Exercices sur les Coniques
|
|
|
- Tristan Latour
- il y a 9 ans
- Total affichages :
Transcription
1 Exercices sur les Coniques Christian CYRILLE 5 novembre 008 "Racontez l'odyssée d'une jeune conique en mal d'excentricité qui, échappée de ses foyers, y est ramenée par une amie de la directrice grâce à un discours tantôt hyperbolique, tantôt elliptique, et une parabole bien choisie." Sujet de bizuthage 1 Transformation de la forme Ax +By +Cxy+Dx+Ey+F = 0 où (A, B) (0, 0) à la forme ax + by + dx + ey + f = 0 où (a, b) (0, 0) 1.1 Exercice Soit (Γ) la courbe d'équation x + xy + y + x + y orthonormé (O, e 1, e ). = 0 dans un repère 1. Déterminer la matrice M de la forme quadratique : x + xy + y.. Déterminer une base orthonormale ( e 1, e )de vecteurs propres de M. Déterminer une équation cartésienne de (Γ) dans un repère orthonormé (O, e 1, e ) Famille de coniques.1 Bac Caracas C84 Le plan ane euclidien est raporté au repère orthonormal R = (O; u, v). Soit α un nombre réel. n considère la conique C α d'équation : αx + y = 1 1. Montrer que quel que soit α, la conique C α contient deux points ne dépendant pas de α. Déterminer la nature e C α suivant les valeurs de α. Représenter C 1, C 0,C 1 et C 1
2 . Famille paramétrée de coniques Le plan ane euclidien est raporté au repère orthonormal R = (O; u, v). Soit λ un nombre réel. n considère la conique C λ d'équation : y + λx + (λ + 1)x λ 4 = 0. Discuter selon les valeurs de λ de la nature de C λ. Donner le cas échéant les coordonnées de son centre de symétrie et les équatons de ses asymptotes. Coniques et complexes.1 Parabole et Complexes : Exercice Bac C Reims 198 Soit le plan ane euclidien P rapporté à un repère orthonormé (O, e 1, e ). 1 ) Déterminer la nature et les éléments géométriques de l'application T de P dans P qui, à chaque point M d'axe z, associe le point M' d'axe z' = - i z + + i. ) Soit H le milieu du segment [M M']. Exprimer l'axe de H en fonction de z et de z. En déduire, toujours en fonction de z et de z, la distance de M à H. ) Préciser la nature et les éléments caractéristiques des points M du plan P dont l'axe z vérie l'équation : z i = 1 z + iz i.. Hyperbole - Bac Lyon E77 Démontrer que Γ = {M(z)/ z i ir} est inclus dans une conique que z i l'on tracera et dont on donnera tous les éléments caractéristiques.. Alignement de points Soit le plan complexe P muni du repère orthonormal R = (O; u, v). unité : cm) 1. Soit (H) l'ensemble des points M(x; y) vériant : x y + x + 1 = 0 Montrer que (H) est une hyperbole dont on déterminera le centre, les sommets et une asymptote.. Déterminer l'ensemble Γ des points M d'axe z tels que les points A, M et M d'axe 1, z et z 4 soient alignés.(on pourra poser Z = x + iy et exprimer le complexe 1 + Z + Z + Z en fonction de x t y.). Construire l'ensemble Γ..1 Corrigé 1. Nature et éléments caractéristiques de la courbe (H) x y + x + 1 = 0 x + x y + 1 = 0 (x + x) y + 1 = 0 ((x + 1 ) 1 9 ) y + 1 = 0
3 (x + 1 ) y + = 0 X Y = en posant X = x + 1 et Y = y X 9 + Y = 1 On est en présence d'une équation de la forme X a + Y b a = 9 et b = = 1 dans le re- En conclusion : (H) : X 9 père orthonormé R = (Ω; e 1, e ) où Ω( 1 + Y = 1 avec ; 0) dans le repère R est une hyperbole de centre Ω d'axe transverse focal D((Ω; e ), d'axe non transverse D((Ω; e 1 ) de sommets B(0; ) et B (0; ) dans le repère R d'asymptotes les droites D 1 : Y = X et D : Y = X 9 9 c'est-à-dire D 1 : Y = X et D 1 : Y = X dans le repère R de foyers F (0; c) et F (0; c) avec c = 8 a + b = 9 = d'excentricité e = c b = > 1. en posant z = x + iy Z = 1 + z + z + z = 1 + (x + iy) + (x + iy) + (x + iy) = 1 + x + iy + x + xiy + i y + x + x iy + xi y + i y = 1 + x + x y + x xy + i(y + xy + x y y ) donc Re(Z) = 1 + x + x y + x xy et Im(Z) = y + xy + x y y = y(1 + x + x y ). (a) ou bien z 1 A, M et M soient alignés λ R AM = λ AM k Z ( AM, AM ) = kπ k Z arg( z4 1 z 1 ) = kπ k Z arg( (z 1)(1 + z + z + z ) ) = kπ z 1 k Z 1 + z + z + z R Im(Z) = 0 y(1 + x + x y ) = 0 y = 0 ou 1 + x + x y = 0 M (H) D(O; e 1 ) privée du point A(1; 0) car z 1 (b) ou bien z = 1 Alors A, M et M sont confondus car z = 1 et z 4 = 1 donc on peut considérer que ces points sont alignés. (c) En conclusion, que z = 1 ou z 1 on a Γ = D(O; e 1 ) (H)
4 .4 Alignement de points Soit le plan complexe P muni du repère orthonormal R = (O; u, v). 1. Déterminer l'ensemble E des points M d'axe z tels que les points d'axe z, z et z 5 soient alignés.. Montrer que E est la réunion d'une droite (D) et d'une conique Γ dont on déterminera la nature et les éléments caractéristiques : centre, axe, sommets, foyers et excentricité.5 Etude de la fonction f dénie par f(z) = 1 (z + 1 z ) Le plan complexe P est rapporté au repère orthonormé (O, e 1, e ). On appelle F la fonction de P dans P qui à tout point M d'axe z 0, associe le point M d'axe z = f(z) = 1 (z + 1 z ) 1. On pose z = x + iy et z = f(z). Exprimer en fonction de x et de y la partie réelle et la partie imaginaire de z.. Déterminer l'ensemble E des points M tels que M appartienne à l'axe des réels.. On suppose que M décrit le cercle de centre O et de rayon. Déterminer un support de la trajectoire du point M. 4. Déterminer l'ensemble des points M invariants par F. 5. Soit M 1 d'axe 1 z. Connaissant M d'axe z, construire M 1 puis M 6. Quelle est l'image par F de M 1? 7. Déterminer Γ 1 l'ensemble des points M (z ) tels que z est égale à la constante ρ où ρ 1. On notera a = 1 (ρ + 1 ρ ) et b = 1 (ρ 1 ρ ) Les cercles de centre O et de rayons respectifs a + b et a b s'appellent 4
5 les cercles de CHASLES de l'ellipse et permettent de la construire point par point. 8. Déterminer Γ 1 pour ρ = 1 ; pour ρ > 1. Construire Γ 1 pour ρ = 9. Déterminer Γ l'ensemble des points M (z ) tels que arg(z) est égale à la constante Θ où Θ ]0; π [. Construire Γ pour Θ = π 4 5
6 .6 Corrigé On appelle F la fonction de P dans P qui à tout point M d'axe z 0, associe le point M d'axe z = f(z) = 1 (z + 1 z ) 1. On pose z = x + iy et z = f(z) = 1 (z + 1 z ) = 1 1 (x + iy + x + iy ) = 1 (x + x iy x iy iy+ (x+iy+ (x + iy)(x iy) ) = 1 x(x + y + 1) + iy(x + y 1) (x + y. ) On en déduit que x = x(x + y + 1) (x + y ) x + y ) = 1 ((x + iy)(x + y ) + x iy x + y ) = et y = y(x + y 1) (x + y ). M E M appartienne à l'axe des réels y = 0 y(x + y 1) (x + y = 0 ) y(x + y 1) = 0 y = 0 ou x + y 1 = 0. On suppose que M décrit le cercle de centre O et de rayon. Déterminer un support de la trajectoire du point M. 4. Déterminer l'ensemble des points M invariants par F. 5. Soit M 1 d'axe 1 z. Connaissant M d'axe z, construire M 1 puis M 6. Quelle est l'image par F de M 1? 7. Déterminer Γ 1 l'ensemble des points M (z ) tels que z est égale à la constante ρ où ρ 1. On notera a = 1 (ρ + 1 ρ ) et b = 1 (ρ 1 ρ ) Les cercles de centre O et de rayons respectifs a + b et a b s'appellent les cercles de CHASLES de l'ellipse et permettent de la construire point par point. 8. Déterminer Γ 1 pour ρ = 1 ; pour ρ > 1. Construire Γ 1 pour ρ = 9. Déterminer Γ l'ensemble des points M (z ) tels que arg(z) est égale à la constante Θ où Θ ]0; π [. Construire Γ pour Θ = π 4 4 Coniques et Arithmétique 4.1 Points à coordonnées entières naturelles d'une conique Bac Maroc C81 Résoudre dans N l'équation suivante : x 9y = 5 5 Exercices divers 5.1 Bac Martinique C 91 Soit (D) une droite du plan et F un point dont la distance à (D) est égale à, l'unité étant le centimètre. Soit ( ) la droite passant par F et orthogonale à (D). On considère Θ un réel tel que 0 Θ π 6
7 1. Soit Γ Θ l'ensemble des points M du plan tels que MF MH = cos(θ) ; H désignant le projeté orthogonal de M sur la droite (D). Donner suivant les valeurs de Θ la nature de Γ Θ. Tracer Γ 0. (a) Soit Θ = π. déterminer les sommets A et A de Γπ situés sur ( ), le centre O et le deuxième foyer F de Γπ (b) Déterminer une équation cartésienne de Γ π dans le repère orthonormal R = (O; u, v) où O est le centre de Γπ et u est un vecteur unitaire de la droite ) tracer alors Γπ 5. Drôle de courbe Déterminer Γ l'ensemble des points M(x; y) du plan rapporté à un repère orthonormé R = (O; u, v) vériant l'équation cartésienne suivante : 4x x + y 16x 0 = 0 5. Bac Gabon C 77 Construire dans le plan ane euclidien rapporté à un repère orthonormal l'ensemble des points M(x; y) vériant l'équation cartésienne : 4y = 9x 6x 5.4 Barycentre et conique Dans le plan P muni du repère orthonormé R = (O; u, v) on dénit les points A(1; 0), B( ; 1 ), C( ; 1 ) et la droite (D) d'équation x = 1 1. Déterminer les coordonnées du point G tel que CG = AB. Quelle est la nature du quadrilatère ABGC?. On note Γ l'ensemble des points M(x; y) du plan vériant : MA + MB + MC = (x 1) (a) Montrer que B et C appartiennent à Γ (b) Montrer que Γ est l'ensemble des points M vériant : MG = d(m, (D) où d(m, (D)) désigne la distance du point M à la droite (D) (c) En déduire la nature de Γ et préciser ses éléments caractéristiques. Représenter ensuite Γ dans le repère orthonormé R = (O; u, v) 7
8 5.5 Ellipse - Bac S Antilles Guyane 94 Dans le plan P muni du repère orthonormé R = (O; u, v) d'unité graphique cm, on considère l'ensemble E des points M d'axe z tels que : z 1 i = 1 z + i z 8(1 + i) 4 1. Soit p l'application du plan dans lui-même, qui à un point M d'axe z associe le point M d'axe z tel que : z = 1 z i z + 8(1 + i) On pourra poser z = x + iy et z = x + iy où x,y,x et y sont des réels. (a) Déterminer l'ensemble des points M du plan tels que p(m) = M (b) Montrer que, pour tout point M, les coordonnées du point M véri- ent l'équation : x + y 8 = 0. On appellera (D) la droite décrite par les points M. (c) Montrer que MM est un vecteur normal à la droite (D). caractériser géométriquement l'application p.. On se propose de déterminer l'ensemble déni au début de l'exercice. (a) Montrer que z z = 1 z + i z 8(1 + i) (b) en déduire que l'ensemble e est une eliipse de foyer F d'axe 1 + i, de directrice (D) et d'excentricité 1. Préciser l'axe focal. (c) Vérier que les points A et A d'axes respectives + i et i sont deux sommets de E.. Allure de l'ensemble E (a) Construire dans le repère R = (O; u, v) la droite (D) l'axe focal, les points A, A et F. (b) Déterminer géométriquement les deux autres sommets de l'ellipse. (c) Donner l'allure de E. 5.6 Puissance d'un point et Hyperbole équilatère On considère une famille de cercles d'équation : x + y my 1 = 0 dans un repère orthonormal de centre O 1. Montrer que cette famille de cercles passe par points xes A et B dont on déterminera les coordonnées.. Etant donné un cercle (C) de cette famille, on considère son diamètre [MM ] parallèle à l'axe des abscisses. Déterminer l'équation de l'ensemble des points M et M et construire cet ensemble de points.. Soit (H) une hyperbole équilatère, A et B deux points de (H) symétriques par rapport à O. Montrer que tout cercle passant par A et B recoupe l'hyperbole en deux points diamétralement opposés. 8
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Nombres complexes. cours, exercices corrigés, programmation
1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Mathématiques Algèbre et géométrie
Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME
Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note
Brevet 2007 L intégrale d avril 2007 à mars 2008
Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
Statistiques à deux variables
Statistiques à deux variables Table des matières I Position du problème. Vocabulaire 2 I.1 Nuage de points........................................... 2 I.2 Le problème de l ajustement.....................................
