tout nombre complexe correspond de façon unique à un point dans un plan rapporté à un repère orthonormal O, u, v. Si z = a + ib, a sera l abscisse du point et b son ordonnée. De même, tout vecteur représente un nombre complexe et un seul, suivant le même système. Un point M étant défini entièrement par sa distance à l origine ρ = OM et par la mesure de l angle entre u et le vecteur OM, θ = u, OM, un nombre complexe est aussi défini par ces deux données, qu on appelle alors le module (noté z ) et l argument (noté Arg(z)). On écrit alors z = [ρ ; θ]. Ceci s'appelle la forme trigonométrique. Remarques : - Le nombre O n a pas d argument. - L'argument d'un complexe est seulement défini à 2kπ près! On choisit généralement pour l'argument la mesure principale de l'angle θ. - Le point d'affixe z est le symétrique du point d'affixe z par rapport à l'axe des abscisses. Le module de z est donc le même, et son argument est l'opposé de celui de z. 2) Passage d une forme à l autre z = a + bi ρ = a² +b² Calcul de θ : On cherche cos -1 (a/ ρ), c'est la bonne réponse si b>0, sinon, on change son signe. z = [ρ ; θ] a = ρ cos(θ) et b = ρ sin(θ), soit z = ρ(cos(θ) + i sin(θ)) 3) Différence de deux complexes et distance de deux points Si z 1 représente M 1 (et donc OM 1 ), et z 2 représente M 2 (et donc OM 2 ), la différence z 2 z 1 représentera OM 1 OM 2 = OM 1 + M 2 O = M 1 M 2. En particulier, la distance M 1 M 2 vaudra z 2 z 1. C) Calculs sous forme trigonométrique 1) Addition et soustraction Malheureusement, il n'y a pas de formule simple : il faut passer par la forme algébrique... 2) Produit Le produit de z = [ρ ; θ] par z' = [ρ' ; θ'] est : z z' = [ρ ρ' ; θ + θ']. Autrement dit, les modules se multiplient et les arguments s ajoutent. (Démontrer) Page 5/9

6 3) Puissances d un complexe soit, si z = [ρ ; θ], z n = [ρ n ; n θ] Exemple : z = [3 ; π/4] 4) Inverse d un complexe soit : z n = z n et Arg(z n ) = n Arg(z) z 5 = [3 5 ; 5π/4] = [243 ; -3π/4] 1 z = 1 z [ρ ; θ] n = [ρ n ; n θ] et Arg ( 1 )= Arg (z) z 1 [ ρ ; θ ] = [ 1 ρ ; θ ] Remarque : On peut retrouver ce résultat en faisant n = -1 dans le 2) ci-dessus. z = [3 ; π/4] z = [2 ; -π/3] 5) Quotient de deux complexes soit encore : z = [3 ; π/4] z' = [2 ; -π/3] Devoir : Exercice 46 page 257 z z ' = z z' D) Equations du second degré 1/z = [1/3 ; -π/4] 1/z = [1/2 ; π/3] et Arg z = Arg z Arg z ' z ' [ ρ ; θ ] [ ρ ' ; θ ' ] = [ ρ ρ' ; θ θ '] z z' [ = 3 2 ; π 4 ( π 3 ] [ ) = 3 2 ; 7 π 12 ] 1) Résolution des équations du second degré à discriminant négatif Prenons une équation du second degré quelconque. Si on applique la méthode connue pour b²- 4 ac > 0, on trouve x 1 = b b2 4 ac et x 2 = b b2 4 ac. Quand le discriminant b² - 4ac est négatif, ces solutions n existent pas dans R, mais existent dans C, car la racine carrée d'un nombre négatif y est possible : par exemple (2i)² = 4i² = 4(-1) = -4! Page 6/9

7 Ainsi, si b² 4ac < 0, on remplacera b² 4ac par i 4ac b². On trouve donc deux solutions dans C lorsque b² 4ac < 0, à savoir b i x 1 = 4 ac b² b+i et x 2 = 4 a c b². Grâce à cela, on peut dire que : Toute équation du second degré du type ax² + bx + c = 0 à coefficients réels admet deux solutions, réelles ou complexes, distinctes ou confondues. Si l une des solutions n est pas réelle, les deux solutions seront des complexes conjugués. Plus généralement, toute équation de degré n admet n solutions, réelles ou complexes, distinctes ou confondues (Théorème fondamental de l algèbre). Résoudre les équations : x² + 1 = 0 8x² + 4x + 3 = 0 x² -6x + 10 = 0 Exercices : 1, 2, 3, 4, 5, 6, 7 page 252 puis 8, 10, 16, 35, 36 page 253 Page 7/9

8 Complexes : Fiche de révision 1 partie Forme algébrique : z = a + b i où i est le nombre complexe tel que i² = -1. Formules en format algébrique : a + b i = c + d i <=> a = c et b = d (a + b i) + (c + d i) = (a + c) + (b + d) i (a + b i) (c + d i) = a c + a d i + b c i + b d i² a+b i c+d i = (a c b d) + (a d + b c) i i)(c d i) i )(c d i ) =(a+b =(a+b (c+d i)(c d i) c 2 +d 2 z ẕ = a² +b² z+ẕ = 2a z ẕ=2 b i Le point M d'affixe z = a + b i a pour coordonnées a et b : M(z) = M(a ; b). La longeur OM vaut Module de z= z = a 2 +b 2 et l'affixe du vecteur OM est z. Remarquons que a² + b² est toujours la somme de deux nombres réels positifs ou nuls, car ce sont les carrés de deux réels (pas de i là-dedans!). Soient M 1 (z 1 ) et M 2 (z 2 ) : L'affixe du vecteur M 1 M 2 sera z 2 z 1. Sa longueur sera : M 1 M 2 = M 1 M 2 = z 2 z 1 (module de z 2 - z 1 ) =( L'affixe du milieu I du segment [M 1 M 2 ] est : z z 1+z 2 ) I 2 Page 8/9

9 Complexes : Fiche de révision 2 partie Forme trigonométrique : z = [ρ ; θ] avec : θ = Arg(z) (argument de z) et ρ = z (module de z) Passage d une forme à l autre : Algébrique Trigonométrique z = a + b i z = [ρ ; θ] : Calcul du module : z = ρ = a² b² Calcul de l argument : Arg(z) = θ = cos -1 (a/ ρ) si b > 0 Arg(z) = θ = - cos -1 (a/ ρ) si b < 0 Trigonométrique algébrique z = [ρ ; θ] z = a + b i : a = ρ cos(θ) et b = ρ sin(θ), soit z = ρ cos(θ) + i ρ sin(θ) Formules en format trigonométrique : [ρ ; θ] x [ρ ; θ ] = [ρ x ρ' ; θ + θ'] [ρ ; θ] n = [ρ n ; n θ] 1 / [ρ ; θ ] = [1 / ρ' ; θ'] [ρ ; θ] / [ρ ; θ ] = [ρ / ρ' ; θ θ'] Formules d Euler : sin(θ) = e i θ e i θ 2 i cos(θ) = e i θ + e i θ 2 Formule de Moivre : (cos(θ) + i sin(θ)) n = cos(nθ) + i sin(nθ) Solutions complexes des équation du second degré avec Δ = b² 4 a c < 0 : z 1 = b i 4 a c b² 2a et z 2 = b+i 4 a c b² Page 9/9

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Relations entre forme trigonométrique et forme algébrique

Relations entre forme trigonométrique et forme algébrique FORMULES ET THÉORÈMES Carré du nombre i On définit le nombre i de la façon suivante. i = 1 Forme algébrique d'un nombre complexe Tout nombre complexe z peut s'écrire sous une forme algébrique. z = a +

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Les nombres complexes. Il existe un ensemble, noté C, d éléments appelés..........................., tels que : C contient l ensemble............... ; C contient un élément i tel

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Table des matières 1 Approche historique 2 2 Définition 2 3 Représentation graphique des nombres complexes 3 4 Opérations sur les nombres complexes 4 4.1 Addition et soustraction

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

NOMBRES COMPLEXES. I Définitions

NOMBRES COMPLEXES. I Définitions NOMBRES COMPLEXES Objectifs Définitions C, nombre complexe, forme algébrique, parties réelles imaginaires, imaginaire pur. Plan complexe, affixe, image, axe imaginaire, axe réel Introduction. Inclusions

Plus en détail

Mathématique en Terminale S Les nombres complexes

Mathématique en Terminale S Les nombres complexes Mathématique en Les nombres complexes Table des matières 1 Approche historique 3 2 4 3 Représentation graphique des nombres complexes 4 4 Opérations sur les nombres complexes 5 4.1 Addition et soustraction

Plus en détail

Chapitre VII Les nombres complexes

Chapitre VII Les nombres complexes Chapitre VII Les nombres complexes Extrait du programme : I. Ensemble des nombres complexes 1. Existence Théorème (admis) : Il existe un ensemble noté, appelé ensemble des nombres complexes, qui possède

Plus en détail

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b NOMBRES COMPLEXES I- s et règles de calcul dans C Un nombre complexe est un nombre de la forme Z = a + i b où a et b sont des réels et i un nombre vérifiant i² = 1 L'ensemble des nombres complexes est

Plus en détail

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE SOMMAIRE 1.ACTIVITES... 2 ACTIVITE 1... 2 ACTIVITE 2... 2 2. NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES.... 3 3. INTERPRETATION GEOMETRIQUE.... 4 4. AFFIXE D UN VECTEUR, D UN BARYCENTRE...

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

GEOMETRIE PLANE : NOMBRES COMPLEXES

GEOMETRIE PLANE : NOMBRES COMPLEXES GEOMETRIE PLANE : NOMBRES COMPLEXES I Les points du plan et les nombres complexes - Notion de nombre complexe Dans ce chapitre, on définit un ensemble noté C, qui prolonge l ensemble R, muni d une addition

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Hervé Hocquard Université de Bordeaux, France 6 septembre 017 Rappels ou pas Introduction Soit (O; i, j ) un repère orthonormal direct et soit C le cercle trigonométrique de centre

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombrescomplexes

BTS Mécanique et Automatismes Industriels. Nombrescomplexes BTS Mécanique Automatismes Industriels Nombrescomplexes, Année scolaire 008/009 Table des matières Nombres complexes.lesdifférentesécritures....... Forme algébriqued unnombre complexe.... Représentationgéométrique

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

1 Forme algébrique d un nombre complexe

1 Forme algébrique d un nombre complexe Chapitre 2 Nombres complexes 1 BCPST 851 27 septembre 2011 Chapitre 2 Nombres complexes On suppose donné un nombre i n appartenant pas à R. 1 Forme algébrique d un nombre complexe Définition 1 Propriété

Plus en détail

TERMINALE S Les nombres complexes [forme algébrique]

TERMINALE S Les nombres complexes [forme algébrique] Définitions et propriétés. Il existe un ensemble de nombres, noté C, qui contient tous les nombres réels et qui de plus : -contient un nombre noté i, un symbole tel que i 2 = -1. -tous les nombres de C

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

MATHÉMATIQUES T erminale S

MATHÉMATIQUES T erminale S L Oasis Des M@Thém@tiques MATHÉMATIQUES T erminale S Boubacar MANÉ Mansour SANÉ Préface Table des matières 1 Les Nombres Complexes 5 I Historique......................................... 5 II Fabrication

Plus en détail

Les nombres complexes (forme algébrique)

Les nombres complexes (forme algébrique) Les nombres complexes (forme algébrique) I. L'ensemble IC des nombres complexes. ) Notion de nombre complexe. def : Soit i le nombre "imaginaire" tel que i ² =. L'ensemble IC des nombres complexes est

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Nombres complexes, cours, terminale S

Nombres complexes, cours, terminale S Nombres complexes, cours, terminale S 1 Notion de nombre complexe Il existe un ensemble noté C et appelé ensemble des nombres complexes tel que : C contient l'ensemble des...... ; l'addition et la multiplication

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES S.A.Q LES NOMBRES COMPLEXES Aperçu historique Définition Module d'un nombre complexe Argument d'un nombre complexe Nombre complexe et géométrie Ensemble des points M dont l'affixe z vérifie une propriété

Plus en détail

CHAPITRE 1 : LES NOMBRES COMPEXES :

CHAPITRE 1 : LES NOMBRES COMPEXES : CHAPITRE 1 : LES NOMBRES COMPEXES : I-Forme algébrique d un nombre complexe : I.1) Définitions : On appelle nombre complexe tout nombre de la forme z=a+ib où a et b sont des nombres réels et où la quantité

Plus en détail

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1 re STI Ch03 : Nombres complexes 006/007 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombre i............................................ I. L ensemble des nombres complexes...............................

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!...

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!... NOMBRES COMPLEXES I Définition - Représentation géométrique Exercice 0 Apprendre le cours!... Exercice 0 Soit z + i ; z' i - 5. Calculer et écrire sous la forme algébrique z + z' ; z - z' ; z - z' ; z.z'

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

AL1 Complexes FC - Exercices -

AL1 Complexes FC - Exercices - AL Complexes FC - Exercices - CALCULS TRANSFORMATIONS D ÉCRITURES TRIGONOMÉTRIE 4 4 POLYNÔMES 4 5 EXERCICES DE TESTS 5 Page sur 9 Calculs. Additions.. ( i) ( 4i) Mathématiques AL - Complexes + + +.. i

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Nombres complexes. Les Nombres Complexes

Nombres complexes. Les Nombres Complexes Introduction : Historique : Les Nombres Complexes Au début du XVI ème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du 3 ème degré : A la fin du XVI

Plus en détail

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr Bac Mathématiques Série S - 017 Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 0/0 alainpiller fr SAVOIR I A Définition de l ensemble des nombres complexes : L ensemble des nombres complexes est un

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 25 mars 2014 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2 CHAPITRE 9 Nombres complexes Sommaire Partie A (s14) 2 1 Rappels de première.................................................. 2 1.1 Forme algébrique 2 1.2 Forme trigonométrique 3 2 Forme exponentielle..................................................

Plus en détail

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que :

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que : GÉOMÉTRIE Nombres complexes Connaissances nécessaires à ce chapitre Factoriser une expression Utiliser les formules de géométrie dans les repères Représenter des angles sur un cercle trigonométrique Connaître

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

Nombres complexes. Représentation géométrique. Notation exponentielle.

Nombres complexes. Représentation géométrique. Notation exponentielle. Nombres complexes. Représentation géométrique. Notation exponentielle. 1. Représentation géométrique d'un nombre complexe... P2 4. Propriétés... P15 2. Module d'un nombre complexe... p7 5. Compléments...

Plus en détail

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que Nombre complexe I. Forme algébrique, Représentation géométrique 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que 2. On appelle nombre complexe tout nombre de

Plus en détail

TS Applications géométriques des nombres complexes Cours

TS Applications géométriques des nombres complexes Cours TS Applications géométriques des nombres complexes Cours I. Forme trigonométrique d un nombre complexe non nul (O ; u ; v ) est un repère orthonormal direct du plan complexe 1. Module et argument d un

Plus en détail

Nombres complexes, fonctions et formules trigonométriques

Nombres complexes, fonctions et formules trigonométriques Chapitre 4 Nombres complexes, fonctions et formules trigonométriques 41 Nombres complexes L ensemble C des nombres complexes est où i = 1 R C C = {z = a + ib : a, b R} Définition 411 On dit que l écriture

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

Géométrie plane & nombres complexes

Géométrie plane & nombres complexes Géométrie plane & nombres complexes Terminale S P. Flambard Lycée Max Linder Année scolaire 2017-2018 1. Notion de nombre complexe Ensemble des nombres complexes Propriété Il existe un ensemble de nombres,

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3.

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3. NMBRES CMPLEXES Jean Chanz Université de Paris-Sud Nécessité d introduire l ensemble C : Considérons l équation 3 5 4 = 0. Elle a pour solution évidente = 4. Le trinôme 3 5 4 se factorise en ( 4)( + b

Plus en détail

Les nombres complexes - 2

Les nombres complexes - 2 Chapitre 9 Les nombres complexes - Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

TRANSFORMATIONS ET NOMBRES COMPLEXES

TRANSFORMATIONS ET NOMBRES COMPLEXES TRANSFORATIONS ET NOBRES COPLEXES Table des matières Applications géométriques des nombres complexes. Arguments d un nombre complexe........................................... Ensemble de points du plan.

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

Les nombres complexes

Les nombres complexes Lycée Paul Doumer 2013-2014 TS1 Cours Les nombres complexes Contents 1 Introduction - Une extension des ensembles de nombres 2 2 Forme algébrique d un nombre complexe 3 2.1 Définitions et vocabulaire..............................

Plus en détail

Chapitre 14 : Nombres complexes et géométrie

Chapitre 14 : Nombres complexes et géométrie Chapitre 14 : Nombres complexes et géométrie I Affixe, module et argument I.1 Représentation géométrique d un nombre complexe Le plan est muni d un repère orthonormal direct (O; u; v. Il est ainsi appelé

Plus en détail

Les nombres complexes : exercices page 1

Les nombres complexes : exercices page 1 Les nombres complexes : exercices page 1 Ex 1 : Vrai ou faux Forme algébrique 1 ) =(4 5i ) 2 6 ) z 6 =i 4 i 3 2 ) z 2 =(4 5i ) ( 4+5i ) 7 ) z 7 =(1 2i ) 2 1 ) Si z=4i 3, alors a ) Im( z )= 3 d ) z=4 i+3

Plus en détail

NOMBRES COMPLEXES (Partie 1)

NOMBRES COMPLEXES (Partie 1) NOMBRES COMPLEXES (Partie 1) 1 Les nombres complexes prennent naissance au XVIème siècle lorsqu un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit 15 pour

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2)

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2) Chapitre 5 Les nombres complexes ) 1 rgument d un nombre complexe Un point M peut être repéré dans le plan muni d un repère orthonormé direct O; u, v ) de deux façons : par ses coordonnées cartésiennes

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Les nombres complexes : forme algébrique

Les nombres complexes : forme algébrique Isabelle orel-ts-cours complexes forme algébrique Les nombres complexes : forme algébrique Introduction. Le problème L histoire des nombres complexes commence en pleine Renaissance italienne avec les algébristes

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

cours de mathématiques en terminale

cours de mathématiques en terminale cours de mathématiques en terminale Les nombres complexes (partie 1) I. Notion de nombre complexe : 1. Théorème : théorème :. Il existe un ensemble noté propriétés suivantes :, appellé ensemble des nombres

Plus en détail

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants:

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants: Nombres complexes Exercice 1 1 Ecrire sous forme algébrique et trigonométrique les nombres suivants : i 0, i 1, i, i et i a Pour tout n IN, on note S n i 0 + i 1 + i +... + i n. Calculer S n - i S n, puis

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes Chap9 Forme trigonométrique et forme exponentielle de nombres complexes I Module, argument et forme trigonométrique d un nombre complexe Rappel : le plan complexe est le plan muni d un repère orthonormé

Plus en détail

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0 . Exercice n 1 : On considère l'équation : Z² - 4 i Z 3- i 3 = 0 1- Montrer que cette équation possède deux solutions complexes distinctes Z 1 et Z. - On désigne par M 1 et M les points du plan complexes

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - représentation graphique, opérations, conjugué, module, argument, forme trigonométrique : toutes sections - notation exponentielle : STISD STL - S Prérequis

Plus en détail

Nombres complexes-partie 1

Nombres complexes-partie 1 Nombres complexes-partie 1 Dimension historique : documents distribués en début de séquence 1) Forme algébrique d un nombre complexe a) Théorème : Il existe un ensemble de nombres noté contenant l ensemble

Plus en détail

NOMBRES COMPLEXES (Partie 3)

NOMBRES COMPLEXES (Partie 3) NOMBRES COMPLEXES (Partie 3) 1 Dans tout le chapitre, on munit le plan d'un repère orthonormé direct ( O; u! ; v! ). I. Forme exponentielle d un nombre complexe 1) Définition Posons f (θ) = cosθ + isinθ.

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail