Performances des SLCI

Dimension: px
Commencer à balayer dès la page:

Download "Performances des SLCI"

Transcription

1 Fichier : _SLCI_performances. Définitions.. Stabilité Il existe plusieurs définition de la stabilité : Pour une entrée e(t) constante, la sortie s(t) du système doit tendre vers une constante. Un système est stable si et seulement si sa réponse impulsionnelle tend vers 0 quand t tend vers l infini. Après une perturbation un système stable doit revenir à son état permanent.2. Précision Un système est dit précis si la sortie suit l entrée en toute circonstance. On quantifie la précision par l écart entre la sortie désirée et la sortie réelle..3. Rapidité Un système a une rapidité satisfaisant s il se stabilise à son niveau constant en un temps jugé satisfaisant. 2. Stabilité Stabilité interne : Un système est stable si et seulement si sa réponse impulsionnelle tend vers 0 quand t tend vers l infini. Pour une entrée e(t) finie, la sortie s(t) du système doit être finie. Ces deux définitions sont équivalentes pour un système linéaire. Système stable Performances des SLCI, page /5

2 Système instable Système stable Système instable 2.. Conditions de stabilité Soit un système linéaire de fonction de transfert N(p) = b.p + b.p b.p + b D(p) = a.p + a.p a.p + a m m m m 0 n n n n 0 Performances des SLCI, page 2/5 N(p) H(p) = avec : D(p) On appelle zéros de la fonction de transfert les racines de N(p) et pôles les racines de D(p). Un système linéaire est stable si et seulement si tous ses pôles sont à partie réelle strictement négative. Démonstration : Dans le cas d une réponse impulsionnelle, la sortie est la transformée inverse de la fonction de transfert. Ai Si on décompose cette dernière en éléments simples, on obtient des termes en (a i p ai Bi étant un pôle réel) et des termes en ( a 2 ( ) 2 i ± jb i étant une paire de pôles p ai + bi complexes conjugués). at i Après application de la transformée inverse, les pôles réels donnent des termes en e et a.t i e sin b.t+ ϕ. les pôles complexes donnent des termes en ( ) La condition de stabilité étant que la sortie tende vers 0 quand t tend vers +, il s ensuit at i que les e doivent tendre vers 0. Il faut donc que les a i soient strictement négatifs. L équation D(p) = 0 est appelée équation caractéristique du système.

3 2.2. Critère de Routh La détermination des racines d un polynôme de degré élevé n étant pas toujours aisée, il est intéressant de pouvoir étudier la stabilité sans avoir à résoudre l équation caractéristique. A partir du dénominateur D(p) de la fonction de transfert on forme le polynôme D (p) tel que : n n D'(p) =± D(p) = a n.p + a n.p a.p + a0 = 0 avec a n > 0 Puis on forme le tableau suivant : p n γ n 4= a n 4 α n = a β n n 2 = a n 2 a 0 p n- n n α = a β n 3 = a n 3 γ n 5= a n 5 a α. β α. β α = n n 2 n n 3 p n-2 n 2 αn α. γ α. γ β n 4 = α n n 4 n n 5 n α β α β α = n 2 n 3 n n 4 p n-3 n 3 αn 2 α. γ α. γ β n 5 = α n 2 n 5 n n 6 n 2 p 0 α 0 Le système est stable si tous les a n sont présents et supérieurs à 0 et si tous les termes de la première colonne sont strictement positifs. Le nombre de changement de signes est égal au nombre de pôles à parties réelles positives. Exemple : Soit l équation caractéristique suivante : p + 5p + 9p + 0p + p + 0p+ 3= ,57 7, , , Il y a deux changements de signe dans la première colonne : de 3,57 à 6,4 et de 6,4 à 9,53. Il y a donc deux pôles à parties réelles positives. Performances des SLCI, Page 3/5

4 2.3. Critères graphiques Soit le système suivant : E Performances des SLCI + A(p) S B(p) S(p) A(p) = E(p) + B(p).A(p) L équation caractéristique est : + B(p).A(p) = 0 où B(p).A(p) représente la FTBO soit encore : B(p).A(p) = En régime harmonique, l équation devient : B( j ).A( j ) = B( j ). A(j ) = Arg(B( j )) + Arg ( A( j )) =±π Ceci met en évidence un point particulier du plan complexe appelé point critique. Ce point a pour module et pour argument ±80 ou ±π Dans le plan de Nyquist Critère du revers : Le système est stable en boucle fermée si, en parcourant le lieu de transfert en boucle ouverte dans le sens des croissants, on laisse le point critique (-,0) sur la gauche. Im(H(j)) Point critique - Re(H(j)) Stable Instable Performances des SLCI, page 4/5

5 Dans le plan de Bode Le système est stable si, pour la pulsation -80 (qui correspond à Arg FTBO j = 80 ), la courbe de gain passe en dessous du niveau 0dB. ( ( 80 )) G db Instable Stable ϕ Dans le plan de Black Le système est stable si, en parcourant le lieu de transfert en boucle ouverte dans le sens des croissants, on laisse le point critique (-80, 0) sur la droite. 20Log H(j) Instable Stable -80 ϕ Performances des SLCI, Page 5/5

6 2.4. Marge de gain et marge de phase En général, on adopte comme valeurs pratiques pour satisfaire un degré de stabilité satisfaisant : Mg = 2 db Mϕ = Définition analytique Marge de phase Mϕ : Mϕ = 80 + Arg FTBO j ( ( 0dB) ) 0dB est la valeur de pour laquelle OdB FTBO( j ) = Marge de gain MG db : G est l image de la marge de gain MG = 20 log FTBO ( j ) 80 ( ) db 80 est la valeur de pour laquelle ( ) Arg FTBO(j ) = Représentation dans les différents plans Dans le plan de Nyquist G Im(H(j)) - Re(H(j)) Mϕ Stable Instable G est l image de la marge de gain. On ne peut pas mesurer la marge de gain directement dans le plan de Nyquist. Performances des SLCI, page 6/5

7 Dans le plan de Bode G db 0dB -80 MG db ϕ -80 Mϕ Dans le plan de Black 20Log H(j) Mϕ -80 ϕ MG db Remarque Une augmentation du gain diminue les marges de phase et de gain donc, augmente le risque d instabilité Performances des SLCI, Page 7/5

8 3. Précision Un système est dit précis si la sortie suit l entrée en toute circonstance. On quantifie la précision par l écart entre la sortie désirée et la sortie réelle. Soit le système représenté par le schéma bloc suivant : E(p) + ε(p) A(p) S(p) - B(p) ε(p) représente la transformée de Laplace de ε(t) qui est l erreur entre l entrée et la sortie. Théorème de la valeur finale : lim ε (t) = lim p. ε (p) p 0 ε (p) = E(p) S(p).B(p) S(p) =ε(p).a(p) ε (p) = E(p) ε(p).a(p).b(p) E(p) E(p) ε (p) = = + A(p).B(p) + FTBO(p) Performances des SLCI, page 8/5

9 3.. Classe du système en boucle ouverte E(p) + ε(p) A(p) S(p) - R(p) B(p) La fonction de transfert en boucle ouverte du système représenté ci-dessus est : R(p) T(p) = FTBO = = A(p).B(p) ε(p) La fonction de transfert en boucle ouverte d un système peut se mettre sous la forme : 2 m + c.p + c 2.p c m.p T(p) = avec n > m α 2 n p + d.p + d 2.p d n.p représente le gain statique de la boucle ouverte. α représente la classe du système. La classe du système correspond au nombre d intégrateurs purs Erreur en régime permanent E(p) E(p) E(p) lim ε (t) = lim p = lim p = lim p p 0 + A(p).B(p) p 0 + T(p) p 0 + FTBO(p) Erreur de position (réponse à un échelon) e(t) = Eo.u(t) Eo L( e(t) ) = p Eo lim ε (t) = lim p.. p 0 p + T(p) = lim Eo. p 0 2 m + c.p + c 2.p c m.p + p α d 2 n +.p + d 2.p d n.p α= 0 Eo lim ε (t) = + α> 0 lim ε (t) = 0 Performances des SLCI, Page 9/5

10 s(t) e(t) Classe > 0 Classe = 0 ε(t) = Eo + t Erreur de traînage (réponse à une rampe) e(t) = a.r(t) Eo p ( ) = 2 L e(t) a lim ε (t) = lim p.. p p T(p) a = lim. p 0 p + c.p + c.p c.p + p α + d.p + d.p d.p α= 0 lim ε (t) = α= a lim ε (t) = α= 2 lim ε (t) = 0 2 m 2 m 2 n 2 n α= α=2 ε(t)= a α=0 Performances des SLCI, page 0/5

11 Récapitulation Echelon Eo Rampe a.t Parabole b.t² Classe 0 Eo + Pas d intégration Classe 0 a intégration Classe b 2 intégration Erreur de position Erreur statique Erreur en vitesse (traînage) Erreur en accélaration 4. Rapidité Conclusion Pour diminuer l erreur en régime permanent, il faut augmenter la classe du système (nombre d intégrateurs purs dans la boucle) et/ou augmenter le gain. Attention : une augmentation du gain diminue la marge de stabilité. Un système a une rapidité satisfaisante s il se stabilise à son niveau constant en un temps jugé satisfaisant. Un système est d autant plus rapide que son temps de réponse est court. Performances des SLCI, Page /5

12 4.. Système du premier ordre Performances des SLCI 4... Influence d un retour unitaire E(p) + ε(p) A(p) S(p) - R(p) E(p) = A(p) = R(p) +τ p E(p) +τ p = = = + S(p) p τ + + +τ + p +τ p + τ Posons = et τ = + + tr 5% = 3τ τ tr5%(bo) = 3τ et tr5%(bf) = 3τ = 3 < 3τ + Conclusion : La fait d introduire un retour unitaire augmente la rapidité, mais l erreur statique augmente : Eo Eo ε s(bf) = >ε s(b0) = < Système du deuxième ordre H(p) = = ξ p + 2ξτ 0p+τ0p + p+ 2 o 0 o = pulsation nturelle τ 0 = constante de temps = o ξ = Coefficient d'amortissement Θ =.Tr = temps de réponse réduit (Tr = temps de réponse) r o Performances des SLCI, page 2/5

13 4.2.. Temps de réponse à 5% des systèmes du deuxième ordre Systèmes à pôles réels ξ= Tr 5τ <ξ,34 Tr 5ξτ, 34 <ξ 2 5ξτ Tr 6ξτ ξ> 2 Tr 6ξτ Systèmes à pôles complexes Le meilleur temps de réponse est obtenu pour ξ = 0,69 y(t) ζ = t Influence de ξ sur le temps de réponse réduit Θr Echelle log lgθr = lg 3 - lg ζ lgθr = lg 6 + lg ζ ,25 0,69 2 ζ Performances des SLCI, Page 3/5

14 5. Bande passante La plupart des systèmes physiques, s ils ne comportent pas d intégrateurs purs, se comportent dans Bode selon le diagramme de gain ci-dessous. Ce sont des filtres «passe-bas», en effet à partir d une certaine fréquence, le gain est atténué, pour devenir nul en db à partir de c. GdB 0dB c 20 Log 5.. Définition On peut définir une bande de fréquences pour lesquelles le signal n est atténué que d une certaine valeur. On distingue en automatisme pour les systèmes avec résonance deux bandes passantes : une bande passante à 3dB pour laquelle H(j ) 2 >. Pour = c, le signal 2 est atténué de 3 db une bande passante à 6dB pour laquelle H(j ) >. Pour = c, le signal est 2 atténué de 6 db GdB -3dB -6dB 0dB Bande passante à 3dB Bande passante à 6dB Performances des SLCI, page 4/5

15 Pour les systèmes sans résonance on définit une bande passante à 3dB GdB -3dB 0dB Bande passante à 3dB c 5.2. Exercice Déterminer la bande passante d un système dont la fonction de transfert est : H(p) = + p Performances des SLCI, Page 5/5

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS

SYSTEMES LINEAIRES CONTINUS INVARIANTS PERFORMANCES DES SYSTEMES ASSERVIS YTM LINAIR CONTINU INVARIANT tabilité des systèmes asservis PRFORMANC D YTM ARVI. Notion de stabilité La stabilité est communément reconnue comme étant associée à la notion d équilibre : Prenons les deux

Plus en détail

S tabilité d'un s ys tème as s ervi

S tabilité d'un s ys tème as s ervi Stabilité d'un système asservi page 1 / 5 S tabilité d'un s ys tème as s ervi 1 Notion de stabilité et définition Définition n 1 : on dit que le système est stable si pour une entrée bornée, la sortie

Plus en détail

CHAP III. PRÉCISION ET STABILITÉ D'UNE BOUCLE

CHAP III. PRÉCISION ET STABILITÉ D'UNE BOUCLE TS2 CIRA Régulation - Chap III Précision et stabilité d'une boucle CHAP III PRÉCISION ET STABILITÉ D'UNE BOUCLE 1 Stabilité d'un système bouclé 11 Etude des pôles de F(p) On considère le système suivant

Plus en détail

CI-2-1 PRÉVOIR ET VÉRIFIER LES

CI-2-1 PRÉVOIR ET VÉRIFIER LES CI-2-1 PRÉVOIR ET VÉRIFIER LES PERFORMANCES DES SYSTÈMES LI- NÉAIRES CONTINUS INVARIANTS. Objectifs A l issue de la séquence, l élève doit être capable : B3 Valider un modèle SIMULER - VALIDER Réduire

Plus en détail

Systèmes asservis linéaires

Systèmes asservis linéaires Systèmes asservis linéaires I Systèmes asservis 1. définition 2. transmittance 3. schéma bloc 4. transmittance d une chaîne II système commandé en boucle fermée 1. système asservi 2. principe de fonctionnement

Plus en détail

Chapitre 4 : systèmes asservis linéaires.

Chapitre 4 : systèmes asservis linéaires. Chapitre 4 : systèmes asservis linéaires. A) Structure d'un système asservi : nécessité du système bouclé : Système en boucle ouverte : consigne venant du cerveau Poussée des muscles. vitesse, trajectoire,

Plus en détail

TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT. k p(1+0.5p) 2

TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT. k p(1+0.5p) 2 TD1: ANALYSE DE STABILITÉ ET DES PERFORMANCES D UN ASSERVISSEMENT On considère l asservissement suivant : k p(1+0.5p) 2 I. Cas où k = 1 1. Donner l allure dans les plan de Bode, Nyquist et Black du lieu

Plus en détail

http ://ptetoile.free.fr/ Automatique

http ://ptetoile.free.fr/ Automatique Notions de base. Définitions Système continu : les variations des grandeurs physiques le caractérisant sont des fonctions de variables continues Système linéaire : Système régit par le principe de proportionnalité

Plus en détail

Correction des systèmes asservis

Correction des systèmes asservis Asservissements continus Correction des systèmes asservis 3 ème année Polytech Paris Sud Département EES Cédric KOENIGUER Plan I. Objectifs de la correction II. Correcteur proportionnel III. Correcteurs

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministère de l Enseignement Supérieur, de la Recherche Scientifique Université Virtuelle de Tunis Les systèmes asservis linéaires échantillonnés Mohamed AKKARI Attention! Ce produit pédagogique numérisé

Plus en détail

2) Stabilite et precision

2) Stabilite et precision Table des matières Les nombres complexes 2. Présentation..................................... 2.2 Plan complexe.................................... 2.3 Module et argument................................

Plus en détail

Automatique. Stabilité. F. Rotella I. Zambettakis. F. Rotella I. Zambettakis Automatique 1

Automatique. Stabilité. F. Rotella I. Zambettakis.  F. Rotella I. Zambettakis Automatique 1 Automatique Stabilité F. Rotella I. Zambettakis rotella@enit.fr, izambettakis@iut-tarbes.fr F. Rotella I. Zambettakis Automatique 1 La réponse fréquentielle La réponse fréquentielle réponses temporelles

Plus en détail

TD Correction des SLCI

TD Correction des SLCI TD Correction des SLCI Compétences travaillées : Déterminer la précision en régime permanent, Quantifier les performances d un SLCI : o calculer rapidement l erreur, caractérisant la précision, o appliquer

Plus en détail

Automatique linéaire 1

Automatique linéaire 1 Cycle ISMIN 1A Automatique linéaire 1 J.M. Dutertre 2016 www.emse.fr/~dutertre Automatique linéaire 1 Cadre du cours : étude des systèmes linéaires continus. Plan du cours : I. Introduction, Définitions,

Plus en détail

Correction et amélioration des performances des SLCI

Correction et amélioration des performances des SLCI Correction et aélioration des perforances des SLCI Nous avons vu les paraètres influents sur les perforances des SLCI : pour avoir une bonne rapidité, il faut que le systèe ait un gain de la FTBO élevé,

Plus en détail

Correction des systèmes linéaires continus asservis

Correction des systèmes linéaires continus asservis UV Cours 6 Correction des systèmes linéaires continus asservis ASI 3 Contenu! Introduction " Problématique de l'asservissement! Différentes méthodes de correction " Correction série, correction parallèle

Plus en détail

MODÈLES DE RÉFÉRENCES

MODÈLES DE RÉFÉRENCES Plan ANALYSE TEMPORELLE ANALYSE HARMONIQUE 3 MODÈLES DE RÉFÉRENCES 3 MODÈLE PROPORTIONNEL 3 MODÈLE D ORDRE 33 MODÈLE D ORDRE 34 MODÈLE INTÉGRATEUR 4 IDENTIFICATION MODÈLES DE COMPORTEMENT 4 IDENTIFICATION

Plus en détail

Utilisation de SimApp pour l analyse des systèmes asservis

Utilisation de SimApp pour l analyse des systèmes asservis Utilisation de SimApp pour l analyse des systèmes asservis Étude du maintien en altitude d un avion type Airbus Robert Papanicola Lycée Jacques Amyot 26 janvier 2010 Robert Papanicola (Lycée Jacques Amyot)

Plus en détail

Synthèse des correcteurs analogiques :

Synthèse des correcteurs analogiques : Synthèse des correcteurs analogiques : Thierry CHATEAU 1 1. LASMEA, UMR6602 CNRS/UBP Clermont-Ferrand T. CHATEAU P. 1 Plan 1. Problématique 2. Notion de réglabilité 3. Objectifs de la régulation 4. Correcteurs

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb October 8, 2009 Sommaire 1 Introduction à l automatique

Plus en détail

SYSTEMES LINEAIRES CONTINUS INVARIANTS

SYSTEMES LINEAIRES CONTINUS INVARIANTS SYSTEMES LINEAIRES CONTINUS INVARIANTS (Partie 1 & 2) L étude détaillée se limite aux systèmes de bases, c est à dire aux systèmes du premier ordre et du second ordre. En effet l étude des autres systèmes

Plus en détail

Phase Locked Loop (PLL)

Phase Locked Loop (PLL) Boucle à Verrouillage de phase Phase Locked Loop () 4ème année Polytech Département EES 2013 Cédric KOENIGUER Plan I. Présentation d une II. Etude des comparateurs de phases III. Mise en évidence de la

Plus en détail

Cours de Signaux PeiP2

Cours de Signaux PeiP2 PeiP Signaux Table des matières Cours de Signaux PeiP S. Icart Généralités. Définitions..................................... Propriétés de la transformée de Laplace.....................3 Transformées de

Plus en détail

INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS

INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS INTRODUCTION A LA CORRECTION DES SYSTEMES ASSERVIS - POSITION DU PROBLEME Le chapitre précédent à permis de définir le comportement d un système asservi à partir de 3 caractéristiques majeures: la rapidité

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 5 ÉTUDE DES SYSTÈMES FONDAMENTAUX DU SECOND ORDRE Amortisseur d un véhicule automobile Schématisation du mécanisme

Plus en détail

Chapitre 6. Correction des systèmes. Aymeric Histace 1

Chapitre 6. Correction des systèmes. Aymeric Histace 1 Chapitre 6 Correction des systèmes Aymeric Histace 1 Plan n 1. Le dilemme de l asservissement n 2. Méthodes et types de correction n 3. Correction PID n 4. Méthodes de réglage du PID Aymeric Histace 2

Plus en détail

Fiche Module Sciences et Technologies Informatique industrielle Licence

Fiche Module Sciences et Technologies Informatique industrielle Licence Ministère de l Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l Information et de la Communication Université de Carthage Institut Supérieur des Technologies de l Information

Plus en détail

M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne

M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne M1 CSy module P8 PROJET DE SIMULATION AVEC MATLAB Commande de la position angulaire d une antenne Christophe Calmettes & Jean-José Orteu On considère le système représenté sur la figure 1 et constitué

Plus en détail

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ-

TD 4 : CI-2-3 PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- TD : CI-- PRÉVOIR LES RÉPONSES TEMPORELLES ET FRÉ- QUENTIELLES D UN SYSTÈME DU PREMIER OU SECOND ORDRE Exercice : Analyse de courbes Q - : Associer à chacune des courbes suivantes (repérées par les chiffres

Plus en détail

CI2 : Analyse du comportement des systèmes invariants continus

CI2 : Analyse du comportement des systèmes invariants continus CI2 : Analyse du comportement des systèmes invariants continus Points étudiés : Simulation fonctionnelle d'un système complexe Correction des systèmes asservis (Proportionnelle et Proportionnelle Dérivée)

Plus en détail

Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés

Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés Représentation et analyse des systèmes linéaires PC 6 Analyse fréquentielle des systèmes bouclés Analyse fréquentielle des systèmes bouclés 2 Soit l asservissement à retour unitaire : r + ζ K(p) u G(p)

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP I - OBJECTIFS DE FORMATION FINALITES SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DEUXIEME ANNÉE : MP Les sciences industrielles pour l ingénieur en classes préparatoires marocaines renforcent l interdisciplinarité

Plus en détail

Action proportionnel - P Action Intégrale - I Action Dérivée - D Action P.I.D. Part VIII. Construction de correcteurs

Action proportionnel - P Action Intégrale - I Action Dérivée - D Action P.I.D. Part VIII. Construction de correcteurs Part VIII Construction de correcteurs Sommaire Thanks to Yassine Ariba, Doctorant groupe Mac 28 Action proportionnel - P 29 Action Intégrale - I Correcteur intégral pur Correcteur proportionnel intégral

Plus en détail

13- Stabilité dun système linéaire. H(p) jean-philippe muller. sortie y(t), Y(p) Systèmes asservis linéaires. entrée x(t), X(p)

13- Stabilité dun système linéaire. H(p) jean-philippe muller. sortie y(t), Y(p) Systèmes asservis linéaires. entrée x(t), X(p) 13- Stabilité dun système linéaire Soit un système linéaire possédant une entrée x(t) et une sortie y(t), et déini par sa transmittance de Laplace G(p) composée dun numérateur N(p) et dun dénominateur

Plus en détail

CI-2 Prévoir, modifier et vérifier les performances des systèmes linéaires continus invariants.

CI-2 Prévoir, modifier et vérifier les performances des systèmes linéaires continus invariants. CI-2 Prévoir, modifier et vérifier les performances des systèmes linéaires continus invariants. CI-2-2 Modifier les performances des systèmes linéaires continus invariants. LYCÉE CARNOT (DIJON), 2016-2017

Plus en détail

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CI 2 SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS CHAPITRE 7 RÉPONSES HARMONIQUES DIAGRAMMES DE BODE TRAVAUX DIRIGÉS Ressources de Florestan Mathurin. Exercice 1 : Radar d'avion

Plus en détail

CH21 : Les correcteurs

CH21 : Les correcteurs BTS ELT 2 ème année - Sciences physiques appliquées CH2 : Les correcteurs Enjeu : régulation et asservissement des systèmes Problématique : Comment améliorer les performances d un système bouclé lorsque

Plus en détail

ASSERVISSEMENTS LINEAIRES

ASSERVISSEMENTS LINEAIRES . DEFINITIONS ASSERVISSEMENTS LINEAIRES Pour remédier aux défauts d'un amplifiateur ou maintenir onstante la vitesse d'un moteur lorsque sa harge varie, on est amené à effetuer une ontre-réation qui a

Plus en détail

CI-2-2 MODIFIER LES PERFORMANCES DES

CI-2-2 MODIFIER LES PERFORMANCES DES CI-2-2 MODIFIER LES PERFORMANCES DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS. Objectifs A l issue de la séquence, l élève doit être capable de: C1 Proposer une démarche de résolution SIMULER OPTIMISER VALIDER

Plus en détail

Plan du cours. Introduction. Thierry CHATEAU. 11 avril 2011

Plan du cours. Introduction. Thierry CHATEAU. 11 avril 2011 du cours compensation de pôles PID Numérique Placement de pôles (RST) /précision 11 avril 2011 Modèle bloqué d'une fonction de transfert Signaux discrêt Echantillonnage AuroFC2U1 AuroFC2U2 AuroFC3U1 AuroFC3U2

Plus en détail

SYSTEMES ASSERVIS. /home/marie/lycée/bts_crsa/uf32_m41/crsa_systemesasservis.odp

SYSTEMES ASSERVIS. /home/marie/lycée/bts_crsa/uf32_m41/crsa_systemesasservis.odp SYSTEMES ASSERVIS Asservissement? L asservissement est l art de contrôler quelque chose de concret afin qu'il se comporte comme on le souhaite. Il existe deux grands types d asservissement : - La régulation

Plus en détail

TD AUTOMATIQUE V. Chol et - TD-autom-07.doc - 12/01/2009 page 1

TD AUTOMATIQUE V. Chol et - TD-autom-07.doc - 12/01/2009 page 1 TD AUTOMATIQUE V. Chollet - TD-autom-07.doc - 12/01/2009 page 1 TRANSFORMATION DE LAPLACE Exercice 1 Calculer, à partir de sa définition, la transformée de Laplace des signaux causaux (nuls pour t

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

Réponse indicielle des systèmes linéaires analogiques

Réponse indicielle des systèmes linéaires analogiques Réponse indicielle des systèmes linéaires analogiques Le chapitre précédent a introduit une première méthode de caractérisation des systèmes analogiques linéaires avec l analyse fréquentielle. Nous présentons

Plus en détail

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE Ressources pédagogiques : http://cours.espci.fr/cours.php?id=159397 Forum aux questions : https://iadc.info.espci.fr/bin/cpx/mforum

Plus en détail

Quadripôles/ Réponse en fréquence et diagramme de Bode

Quadripôles/ Réponse en fréquence et diagramme de Bode Quadripôles/ Réponse en fréquence et diagramme de Bode Chapitre Dans ce chapitre la définition des quadripôles, leurs différents types ainsi que leurs paramètres sont étudiés. L analyse fréquentielle et

Plus en détail

Correction des systèmes linéaires

Correction des systèmes linéaires Correction des systèmes linéaires 1. Introduction Le comportement d'un système de commande a été analysé en étudiant sa dynamique et sa stabilité à partir des propriétés de sa fonction de transfert. Ce

Plus en détail

Cours d'électronique. Filtres passifs. CPGE de l'essouriau - PCSI. Cédric Koeniguer. C. Koeniguer

Cours d'électronique. Filtres passifs. CPGE de l'essouriau - PCSI. Cédric Koeniguer. C. Koeniguer Cours d'électronique Filtres passifs CPGE de l'essouriau - PCSI Cédric Koeniguer C. Koeniguer - - Filtrage passif Plan I. Introduction au filtrage II. Caractérisation des filtres III. Etude des filtres

Plus en détail

Contrôleurs : domaine fréquentiel

Contrôleurs : domaine fréquentiel Chapitre 9 Contrôleurs : domaine fréquentiel Dans ce chapitre, on se sert des diagrammes de Bode pour designer des compensateurs pour améliorer la stabilité, la réponse transitoire, et l erreur statique..

Plus en détail

TRACE DE DIAGRAMME DE BODE

TRACE DE DIAGRAMME DE BODE TRACE DE DIAGRAMME DE BODE Le diagramme de Bode permet de représenter sous forme graphique le gain en db (G=20 log et la phase ( d'une fonction de transfert, en fonction de w. Il permet de voir le comportement

Plus en détail

9 Tracé des diagrammes de Bode

9 Tracé des diagrammes de Bode 9 Tracé des diagrammes de Bode 9.1 Gain pur La fonction de transfert d un gain pur est H(P)=, la fonction de transfert harmonique est donc identique : H(jω)=. D où : Le gain en décibel : G db = 0log La

Plus en détail

CHAPITRE 4 STABLILITÉ DES SYSTÈMES ASSERVIS 4.1, CONDITION GENERALE DE STABILITE Définition au sens de l'automatique

CHAPITRE 4 STABLILITÉ DES SYSTÈMES ASSERVIS 4.1, CONDITION GENERALE DE STABILITE Définition au sens de l'automatique CHAPITRE 4 STABLILITÉ DES SYSTÈMES ASSERVIS 4.1, CONDITION GENERALE DE STABILITE 4.1.1. Définition au sens de l'automatique Pour l'automaticien, un système est stable si, abandonné à lui-même à partir

Plus en détail

Cours n 7. Synthèse de correcteurs. December 23, 2016

Cours n 7. Synthèse de correcteurs. December 23, 2016 Cours n 7 Synthèse de correcteurs vincent.mahout@insa-toulouse.fr December 23, 216 vincent.mahout@insa-toulouse.fr Cours n 7 December 23, 216 1 / 57 Problématique Le correcteur proportionnel K n est pas

Plus en détail

Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques

Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques Représentation et analyse des systèmes linéaires Cours 3 Stabilité des systèmes dynamiques Stabilité des systèmes dynamiques 2 ➊ Concept crucial pour la commande des systèmes dynamiques Stabilité des systèmes

Plus en détail

Si ω 0 alors Z C (refaire le schéma en supprimant la branche contenant le condensateur) et U s U e.

Si ω 0 alors Z C (refaire le schéma en supprimant la branche contenant le condensateur) et U s U e. MPSI - Électrocinétique II - Filtre du er ordre page /6 Filtre du er ordre Table des matières Introduction Filtre passe-bas du premier ordre. Comportement asymptotique...................... Fonction de

Plus en détail

École de technologie supérieure GPA ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+

École de technologie supérieure GPA ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+ École de technologie supérieure GPA-535 1 ANNEXE-2 TRANSFORMÉE DE LAPLACE ET TRANSFORMÉE INVERSE DE LAPLACE TI-89/92/92+ [A2-1]. DESCRIPTION La librairie de fonctions concernant la transformée de Laplace

Plus en détail

Simulation d un modèle causal - Scilab

Simulation d un modèle causal - Scilab CPGE - Sciences de l Ingénieur Simulation d un modèle causal - Scilab PCSI TP Document Sujet 2h - v1.1 Lycée Michelet 5 Rue Jullien - 92170 Vanves - Académie de Versailles Antenne parabolique de bateau

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2016 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

TP AUTOMATIQUE 2ème année - S4

TP AUTOMATIQUE 2ème année - S4 TP AUTOMATIQUE 2ème année - S4 V. Chollet - sujettp09-25/01/10 - page 1/13 CONSIGNES : Rédiger un compte-rendu. Les résultats seront contrôlés en cours de TP. TP n 1 : SYSTEME DU PREMIER ORDRE ASSERVISSEMENT

Plus en détail

Chap.4 Commande d un système linéaire : Systèmes bouclés

Chap.4 Commande d un système linéaire : Systèmes bouclés Chap.4 Commande d un système linéaire : Systèmes bouclés 1. Structure d un système bouclé 1.1. Schéma bloc 1.2. Principe de régulation 1.3. Comportement du système : FTBF 2. Avantages du bouclage Cas d

Plus en détail

Systèmes linéaires asservis : analyse de la stabilité

Systèmes linéaires asservis : analyse de la stabilité 1 UV Cour 4 Sytème linéaire aervi : analye de la tabilité ASI 3 Contenu! Introduction " Élément d'une tructure d'aerviement! Sytème en boucle fermée "Fonction de tranfert en boucle ouverte notion de chaîne

Plus en détail

Amélioration des performances des systèmes asservis

Amélioration des performances des systèmes asservis Amélioration des performances des systèmes asservis Fichier : 2_SLCI_Amelioration. Introduction On déduit les performances d un système asservi à partir de sa fonction de transfert. Ces performances sont

Plus en détail

TD Automatique : Correction. ( p)

TD Automatique : Correction. ( p) TD Automatique : Correction Exercice : Correction PI (réglage dans Black) Soit le système G(p) : G ( p) = (.5 p) 2 2 ( p + 2 p + 2) Le cahier des charges stipule que : l erreur de position doit être annulée

Plus en détail

CORRECTION DES SYSTÈMES ASSERVIS. 7.1 Nécessité de la correction

CORRECTION DES SYSTÈMES ASSERVIS. 7.1 Nécessité de la correction i CORRECTION DES SYSTÈMES ASSERVIS 7. Nécessité de la correction Nous avons vu dans les chapitres précédents que les systèmes asservis pouvaient présenter des défauts, une précision insuffisante, une stabilité

Plus en détail

TABLE DES MATIERES AVANT PROPOS 13

TABLE DES MATIERES AVANT PROPOS 13 TABLE DES MATIERES AVANT PROPOS 13 CH. 1. NOTIONS DE SYSTEME ASSERVI 15 1.1. Régulation et asservissement 15 1.1.1. Régulation 15 1.1.2. Asservissement 15 1.2. Structure de la commande en boucle fermée

Plus en détail

génie électrique Asservissement TD ASSERVISSEMENT

génie électrique Asservissement TD ASSERVISSEMENT TD ASSERVISSEMENT EXERCICES D'APPLICATION DU COURS : 1) Soit un signal ayant pour expression en Laplace :Y(p) = Donner la valeur finale de y(t), puis la valeur initiale de y(t) et de dy/dt. 2) FTBF Calculer

Plus en détail

北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR

北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR DM2 Page 1 北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR Année académique 2015-2016 Devoir à la maison n 2 À rendre le lundi 4 janvier 2016 Numéro d étudiant à 8 chiffres :

Plus en détail

TP de traitement numérique du signal

TP de traitement numérique du signal Stage de hysique aliquée /9 B. Pontalier TP de traitement numérique du signal Filtrage numérique. Filtres synthétisés ar la imulsionnelle: imusion de Dirac imusion de Dirac modèle T( FT du filtre # T(

Plus en détail

DOCUMENTS RESSOURCES

DOCUMENTS RESSOURCES CORRECTIONS DES ASSERVISSEMENTS DES SYSTEMES LINEAIRES 1- MODELISATION DES SYSTEMES ASSERVIS LINEAIRES Afin d éviter des éventuelles perturbations pouvant agir sur le circuit de la chaîne directe et déstabiliser

Plus en détail

Traitement du Signal Compte Rendu TP 5 : Filtre RC

Traitement du Signal Compte Rendu TP 5 : Filtre RC Traitement du Signal Compte Rendu TP 5 : Filtre EE345 Traitement du Signal : CAILLOL Julien p28 IR 6/juin I ) ère partie Nous allons ici étudier la chaîne de traitement numérique associée au montage électrique

Plus en détail

Introduction à l Automatique. Cours AQ N 2

Introduction à l Automatique. Cours AQ N 2 Introduction à l Automatique Cours AQ N 2 Plan Définitions de base et exemples Notion de Boucle ouverte Notion d asservissement Modélisation d un système asservi Exemple Définitions Système: dispositif

Plus en détail

D 2 C Drone Didactique Contrôlé TP CPGE

D 2 C Drone Didactique Contrôlé TP CPGE D 2 C Drone Didactique Contrôlé Optimiser l asservissement de tangage du drone didactique TP 2-2 «Etude en simulation de la boucle d asservissement de position du drone didactique» Préambule : pourquoi

Plus en détail

Synthèse de correcteurs

Synthèse de correcteurs Synthèse de correcteurs 1 Les actions Proportionnelles, Intégrales et Dérivées Compte tenu de certains choix (e.g., celui du facteur de résonance), on peut, grâce à des organes appelés correcteurs, améliorer

Plus en détail

Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre

Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre Réponse fréquentielle d un circuit linéaire Filtres du premier et du second ordre I. Présentation de l étude d un circuit linéaire 1) Ordre d un circuit Considérons un circuit soumis à une excitation (grandeur

Plus en détail

Réponse dans le domaine temporel

Réponse dans le domaine temporel Chapitre 3 Réponse dans le domaine temporel On étudie ici le comportement des systèmes de premier et second ordre et leur réponse en fonction du temps. Les caractéristiques de ces systèmes sont étudiés

Plus en détail

Correction des systèmes asservis

Correction des systèmes asservis Objectifs du cours : Après avoir étudié ce cours et les TD associés, vous devez être capable de : Définir l intérêt et les limites de la correction des systèmes asservis, Mettre en évidence l influence

Plus en détail

b Fonction de transfert :

b Fonction de transfert : II Filtre d ordre 008-009 II. Filtre d ordre E6 II. Filtres passe-haut d ordre a Exemple et étude asymptotique : À Basses Fréquences (ABF) le condensateur est un coupecircuit, donc i = 0 et = u R = 0.

Plus en détail

Adapter la commande d'un système linéaire et continu asservi pour optimiser. ses performances globales

Adapter la commande d'un système linéaire et continu asservi pour optimiser. ses performances globales Adapter la commande d'un système linéaire et continu asservi pour optimiser ses performances globales Sommaire Adapter la commande d'un système linéaire et continu asservi pour optimiser ses performances

Plus en détail

TPN 3 Asservissement de vitesse d'une machine à courant continu en utilisant les régulateurs analogiques

TPN 3 Asservissement de vitesse d'une machine à courant continu en utilisant les régulateurs analogiques TPN 3 Asservissement de vitesse d'une machine à courant continu en utilisant les régulateurs analogiques - Objectifs. L étudiant doit être capable de : Modéliser le moteur à courant continu par son schéma

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Travaux dirigés d automatique N o 1

Travaux dirigés d automatique N o 1 TD d automatique Licence 3 ESA 2015/2016 1 Travaux dirigés d automatique N o 1 transformée de Laplace Démontrer les propriétés suivantes de la transformée de Laplace : 1. La transformée de Laplace d un

Plus en détail

Électrocinétique - partie 2 Chapitre 6

Électrocinétique - partie 2 Chapitre 6 Électrocinétique - partie Introduction On s intéresse ici à la réponse fréquentielle des réseau linéaires par opposition à la réponse temporelle étudiée usqu à présent. Plan du chapitre : I. : on ustifie

Plus en détail

Asservissement de vitesse de moteur à courant continu (petite puissance 14W)

Asservissement de vitesse de moteur à courant continu (petite puissance 14W) Asservissement de vitesse de moteur à courant continu (petite puissance 14W) Une petite machine à courant continu (qqs 10 W) à aimants permanents alimentée par un hacheur sur son induit, entraine grâce

Plus en détail

CONCOURS 3 ANNÉE GÉNIE MÉCANIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN. Session 1997 COMPOSITION DE MECANIQUE ET AUTOMATIQUE.

CONCOURS 3 ANNÉE GÉNIE MÉCANIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN. Session 1997 COMPOSITION DE MECANIQUE ET AUTOMATIQUE. CONCOURS 3 ANNÉE GÉNIE MÉCANIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN Session 1997 COMPOSITION DE MECANIQUE ET AUTOMATIQUE Durée : 4 heures AUCUN DOCUMENT N'EST AUTORISÉ Moyens de calcul autorisés: Calculatrice

Plus en détail

Limites du correcteur PID pour les systèmes à retard. Prédicteur de Smith.

Limites du correcteur PID pour les systèmes à retard. Prédicteur de Smith. Limites du correcteur PID pour les systèmes à retard. Prédicteur de Smith. JULIEN FLAMANT julien.flamant@ens-cachan.fr Motivation Cette leçon présente les limites des correcteurs PID dans le cas des systèmes

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE COMONTAIGNE. 2 Place Cormontaigne BP 70624. 5700 METZ Cedex Tél.: 03 87 3 85 3 Fax : 03 87 3 85 36 Sciences Appliquées. Savoir-faire expérimentaux. éférentiel : 5 Sciences Appliquées. F

Plus en détail

Chapitre 7 Etude Harmonique des Systèmes Asservis Elémentaires

Chapitre 7 Etude Harmonique des Systèmes Asservis Elémentaires Cours Automatique Niveau : Unité d enseignement : Automatique ECUE n : Signaux et Systèmes Linéaires Chapitre 7 Etude Harmonique des Systèmes Asservis Elémentaires Nombre d heures/chapitre : h Cours intégré

Plus en détail

Brevet de technicien supérieur novembre groupement A Nouvelle-Calédonie

Brevet de technicien supérieur novembre groupement A Nouvelle-Calédonie Brevet de technicien supérieur novembre 2012 - groupement A Nouvelle-Calédonie A. P. M. E. P. Exercice 1 10 points Une entreprise fabrique des appareils électroniques en grande série. En vue d améliorer

Plus en détail

S13 - Filtrage passif. Signaux physiques. Chapitre 13 : Filtrage passif

S13 - Filtrage passif. Signaux physiques. Chapitre 13 : Filtrage passif Signaux physiques Chapitre 3 : Filtrage passif Sommaire Fonction de transfert. Notion de quadripôle............................................... Fonction de transfert...............................................3

Plus en détail

Exercice 1 : SYSTEME DE CORRECTION DE PORTEE D UN PHARE AUTOMOBILE.

Exercice 1 : SYSTEME DE CORRECTION DE PORTEE D UN PHARE AUTOMOBILE. C2 Procéder à la mise en œuvre d une démarche de résolution analytique Réponses temporelle et fréquentielle : - systèmes du 2 ème ordre Rapidité des SLCI : - temps de réponse à 5 % Déterminer la réponse

Plus en détail

Traitement Numérique du Signal TD

Traitement Numérique du Signal TD IUT-R&T èiéme Année Université Aix-Marseille II TD F. Briolle IUT-R&T ième Année TD n 1 Echantillonnage -Quantification Exercice 1 On considère un signal s(t)= cos(*pi*f 0 *t). Illustrer les effets du

Plus en détail

Filtres numériques exercices. Ex1 : (d'après BTS 2013) On réalise un Joulemètre numérique en utilisant l'algorithme suivant :

Filtres numériques exercices. Ex1 : (d'après BTS 2013) On réalise un Joulemètre numérique en utilisant l'algorithme suivant : Filtres numériques exercices Ex1 : (d'après BTS 2013) On réalise un Joulemètre numérique en utilisant l'algorithme suivant : Aide : algorithme récursif= s'il contient des échantillons d'entrée x n, x n-1,

Plus en détail

ISET DE SOUSSE TRAVAUX PRATIQUES. Systèmes échantillonnés

ISET DE SOUSSE TRAVAUX PRATIQUES. Systèmes échantillonnés ISET DE SOUSSE TRAVAUX PRATIQUES Systèmes échantillonnés Listes des travaux pratiques : 1- Etude des systèmes échantillonnés à l aide du logiciel Matlab-Simulink. 2- Régulation numérique. 3- Régulation

Plus en détail

Un système physique est dit commandé si la grandeur de sortie s(t) est dépendante de l entrée e(t). Perturbation. p(t) Système commandé

Un système physique est dit commandé si la grandeur de sortie s(t) est dépendante de l entrée e(t). Perturbation. p(t) Système commandé L'ASSERVISSEMENT LES SYSTEMES AUTOMATISES La fonction principale d un système automatisé est de remplacer les commandes répétitives, pénibles, complexes ou impossibles réalisées par l homme sur des machines.

Plus en détail

Calcul du rayon de stabilité pour les polynônes

Calcul du rayon de stabilité pour les polynônes Calcul du rayon de stabilité pour les polynônes Stef Graillat, Philippe Langlois Université de Perpignan {graillat,langlois}@univ-perp.fr http://gala.univ-perp.fr/ {graillat,langlois} Journées Arinews,

Plus en détail

Systèmes dynamiques asservis. F. Pépin I. INTRODUCTION A L'AUTOMATIQUE II. QUELQUES RAPPELS III. PERFORMANCES DES SYSTEMES ASSERVIS

Systèmes dynamiques asservis. F. Pépin I. INTRODUCTION A L'AUTOMATIQUE II. QUELQUES RAPPELS III. PERFORMANCES DES SYSTEMES ASSERVIS Systèmes dynamiques asservis F. Pépin I. INTRODUCTION A L'AUTOMATIQUE II. QUELQUES RAPPELS III. PERFORMANCES DES SYSTEMES ASSERVIS IV. CORRECTION DES SYSTEMES ASSERVIS ANNEXE : DEMONSTRATION DE LA REGLE

Plus en détail

Robotique et automatisation

Robotique et automatisation Cours 1-1 iuliana.bara@lsiit-cnrs.unistra.fr http://eavr.u-strasbg.fr/ bara Télécom Physique Strasbourg Cours 1-2 1 Introduction.................................... 3 2 Echantillonnage et reconstruction

Plus en détail

Stabilité. Un sujet très important, une propriété globale. Systèmes rationnels. Stabilisation par feed-back. Placement de pôles. Théorie de Lyapunov

Stabilité. Un sujet très important, une propriété globale. Systèmes rationnels. Stabilisation par feed-back. Placement de pôles. Théorie de Lyapunov Stabilité des systèmes Un sujet très important, une propriété globale Stabilité Systèmes rationnels Stabilisation par feed-back Placement de pôles Théorie de Lyapunov asymp Stabilité Un système déplacé

Plus en détail

Les amplificateurs opérationnels réels. a) Exemples : voir en feuille annexe les structures internes du LM741 et du TL081

Les amplificateurs opérationnels réels. a) Exemples : voir en feuille annexe les structures internes du LM741 et du TL081 Electronique analogique Les amplificateurs opérationnels réels I Généralités ) Structure interne a) Exemples : voir en feuille annexe les structures internes du LM74 et du TL08 b) Schéma structurel simplifié

Plus en détail