Représentation graphique des cristaux
|
|
|
- Clotilde Rondeau
- il y a 9 ans
- Total affichages :
Transcription
1 Extrait de «Introduction à la cristallographie» Nous n'allons pas traiter de la manière dont les cristaux sont dessinés, mais de leur représentation dans les divers systèmes de projection, en particulier la projection stéréographique. Nous savons déjà que c'est l'orientation d'une face qui importe et non son contour ou l'importance de son développement. Aussi sommes-nous conduits à adopter un système de projection dite "polaire", pour représenter les faces d'un cristal. On procède en deux temps : tout d'abord on imagine le cristal au centre d'une sphère. Dès lors, chaque face est représentée par l'intersection avec la sphère de sa normale passant par le centre de la sphère. Ce point est qualifié de pôle de la face. Pôles des faces d'un cristal sur une sphère. Il faut ensuite imaginer un système de projection sur un plan, de l'ensemble des pôles des faces. C'est le même problème que celui des géographes qui doivent représenter notre globe terrestre sur une carte de géographie plane. On peut imaginer trois sortes de projection du pôle P d'une face : - la projection orthogonale, qui consiste à abaisser la normale du pôle P en un point P o, sur le plan de projection (le plan équatorial ou le plan tangent au pôle nord de la sphère, dans notre exemple). - la projection gnomonique, qui consiste à prolonger la polaire jusqu'au plan tangent à un des pôles de la sphère ( Pg ). - La projection stéréographique, qui utilise le plan équatorial comme plan de projection et le pôle S comme point de vue ( Ps ). O Po = r cos α N Pg = r ctg α O Ps = r ctg α/2 Po projection orthogonale Divers systèmes de projection du pôle P Pg projection gnomonique P s projection stéréographique J. Deferne, 25 janvier 2009
2 C'est surtout la projection stéréographique qui est utilisée en cristallographie. Elle possède l'avantage sur les autres que la projection d'un cercle reste un cercle et que les angles entre les arcs de grands cercles (plans passant par le centre de la sphère) sont projetés en vraie grandeur. a) stéréographique b) gnomonique c) orthogonale Représentation d'un cercle selon diverses projections. La projection gnomonique est utilisée lorsqu'on veut dessiner des cristaux en perspective. La projection stéréographique est d'un emploi simple et commode. Elle peut être utilisée dans de nombreux problèmes se rapportant à l'orientation de plans dans l'espace, en particulier en géologie appliquée. La projection stéréographique La projection a lieu sur le plan défini par le cercle équatorial qu'on nomme cercle de base ou encore cercle de projection. Le point de vue est le pôle sud de la sphère. Les points situés dans l'hémisphère nord sont projetés à l'intérieur du cercle de base, ceux situés dans l'hémisphère sud sont projetés à l'extérieur. S'ils sont trop proches du point de vue, leur projection se trouve très loin du cercle de base. Aussi on peut adopter la convention que les points situés dans l'hémisphère sud sont projetés en utilisant le pôle nord comme point de vue. On adopte alors des figurés différents suivant le point de vue utilisé. Projection stéréographique utilisant le pôle sud comme point de vue. Projection stéréographique utilisant les deux pôles comme point de vue. 2
3 Constructions utilisées en projection stéréographique Les divers problèmes de constructions sont basés sur le principe du rabattement. Prenons l'exemple le plus simple, celui de la projection d'un point P dont on connaît les coordonnées. Ces dernières sont semblables à celles utilisées pour situer un lieu sur le globe terrestre : on a l'angle ψ, comparable à la longitude, - angle entre la trace du méridien d'origine choisi arbitrairement et le méridien du point P - et l'angle ρ, comparable à la latitude, qui est la hauteur angulaire du point P au dessus du cercle équatorial. La figure ci-dessous montre la perspective et la construction de la projection. Sur la projection on dessine la trace du méridien origine O. On dessine ensuite la trace du méridien du point P, qui se trouve à la distance angulaire ψ de O. La prolongation de cette dernière droite coupe le cercle de base en uu'. On effectue alors un rabattement, c'est à dire qu'on fait pivoter le grand cercle upnu' autour de la droite uu'. Sur la projection le point N vient en (N), le point P en (P) et le pôle S en (S). On peut alors tracer l'angle ρ qui se trouve maintenant dans le plan du dessin grâce au rabattement. On trace ensuite une droite entre (P) et le point de vue (S) et on trouve le point p, projection de P. Comme il se trouve sur l'axe de rotation, situé lui-même dans le plan de projection, la rotation du plan upnu' le laisse invariant. vue en perspective construction de la projection Projection d'un point P dont on connaît les coordonnées y et r. Projection d un grand cercle C'est un problème qui se pose très souvent. Nous savons que la projection d'un cercle est un cercle. Il nous suffit donc de trouver la projection de trois points du grand cercle. Examinons la figure suivante : nous cherchons à construire la projection du grand cercle apa'p'. Ce grand cercle coupe le plan de projection en a et a' qui sont déjà deux des trois points recherchés. Prenons le point P, hauteur maximum du grand cercle qui se trouve à l'intersection de celui-ci avec la normale à la droite aa'. Dans le plan de projection la trace de la droite PP' est uu'. Elle est normale à aa'. Un rabattement du plan upu' autour de uu' 3
4 amène P en (P) et S en (S). On peut construire alors la projection p de P. Il ne reste plus qu'à construire le grand cercle qui passe par les points a, p et a'. a) vue en perspective b) construction de la projection Projection du pôle d'un grand cercle Projection d'un grand cercle d'inclinaison ρ. Un grand cercle découpe dans la sphère un plan qu'on peut représenter par son pôle G, intersection avec la sphère de la normale au grand cercle passant par le centre de la sphère. On voit, sur le dessin suivant, comment on obtient la projection du pôle G. Dans le rabattement effectué autour de la droite uu', on trace la normale à OP. On obtient le point (G) dont la projection g est celle du pôle du grand cercle. vue en perspective construction de la projection Projection du pôle d un grand cercle. Il faut remarquer que la projection du pôle du grand cercle ne correspond pas au centre géométrique du cercle projeté! Les autres problèmes, tracés de petits cercles ou distances angulaires, ne sont guère plus compliqués, et les constructions qu'ils exigent sont toujours basées sur le principe du rabattement. 4
5 Représentation graphique des cristaux Pour faciliter les constructions, divers auteurs ont proposés des canevas dont le plus connu est celui de Wulff Il consiste en une série de grands cercles nord-sud, construits de deux en deux degrés, recoupés par des petits cercles parallèles à l'équateur. Le canevas de Wulff Les constructions s'effectuent sur un papier calque sous lequel on a placé le canevas de Wulff. On place une punaise au centre du canevas, par-dessous, pointe en haut. La pointe traverse le papier calque qu'on peut faire tourner ainsi autour du centre de la construction. Ce canevas permet de mesurer immédiatement les distances angulaires à partir du centre de la projection ou du cercle de base. Il permet encore de tracer n'importe quel grand cercle et de mesurer une distance angulaire entre deux points situés n'importe où sur la projection. Fig. 4.9 Canevas de Wulff. 5
CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections
A.Charbonnel SYNTHÈSE SUR LES PROJECTIONS CARTOGRAPHIQUES SIMPLES 1/6 TYPES DE PROJECTION Pour passer de la représentation en 3D de la terre (globe terrestre) à une représentation en 2D (la carte), on
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Présentation d un télescope, de ses composants et de quelques consignes d utilisation
Présentation d un télescope, de ses composants et de quelques consignes d utilisation Nous vous présentons ici très brièvement les différentes parties d un télescope, en prenant l exemple d un type de
S'orienter et se repérer sur le terrain avec une carte
www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte S'orienter et se repérer sur le terrain avec une carte Il s'agit d'effectuer une correspondance entre le lieu où l'on se trouve
Savoir lire une carte, se situer et s orienter en randonnée
Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
TD: Cadran solaire. 1 Position du problème
Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Latitude 49.37 N Longitude 06.13 E Altitude 376 m RÉSUMÉ MENSUEL DU TEMPS DE JANVIER 2014
RÉSUMÉ MENSUEL DU TEMPS DE JANVIER 2014 Valeurs moyennes: Valeur Jour Valeur (en C) (en C) (en C) gazon (en C) 11,4 7 13,9 1975 3,6 0,8 4,9 2007-6,3 1963-3,0 29-17,8 1979-2,8 12-24,6 1985 37,1 50,3 95,5
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
SERRURE ÉLECTRONIQUE À PÊNE DORMANT
Marquez un cercle de 1 po (25.4 mm) de diamètre au centre du bord de la porte. 2" 1-3/4" 1-9/16" 1-3/8" 51 45 40 35 POUR DISTANCE D'ENTRÉE de 2-3/8 po ( 60mm ) Pliez ce gabarit sur la ligne pointillée
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Navigation dans Windows
Cours 03 Navigation dans Windows Comme je le disais en introduction, notre souris se révèle plus maligne qu'elle n'en a l'air. À tel point qu'il faut apprendre à la dompter (mais c'est très simple, ce
Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles
CEA-N-1195 Note CEA-N-1195 Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles Service d'etudes de Protections de Piles PROPAGATION DES NEUTRONS
Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes
Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes M. Aubert To cite this version: M. Aubert. Famille continue de courbes terminales du spiral
enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.
4.0 Contrôles /4 4 e enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie. RPPEL de 0. Wikipédia 2/2 Dans le chapitre : XX e siècle : ( 4.0 mythe paroxysme ) sous la photo d un
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
COURS AUTOCAD. Création et utilisation des blocs. b leclerc. ERP Jean Moulin METZ
COURS AUTOCAD Création et utilisation des blocs QU EST-CE QU UN BLOC? C est un élément de dessin, auquel peut être associé du texte (des attributs ). Un bloc constitue un élément de bibliothèque. Il peut
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Notice de paramétrage Version 1.1
1 2 Sommaire 1 Pourquoi doit-on paramétrer PIC-ASTRO?...3 1.1 Avertissement...3 1.2 Consignes avant utilisation...3 1.3 Le fichier de paramétrage...5 1.4 Les paramètres...5 1.5 Sauvegarde...5 2 Les paramètres
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
CHAPITRE 2 POSITIONNEMENT
35 CHPITRE POSITIONNEMENT 1. INTRODUCTION La détermination d une position précise est le problème fondamental d un Système d Information Géographique (SIG) et l objet principal de la géodésie. La position
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1)
1 Que signifient AON et AOA? Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) Sommaire 1. Concepts... 2 2. Méthode PCM appliquée
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
Le Dessin Technique.
Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
MANUEL TBI - STARBOARD
MANUEL TBI - STARBOARD TBIH MOD2 TITRE Manuel STARBOARD (Module 2) Trucs et astuces INTITULE Manuel d'utilisation du logiciel STARBOARD accompagnant le tableau blanc interactif HITACHI F-Series et FX-Series
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Chapitre 15 - Champs et forces
Choix pédagogiques Chapitre 15 - Champs et forces Manuel pages 252 à 273 Après avoir étudié les interactions entre deux corps en s appuyant sur les lois de Coulomb et de Newton, c est un nouveau cadre
Leçon 18 Coupes et sections
Leçon 18 Coupes et sections SketchUp'version 5.0 exercices LES COUPES Les coupes, vous permettent de regarder à travers un modèle. Elles vous donnent la possibilité de faire des modifications sans avoir
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Document d Appui n 3.3. : Repérage ou positionnement par Global Positionning System G.P.S (extrait et adapté de CAMELEO 2001)
Document d Appui n 3.3. : Repérage ou positionnement par Global Positionning System G.P.S (extrait et adapté de CAMELEO 2001) 1. Présentation du GPS Le GPS (Global Positionning System=système de positionnement
BML Informatique Tableur OpenOffice.org Calc Mercredi 8 avril 2015
BML Informatique Tableur OpenOffice.org Calc Mercredi 8 avril 2015 Un tableur est un logiciel qui permet de créer et d'utiliser des feuilles de calcul électronique afin de réaliser des tableaux et des
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
PRATIQUE DU COMPAS ou
PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
La polarisation des transistors
La polarisation des transistors Droite de charge en continu, en courant continu, statique ou en régime statique (voir : le transistor) On peut tracer la droite de charge sur les caractéristiques de collecteur
Uniboard: optimiser votre enseignement à l'aide du tableau noir électronique
Qu'est-ce qu'uniboard? Uniboard: optimiser votre enseignement à l'aide du tableau noir électronique Thèmes abordés : Qu'est-ce qu'uniboard L'apport des visuels dans l'enseignement Exemples d'utilisation
Fait opinion. Département EEO CUEEP-USTL
Fait opinion Département EEO CUEEP-USTL Avril 2007 Table des Matières ChapitreI. Exercices d'observation... 4 A. Exercice d'observation n 1...4 A.1. Réponses attendues...5 B. Exercice d'observation n 2...5
OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES APPLICATIONS DE DESSIN ASSISTE PAR ORDINATEUR MODULE N 9: :BTP SECTEUR
OFPPT ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES MODULE N 9: SECTEUR
Classer et partager ses photographies numériques
Classer et partager ses photographies numériques Ce tutoriel a pour objectif de vous donner les bases nécessaires au classement de vos photographies numériques, et de vous donner des moyens simples de
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
3 - Description et orbite d'un satellite d'observation
Introduction à la télédétection 3 - Description et orbite d'un satellite d'observation OLIVIER DE JOINVILLE Table des matières I - Description d'un satellite d'observation 5 A. Schéma d'un satellite...5
Trier les ventes (sales order) avec Vtiger CRM
Trier les ventes (sales order) avec Vtiger CRM Dans l'activité d'une entreprise, on peut avoir besoin d'un outil pour trier les ventes, ce afin de réaliser un certain nombre de statistiques sur ces ventes,
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN
MODE D'EMPLOI DE LA CALCULATRICE POUR LES COURTS SÉJOURS DANS L'ESPACE SCHENGEN 1. Introduction Le règlement (UE) n 610/2013 du 26 juin 2013 a modifié la convention d'application de l'accord de Schengen,
RAPPORT # 2 GUIDE PRATIQUE POUR L'ENVOI DE E-MAIL EN VOLUME SUR INTERNET
RAPPORT # 2 GUIDE PRATIQUE POUR L'ENVOI DE E-MAIL EN VOLUME SUR INTERNET Le but de ce rapport est de vous procurer une information valable pour vous assister dans le Marketing à paliers multiples en utilisant
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
Guide pour la réalisation d'un document avec Open Office Writer 2.2
Guide pour la réalisation d'un document avec Open Office Writer 2.2 1- Lancement de l'application : Le Traitement de textes de la Suite OpenOffice peut être lancé : soit depuis le menu «Démarrer / Programmes/OpenOffice2.2/Writer
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
LA COMPTABILITE PATRIMONIALE. des milieux naturels et culturels : des différences mais une logique de base
LA COMPTABILITE PATRIMONIALE des milieu naturels et culturels : des différences mais une logique de base Des travau s'engagent, depuis quelques années, pour élaborer des comptabilités patrimoniales et,
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Mesurer les altitudes avec une carte
www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte Mesurer les altitudes avec une carte Les cartes topographiques ne sont pas uniquement une représentation plane de la surface
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE
ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...
Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes
Etudes des nuages et de la convection autour des dépressions intenses des moyennes latitudes Jérôme DREANO 28 Février 2014 1 Introduction Dans le modèle LMDZ, les paramétrisations physiques des nuages
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Choisir entre le détourage plume et le détourage par les couches.
Choisir entre le détourage plume et le détourage par les couches. QUEL CHOIX D OUTILS ET QUELLE METHODE, POUR QUEL OBJECTIF? Il existe différentes techniques de détourage. De la plus simple à la plus délicate,
La méthode des scores, particulièrement de la Banque de France
La méthode des scores, particulièrement de la Banque de France Devant la multiplication des défaillances d entreprises au cours des années 80 et début des années 90, la Banque de France a produit des travaux
EXCEL PERFECTIONNEMENT CALCULS AVANCES
TABLE DES MATIÈRES FORMATS... 2 Formats personnalisés... 2 ADRESSAGE DE CELLULES... 3 relatif & absolu Rappel... 3 Adressage par nom... 4 Valider avec la touche Entrée... 4 FONCTIONS SI-ET-OU... 6 LA FONCTION
L éclairage naturel première partie : Principes de base
Suzel BALEZ L5C 2007-08 L éclairage naturel première partie : Principes de base Hertzog et Partner Bât. De bureaux à Wiesbaden Plan Notions préliminaires La vision Grandeurs photométriques Le flux lumineux
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère
L'héritage et le polymorphisme en Java Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère En java, toutes les classes sont dérivée de la
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
GÉODÉSIE, COORDONNÉES ET GPS
GÉODÉSIE, COORDONNÉES ET GPS LES PROJECTIONS La représentation du globe terrestre sur un plan en deux dimensions exige une opération nommée projection. Une projection s appuie sur un géoïde, qui est une
Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une
Patrice Octobre 2012 Découvrir la voûte céleste c est avant tout une balade dans le ciel qui nous entoure. Mais pour se promener d une étoile ou d une galaxie à une autre, il faut savoir où regarder dans
