2. Variables aléatoires unidimensionnelles
|
|
|
- Olivier Roberge
- il y a 9 ans
- Total affichages :
Transcription
1 2. Variables aléatoires unidimensionnelles MTH2302D S. Le Digabel, École Polytechnique de Montréal A2016 (v1) MTH2302D: variables aléatoires 1/20
2 Plan 1. Définitions 2. Variables aléatoires discrètes (masse) 3. Variables aléatoires continues (densité) 4. Fonction de répartition MTH2302D: variables aléatoires 2/20
3 1. Définitions 2. Variables aléatoires discrètes (masse) 3. Variables aléatoires continues (densité) 4. Fonction de répartition MTH2302D: variables aléatoires 3/20
4 Exemple 1 On lance une pièce trois fois et on note le résultat. L espace échantillon de cette expérience aléatoire est Ω = {PPP, PPF, PFP, FPP, PFF, FPF, FFP, FFF}. Soit X : le nombre de P (piles) obtenus. X associe un nombre réel X(s) à chaque résultat s Ω. L ensemble des valeurs possibles pour X est R X = {0, 1, 2, 3}. On définit une probabilité sur X : P (X B) = P ({s Ω X(s) B}) avec B R X. MTH2302D: variables aléatoires 4/20
5 Définition Une variable aléatoire (v.a.) X d un espace échantillon Ω est une fonction qui associe à chaque résultat s Ω un nombre réel x = X(s). Définition L ensemble des valeurs possibles pour une v.a. X est appelé le support de X, dénoté R X. Définition Si le support d une v.a. X est dénombrable (ou fini) alors X est discrète. Si le support d une v.a. X est une collection d intervalles alors X est continue. MTH2302D: variables aléatoires 5/20
6 1. Définitions 2. Variables aléatoires discrètes (masse) 3. Variables aléatoires continues (densité) 4. Fonction de répartition MTH2302D: variables aléatoires 6/20
7 Fonction de masse Soit X une v.a. discrète de support R X = {x 1, x 2, x 3,...}. La fonction de masse (de probabilité) de X est la fonction p X définie par p X (x) = P (X = x) pour tout x R X. La fonction de masse satisfait 0 p X (x) 1 pour tout x R X. p X (x i ) = 1. x i R X P (X B) = p X (x i ) (avec B R X ). x i B MTH2302D: variables aléatoires 7/20
8 Exemple 2 Une boîte contient 5 DVDs parmi lesquels 2 sont défectueux. Un échantillon de 2 disques est prélevé (sans remise) de la boîte. Soit X : le nombre de DVDs défectueux dans l échantillon. 1. Déterminer la fonction de masse de la v.a. X. 2. Évaluer les probabilités P (X > 1), P (X 1), P (X < 2). MTH2302D: variables aléatoires 8/20
9 1. Définitions 2. Variables aléatoires discrètes (masse) 3. Variables aléatoires continues (densité) 4. Fonction de répartition MTH2302D: variables aléatoires 9/20
10 Fonction de densité Soit X une v.a. continue de support R X. La fonction de densité (de probabilité) de X est la fonction f X définie par f X (x) 0 pour tout x R. P (X B) = f X (x) dx pour tout B R. En particulier B P (a X b) = b a f X (x)dx (= P (a < X b) = P (a X < b) = P (a < X < b)). MTH2302D: variables aléatoires 10/20
11 Fonction de densité (suite) La fonction de densité satisfait f X (x)dx = 1. Différences avec la fonction de masse : On peut avoir f X (x) > 1. f X (a) ne correspond pas à P (X = a). P (X = a) = a a f X(x)dx = 0. La probabilité que X prenne la valeur isolée a est nulle. On a plutôt εf X (a) P (a ε/2 X a + ε/2) qui correspond à la probabilité que X prenne sa valeur dans [a ε 2 ; a + ε 2 ]. MTH2302D: variables aléatoires 11/20
12 Exemple 3 L erreur commise lors de la mesure du diamètre d une pièce produite en série est approximée par une v.a. X (en mm) dont la fonction de densité est { c(1 x f(x) = 2 ) si 1 < x < 1, 0 sinon. 1. Déterminer la valeur du paramètre c. 2. Calculer la probabilité que l erreur d une mesure soit supérieure à 1/2 en valeur absolue. MTH2302D: variables aléatoires 12/20
13 Exemple 4 Soit X la durée de vie d une ampoule. La fonction de densité de la v.a. X est { λe λt si t 0, f(t) = 0 sinon. où λ est le taux de défaillance. 1. Déterminer, en fonction de λ, la probabilité que l ampoule fonctionne pendant au moins T heures. 2. Calculer la probabilité qu une ampoule ayant fonctionné pendant 100 heures fonctionne encore 150 heures additionnelles. 3. Sachant que pour ce type d ampoule P (X 100) = 0.99, déterminer λ. MTH2302D: variables aléatoires 13/20
14 1. Définitions 2. Variables aléatoires discrètes (masse) 3. Variables aléatoires continues (densité) 4. Fonction de répartition MTH2302D: variables aléatoires 14/20
15 Fonction de répartition Soit X une variable aléatoire (discrète ou continue). La fonction de répartition F X de X est définie par F X (x) = P (X x) pour tout x R. Propriétés de la fonction de répartition : 1. 0 F X (x) 1 pour tout x R. 2. F X est non décroissante. 3. lim F X(x) = 0 et lim F X(x) = 1. x x + Une formule utile : si a < b alors P (a < X b) = F X (b) F X (a). MTH2302D: variables aléatoires 15/20
16 Si X est une v.a. discrète Soit X une variable discrète, R X = {x 1, x 2, x 3,...} son support et p X sa fonction de masse. Alors La fonction F X est une fonction en escalier. F X (x) = P (X x) = x i x p X (x i ). Si les éléments de R X sont triés (x 1 < x 2 <...), alors { px (x 1 ) = F X (x 1 ), p X (x i ) = F X (x i ) F X (x i 1 ) pour tout x i R X avec i 2. MTH2302D: variables aléatoires 16/20
17 Exemple 5 Une boîte contient 5 DVDs parmi lesquels 2 sont défectueux. Un échantillon de 2 disques est prélevé (sans remise) de la boîte. Soit X : le nombre de DVDs défectueux dans l échantillon. Déterminer la fonction de répartition de la v.a. discrète X. MTH2302D: variables aléatoires 17/20
18 Si X est une v.a. continue Soit X une v.a. continue et f X sa fonction de densité. Alors F X (x) = P (X x) = Par le théorème fondamental du calcul : et F X est une fonction continue. x d dx F X(x) = f X (x) f X (t)dt. MTH2302D: variables aléatoires 18/20
19 Exemple 6 L erreur commise lors de la mesure du diamètre d une pièce produite en série est approximée par une v.a. X (en mm) dont la fonction de densité est { c(1 x f(x) = 2 ) si 1 < x < 1, 0 sinon. Déterminer la fonction de répartition de la v.a. continue X. MTH2302D: variables aléatoires 19/20
20 Notion de distribution La distribution d une variable aléatoire : est un terme général pour décrire le modèle suivi par la v.a. englobe les notions de densité/masse et de répartition. MTH2302D: variables aléatoires 20/20
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
14. Introduction aux files d attente
14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie
VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
MODELES DE DUREE DE VIE
MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Probabilités avancées. Florin Avram
Probabilités avancées Florin Avram 24 janvier 2014 Table des matières 1 Mise en scène discrète 3 1.1 Espace des épreuves/résultats possibles, événements, espace probabilisé, mesure de probabilités, variables
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Processus aléatoires avec application en finance
Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }
. Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières
Mesure et Intégration (Notes de cours de L3)
Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Modélisation et simulation
Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Markov processes and applications to queueing/risk/storage theory and mathematical biology
Markov processes and applications to queueing/risk/storage theory and mathematical biology Florin Avram Contents 1 Introduction aux processus stochastiques/aléatoires 3 2 Marches aléatoires et récurrences
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
NOTES DE COURS STT1700. Introduction à la statistique. David Haziza
NOTES DE COURS STT1700 Introduction à la statistique David Haziza Automne 008 Qu est ce que la statistique? La statistique est la science dont le but est de donner un sens aux données. L étude statistique
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Introduction à la théorie des files d'attente. Claude Chaudet [email protected]
Introduction à la théorie des files d'attente Claude Chaudet [email protected] La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N
ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
Intégrale de Lebesgue
Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Cours de probabilité et statistique
Cours de probabilité et statistique 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-4 -3-2 -1 0 1 2 3 4 Denis Bichsel 1 1 Probabilité et statistique 1.1 Introduction Le calcul des probabilité semble avoir son origine
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6 ARTHUR CHARPENTIER 1 Supposons que le nombre X de coups de téléphone durant une heure suive une loi de Poisson avec moyenne λ. Sachant que P (X = 1 X 1) = 0.8, trouver
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
PRÉCIS DE SIMULATION
PRÉCIS DE SIMULATION P. Del Moral Centre INRIA Bordeaux Sud-Ouest & Institut de Mathématiques de Bordeaux Université Bordeaux I, 351, cours de la Libération 33405 Talence, France Table des matières 1
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Décomposition de Föllmer-Schweizer. explicite d un passif d assurance vie. au moyen du calcul de Malliavin
Décomposition de Föllmer-Schweizer explicite d un passif d assurance vie au moyen du calcul de Malliavin Mémoire présenté par Sébastien de Valeriola en vue de l obtention du master en sciences actuarielles
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème.
Valeur cible et solveur Atteindre une valeur cible Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. A l'aide d'un certain nombre
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Statistique inférentielle TD 1 : Estimation
POLYTECH LILLE Statistique inférentielle TD : Estimation Exercice : Maîtrise Statistique des Procédés Une entreprise de construction mécanique fabrique de pièces demoteurdevoiturepourungrandconstructeur
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
I La théorie de l arbitrage fiscal de la dette (8 points)
E : «Théories de la finance d entreprise» Master M1 Université Paris-Dauphine Thierry Granger Année Universitaire 2013/2014 Session 1 Aucun document, calculette autorisée Durée 1h30 Respecter la numérotation
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes Pages 4 à 48 barèmes 4 à 48 donnes Condensé en une page: Page 2 barèmes 4 à 32 ( nombre pair de donnes ) Page 3 Tous les autres barèmes ( PV de
ISAN System: 5 Œuvre à épisodes ou en plusieurs parties
sm: 5 Œ à épsds pss ps Wb f B Rs s: E b W B bs d mdè Vs j www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. wzd 5 Œ à épsds pss ps mm: TRODUTO DEMRE. OEXO.
Lagrange, où λ 1 est pour la contrainte sur µ p ).
Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
