Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage

Dimension: px
Commencer à balayer dès la page:

Download "Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage"

Transcription

1 Seconde Découpage du programme Outils de calculs (dans chaque chapitre sur les fonctions) 1 : expressions algébriques 2 : résolution d équations 3 : résolution d inéquations Algorithmes Outils de géométrie 1 : fiches méthodes de géométrie plane ; 2 : repérage dans le plan CH1 Fonctions : généralités CH2 : configurations du plan (plan non repéré et repéré) CH3 statistiques descriptives CH4 fonctions linéaires et affines CH5 : Translation et géométrie vectorielle. CH6 : fonctions carré et problèmes du second degré CH7 : probabilités CH8 : Vecteur, colinéarité, équation de droite. CH9 : fonction inverse, fonctions homographiques. CH10 géométrie dans l espace CH11 : Cercle trigonométrique CH12 : échantillonnage Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage

2 Outils de calculs (dans chaque chapitre sur les fonctions) 1 : expressions algébriques Factoriser des expressions algébriques dans lesquelles le facteur est apparent. Connaître les identités : (a + b)(a b) = a2 b2 ; (a + b)2 = a2 + 2ab + b2 ; (a b)2 = a2 2ab + b2. Les utiliser dans les deux sens sur des exemples numériques ou littéraux simples. 2 : résolution d équations Mettre en équation un problème. Résoudre une équation mise sous la forme A(x).B(x) =0, où A(x) et B(x) sont deux expressions du premier degré de la même variable x. 3 : résolution d inéquations Résoudre une inéquation du premier degré à une inconnue à coefficients numériques ; représenter ses solutions sur une droite graduée. Algorithmes Outils de géométrie 1 : fiches méthodes de géométrie plane ; 2 : repérage dans le plan

3 CH1 Fonctions : généralités Déterminer l image d un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Déterminer un antécédent par lecture directe dans un tableau ou sur une représentation graphique. Fonctions : Image, antécédent, courbe représentative. " Traduire le lien entre deux quantités par une formule. Pour une fonction définie par une courbe, un tableau de données ou une formule : " identifier la variable et, éventuellement, l ensemble de définition ; " déterminer l image d un nombre ; " rechercher des antécédents d un nombre. Les fonctions abordées sont généralement des fonctions numériques d une variable réelle pour lesquelles l ensemble de définition est donné. Quelques exemples de fonctions définies sur un ensemble fini ou sur N, voire de fonctions de deux variables (aire en fonction des dimensions) sont à donner. Outils de calculs 1, 2 et 3.

4 CH2 : configurations du plan (plan non repéré et repéré) Acquis de cinqième : Sur une droite graduée : lire l abscisse d un point donné, placer un point d abscisse donnée, déterminer la distance de deux points d abscisses d une droite graduée, à interpréter l abscisse d un point d une droite graduée en termes de distance et de position par rapport à l origine, Dans le plan muni d un repère orthogonal : lire les coordonnées d un point donné, placer un point de coordonnées données, Connaître et utiliser le vocabulaire : origine, coordonnées, abscisse, ordonnée. Connaître et utiliser la proportionnalité des longueurs pour les côtés des deux triangles déterminés par deux parallèles coupant deux droites sécantes. Connaître et utiliser un énoncé réciproque. Agrandir ou réduire une figure en utilisant la conservation des angles et la proportionnalité entre les longueurs de la figure initiale et celles de la figure à obtenir. Connaître et utiliser la relation entre un angle inscrit et l angle au centre qui intercepte le même arc. Construire un triangle équilatéral, un carré, un hexagone régulier, un octogone connaissant son centre et un sommet. Coordonnées d un point : du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé. Distance de deux points du plan. Milieu d un segment. " Repérer un point donné du plan, placer un point connaissant ses coordonnées. " Calculer la distance de deux points orthonormés connaissant leurs coordonnées. " Calculer les coordonnées du milieu d un segment. Un repère orthonormé du plan est défini par trois points (O, I, J ) formant un triangle rectangle isocèle de sommet O. À l occasion de certains travaux, on pourra utiliser des repères non orthonormés. fiches de méthodes en géométrie. Fiche A : méthode générale et rédaction (algorithmes), Fiche B : Calculer une longueur, Fiche C : calculer un angle, (dont formules trigonométriques et trigonométrie et valeurs exactes ) Fiche D positions relatives de deux droites, Fiche E : Calculer une aire), schéma de test (trapèze, parallélogramme, losange, rectangle, carré). schéma de test et coordonnées. introduction de notions : équation de droite et parallélisme, translation,

5 CH3 statistiques descriptives Une série statistique étant donnée (sous forme de liste ou de tableau ou par une représentation graphique) : déterminer une valeur médiane de cette série et en donner la signification ; déterminer des valeurs pour les premier et troisième quartiles et en donner la signification ; déterminer son étendue. Exprimer et exploiter les résultats de mesures d une grandeur. "Calculer des effectifs cumulés, des fréquences cumulées. CH4 fonctions linéaires et affines Déterminer par le calcul l image d un nombre donné et l antécédent d un nombre donné. Déterminer l expression algébrique d une fonction linéaire à partir de la donnée d un nombre non nul et de son image. Représenter graphiquement une fonction linéaire. Lire et interpréter graphiquement le coefficient d une fonction linéaire représentée par une droite. Déterminer par le calcul l image d un nombre donné et l antécédent d un nombre donné. Déterminer une fonction affine à partir de la donnée de deux nombres et de leurs images. Représenter graphiquement une fonction affine. Lire et interpréter graphiquement les coefficients d une fonction affine représentée par une droite. Déterminer la fonction affine associée à une droite donnée dans un repère. Connaître et utiliser la relation y=ax+b entre les coordonnées (x,y) d un point M qui est caractéristique de son appartenance à la droite représentative de la fonction linéaire x ax+b. Connaître et utiliser la relation y=ax entre les coordonnées (x,y) d un point M qui est caractéristique de son appartenance à la droite représentative de la fonction linéaire x ax. Résoudre algébriquement un système de deux équations du premier degré à deux inconnues admettant une solution et une seule ; en donner une interprétation graphique. Droites Droite comme courbe représentative d une fonction affine. " Tracer une droite dans le plan repéré. " Interpréter graphiquement le coefficient directeur d une droite.

6 CH5 : Translation et géométrie vectorielle. Coordonnées d un vecteur dans un repère. Somme de deux vecteurs. Relation de Chasles " Connaître les coordonnées ( x B La somme des deux vecteurs et x A, y B y A ) du vecteur AB.? $?? u v est le vecteur associé à " Calculer les coordonnées de lasomme de deux vecteurs dans un la translation résultant de l enchaînement des translations de repère. vecteur et de? u " Construire géométriquement la somme de deux vecteurs. CH6 : fonctions carré et problèmes du second degré Outils de calculs 1, 2 et 3.

7 CH7 : probabilités Comprendre et utiliser des notions élémentaires de probabilité. Calculer des probabilités dans des contextes familiers. CH8 : Vecteur, colinéarité, équation de droite. Produit d un vecteur par un nombre réel. " Utiliser la notation λ. u " Établir la colinéarité de deux vecteurs. Pour le vecteur u de coordonnées (a, b) dans un repère, λu est le vecteurle coordonnées ( λa, λ b)dans le même repère. Le vecteur λ u ainsi défini est indépendant du repère. " Caractériser alignement et parallélisme par la colinéarité de vecteurs. Statistique : complément sur les graphiques. " Représenter une série statistique graphiquement (nuage de points, histogramme, courbe des fréquences cumulées).

8 CH9 : fonction inverse, fonctions homographiques. CH10 géométrie dans l espace Connaître et utiliser la nature des sections du cube, du parallélépipède rectangle par un plan parallèle à une face, à une arête. Connaître et utiliser la nature des sections du cylindre de révolution par un plan parallèle ou perpendiculaire à son axe. Connaître et utiliser les sections d un cône de révolution et d une pyramide par un plan parallèle à la base. Connaître la nature de la section d une sphère par un plan. Calculer le rayon du cercle intersection connaissant le rayon de la sphère et la distance du plan au centre de la sphère. Représenter la sphère et certains de ses grands cercles. Calculer l aire d une sphère de rayon donné. Calculer le volume d une boule de rayon donné. Connaître et utiliser les propriétés dans un agrandissement ou une réduction de rapport k. CH11 : Cercle trigonométrique Connaître et utiliser les relations entre le cosinus, le sinus ou la tangente d un angle aigu et les longueurs de deux des côtés d un triangle rectangle. Déterminer, à l aide de la calculatrice, des valeurs approchées : du sinus, du cosinus et de la tangente d un angle aigu donné; de l angle aigu dont on connaît le cosinus, le sinus ou la tangente.

9 CH12 : échantillonnage Échantillonnage Notion d échantillon. Intervalle de fluctuation d une fréquence au seuil de 95%*. Réalisation d une simulation. " Concevoir, mettre en S uvre et exploiter des simulations de situations concrètes à l aide du tableur ou d une calculatrice. " Exploiter et faire une analyse critique d un résultat d échantillonnage. Un échantillon de taille n est constitué des résultats de n répétitions indépendantes de la même expérience. À l occasion de la mise en place d une simulation, on peut : " utiliser les fonctions logiques d un tableur ou d une calculatrice, mettre en place des instructions conditionnelles dans un algorithme. L objectif est d amener les élèves à un questionnement lors des activités suivantes : " l estimation d une proportion inconnue à partir d un échantillon ; "la prise de décision à partir d un échantillon. * L intervalle de fluctuation au seuil de 95%, relatif aux échantillons de taille n, est l intervalle centré autour de p, proportion du caractère dans la population, où se situe, avec une probabilité égale à 0, 95, la fréquence observée dans un échantillon de taille n. Cet intervalle peut être obtenu, de façon approchée, par simulation. Le professeur peut indiquer aux élèves le résultat suivant, utilisable dans la pratique pour des échantillons de taille n 25 et des proportions p du caractère comprises entre 0, 2 et 0, 8 : si f désigne la fréquence du caractère 1 1 dans l échantillon, f appartient à l intervalle p, p + avec une probabilité d au moins 0, 95. Le n n professeur peut faire percevoir expérimentalement la validité de cette propriété mais elle n est pas exigible. Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage

Fonctions 1 : généralités

Fonctions 1 : généralités Fonctions 1 : généralités Acquis de troisième : Déterminer l image d un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Déterminer un antécédent par lecture directe

Plus en détail

K.Fares Progression mathématiques seconde Lycée Hélène Boucher

K.Fares Progression mathématiques seconde Lycée Hélène Boucher K.Fares Progression mathématiques seconde Lycée Hélène Boucher 2014-2015 Les di érents chapitres de l année rangés suivant les 3 parties du programme : Fonctions, Géométrie, Statistiques et. Chapitre Axe

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

PROGRESSION 3ème

PROGRESSION 3ème PROGRESSION 3ème 2010-2011 S1 S2 S3 S4 S5 Connaissances Socle Capacités Commentaires 3.2 Configurations dans l espace Problèmes de sections planes de solides. 2.1. Nombres entiers et rationnels Diviseurs

Plus en détail

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation 1. Organisation et gestion de données. Fonctions 1.1. Proportionnalité 1.2. Organisation et représentation de données - Lire, utiliser

Plus en détail

SOMMAIRE du Cours de Mathématiques

SOMMAIRE du Cours de Mathématiques SOMMAIRE du Cours de Mathématiques Thème : NOMBRES ET CALCULS Chapitre 01 : NOMBRES DECIMAUX Fiche 1 : Fractions décimales et nombres décimaux Fiche 2 : Demi-droite graduée Fiche 3 : Comparer des nombres

Plus en détail

Progression pour la classe de 3 ème

Progression pour la classe de 3 ème Progression pour la classe de 3 ème N Axe Chapitre Descriptif Remarques ; durée 1 Nombres et 2 Nombres et Chap 5 I- équation du 1er degré à 1 inconnue Chap 4 I- racine carrée d'un nombre positif Mettre

Plus en détail

MATHÉMATIQUES SECONDE BAC PRO

MATHÉMATIQUES SECONDE BAC PRO MATHÉMATIQUES SECONDE BAC PRO PROGRESSION SPIRALÉE Définitions Compétence : connaissance(s), capacité(s), attitude(s). Connaissance : définie dans le BO pour chaque thème. Capacité : définie dans le BO

Plus en détail

Mathématiques - Progression 3 e

Mathématiques - Progression 3 e Chap 1. Tests de valeur Utiliser la distributivité simple Réduire une expression Calculer une expression littérale en donnant aux variables des valeurs numériques Tester une égalité Utiliser / écrire un

Plus en détail

Programme de mathématiques. Classe de troisième

Programme de mathématiques. Classe de troisième Programme de mathématiques Classe de troisième Sommaire Classe de troisième... 3 1. Organisation et gestion de données, fonctions... 3 2. Nombres et calculs... 6 3. Géométrie... 8 4. Grandeurs et mesures...

Plus en détail

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème CYCLE 4 Thème 5ème 4ème 3ème Calcul numérique Calculer avec des parenthèses Calculer sans parenthèses Thème A NOMBRES et CALCULS Nombres relatifs Fractions Calcul littéral Puissance Racines carrées Equation

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE Remarques générales: Les compétences minimales exigibles sont indiquées en

Plus en détail

Enseigner les mathématiques aux élèves de SEGPA

Enseigner les mathématiques aux élèves de SEGPA Enseigner les mathématiques aux élèves de SEGPA E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH L enseignement des mathématiques en SEGPA a une triple visée : - consolider, enrichir et structurer les acquis de

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

Progression en cycle 4

Progression en cycle 4 Progression en cycle 4 Nombres et calculs Sens des nombres Conforter la maitrise des procédures de calcul. Nombres rationnels de signe quelconque. Un même nombre peut avoir plusieurs écritures (notamment

Plus en détail

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10 SEMAINE 01 : du 6/9/10 au 12/9/10 CHAPITRE 1 : REPERAGE DANS LE PLAN I ] Repère 1 ) Définition d un repère Application dans un rectangle 2 ) Coordonnées d un point du plan Reprise du rectangle Cours :

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base PROGRESSION 3ème Algèbre PGCD Je sais Ne sais pas vocabulaire + Connaître la définition et donner un multiple, un diviseur d'un nombre, + divisibilité savoir si un nombre est divisible par 2 3 5 9 10 (rappel

Plus en détail

Fiche de programmation

Fiche de programmation Collège des Sœurs des Saints-Cœurs -Tripoli Email : tripoli@sscc.edu.lb Site : www.tripoli.sscc.edu.lb Année scolaire: (2013-2014) Fiche de programmation Classe : EB8 Professeurs : Manal Hajjeh et Fadi

Plus en détail

Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016

Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016 Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016 - Proposition d aménagement du programme de mathématiques de la classe de seconde - Page 1 sur 14 Le programme

Plus en détail

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme Progressivité cycle 3 cycle 4 programmes 2016 En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme En vert, ce qui n apparait plus explicitement dans le programme

Plus en détail

Mathématiques en SEGPA : pour aller vers le CAP

Mathématiques en SEGPA : pour aller vers le CAP Mathématiques en SEGPA : pour aller vers le CAP E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH Si l une des finalités des enseignements adaptés du second degré est d obtenir le CFG, l autre est de parvenir à

Plus en détail

( ) et de vecteur directeur u 3 5

( ) et de vecteur directeur u 3 5 Révisions conseillées pour un passage en terminale S rentrée 2014 Pour que le passage de la classe de première S à la terminale se fasse de façon fluide, nous vous conseillons de prévoir dix jours de révision

Plus en détail

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs R.1. Additionner et soustraire des nombres relatifs R.2. Effectuer une somme algébrique. 4.1 Donner la règle des signes dans

Plus en détail

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche Compétence exigible au socle dès à présent. v Compétence exigible au socle ultérieurement. v Compétence non exigible au socle. v Compétence sans objet. v 6 Sixième V V V V 6N Nombres entiers et décimaux

Plus en détail

Programme de mathématiques de la classe de cinquième

Programme de mathématiques de la classe de cinquième Programme de mathématiques de la classe de cinquième L enseignement des mathématiques en classe de cinquième doit consolider et approfondir les acquis de la scolarité élémentaire et de la sixième et doter

Plus en détail

MATHÉMATIQUES CINQUIÈME

MATHÉMATIQUES CINQUIÈME Collège STANISLAS de QUÉBEC ( 2011-2012 ) MATHÉMATIQUES CINQUIÈME 1. OBJECTIFS. Acquérir des connaissances pratiques et utiles dans des situations de la vie pratique.. Acquérir des notions fondamentales

Plus en détail

Mise à jour : programmes du collège :

Mise à jour : programmes du collège : Ce document, qui est un document de travail, est une possibilité de lecture des programmes de mathématiques de la sixième à la terminale des filières générales et technologiques. Ce document est en format

Plus en détail

CERTIFICAT, GEOMETRIE. Liste des sujets

CERTIFICAT, GEOMETRIE. Liste des sujets 9VSB CERTIFICAT, GEOMETRIE Liste des sujets 1. Notions préliminaires 2. Cercle, Cylindre et Cône 3. Angles 4. Polygones et Polyèdres 5. Transformations géométriques 6. Triangles isométriques 7. Théorème

Plus en détail

Compétences (en référence au programme)

Compétences (en référence au programme) Séance N Lycée HONNORAT BARCELONNETTE Durée effectif 0 1h 29 Classes :5 e Planification prévisionnelle des enseignements de mathématiques Mise en œuvre des programmes de 5 ème à la rentrée 2011 Cette planification

Plus en détail

Socle Commun des Connaissances Mathématiques - MathenPoche/Sésamath

Socle Commun des Connaissances Mathématiques - MathenPoche/Sésamath Indexation Compétence exigible au socle dès à présent. 95 Compétence exigible au socle ultérieurement. Compétence non exigible au socle. 5 Compétence sous-entendue. 2 6 Sixième V V V V 6N Nombres entiers

Plus en détail

Progression 5e - MATHEMATIQUES

Progression 5e - MATHEMATIQUES PREMIER TRIMESTRE PRIORITE DES OPERATIONS (Chap1) I) Calculs sans parenthèses II) Calculs avec parenthèses Activités : Révision de l ODG, CALCUL MENTAL - Effectuer une succession d opérations donnée sous

Plus en détail

Première - Objectifs de l année en mathématique

Première - Objectifs de l année en mathématique Première - Objectifs de l année en mathématique *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» Chapitres 1&2 : Calcul mental, diviseurs et multiples 1. Définir et distinguer

Plus en détail

GRILLE ANALYSE DU PROGRAMME DE LA CLASSE DE TROISIEME

GRILLE ANALYSE DU PROGRAMME DE LA CLASSE DE TROISIEME GRILLE ANALYSE DU PROGRAMME DE LA CLASSE DE TROISIEME Les nouveautés du programme sont soulignées, tandis que les notions abandonnées sont en italique. 1. Connaissances Généralités Organisation et gestion

Plus en détail

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008)

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008) 1. Organisation et gestion de données. Fonctions Utilisation de la proportionnalité Quatrième proportionnelle Calculs faisant intervenir des pourcentages Proportionnalité * Représentations graphiques.

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

ORGANISATION ET GESTION DE DONNÉES, FONCTIONS NOMBRES ET CALCULS

ORGANISATION ET GESTION DE DONNÉES, FONCTIONS NOMBRES ET CALCULS P R OGRA M ME E T SOC L E N I V E A U S I X I È M E ORGANISATION ET GESTION DE DONNÉES, FONCTIONS PROPORTIONNALITÉ (SITUATIONS PROBLÈMES) Reconnaître si une situation relève de la proportionnalité. Traiter

Plus en détail

Exercices de révision - Niveau seconde

Exercices de révision - Niveau seconde Exercices de révision - Niveau seconde NB: cette fiche d'exercices est à destination des élèves passant en classe de première S et ES. Les exercices portant une étoile * sont exclusivement destinés aux

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Afin de débuter l année 2016-2017 de terminale S dans les meilleures conditions en mathématiques, les élèves trouveront en

Plus en détail

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE MINISTÈRE DE L ÉDUCATION NATIONALE RÉPUBLIQUE DU MALI *********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE 10 è SCIENCES

Plus en détail

Cliquez sur le titre du cours ou de l'exercice pour plus de détails.

Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Niveau 3 ème Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Liste des cours et exercices Calcul Littéral...3 Cours...3 Leçon 1: Identités remarquables....4 Leçon 2: Factoriser une

Plus en détail

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences NOMBRES et CALCULS N1- Utiliser les nombres pour comparer N2- Utiliser les nombres pour calculer N3- Utiliser

Plus en détail

Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle»

Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle» Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle» -1- Par le théorème de Pythagore : «Un triangle est rectangle si et seulement si le carré du plus grand côté est égal à la somme des carrés

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

III - Référentiel de mathématiques

III - Référentiel de mathématiques III - Référentiel de mathématiques Les tableaux qui suivent se présentent sous la forme de quatre colonnes : - la première indique les domaines de connaissances ; - la deuxième indique les capacités ;

Plus en détail

Progression année scolaire classe de seconde Total de 32,5 semaines

Progression année scolaire classe de seconde Total de 32,5 semaines Progression année scolaire 2016 2017 - classe de seconde Total de 32,5 semaines Du 5 septembre au 19 octobre (6,5 semaines) Chap 0 - Algorithmique (1s) Boites noires à la Voir fiche d exercices n 1 calculatrice

Plus en détail

FORMULAIRE MATHEMATIQUES

FORMULAIRE MATHEMATIQUES Collège Mont Miroir FORMULAIRE MATHEMATIQUES Tout ce que vous devez savoir pour réussir au brevet, et même après. Mr Mougin 2015/2016 Page 2 SOMMAIRE ARITHMÉTIQUE... 5 Définitions... 5 Critères de divisibilité...

Plus en détail

Le nouveau programme de mathématiques en classe de seconde. Académie de Créteil Octobre 2009

Le nouveau programme de mathématiques en classe de seconde. Académie de Créteil Octobre 2009 Le nouveau programme de mathématiques en classe de seconde Académie de Créteil Octobre 2009 Pourquoi un nouveau programme? La seconde, une classe de détermination. La continuité avec les programmes du

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences.

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences. Programme de première STI2D et STL Analyse et comparaison aux anciens programmes de STI Préambule Le programme est commun aux deux séries STI2D et STL. On ne distingue plus les six séries de STI (BO 1994),

Plus en détail

Livre du professeur. Mathématiques. collection zénius. Delphine ALeIXANDRe Collège Camille Sée, Paris 15 e. Claire BeRLIOZ Lycée Français de New York

Livre du professeur. Mathématiques. collection zénius. Delphine ALeIXANDRe Collège Camille Sée, Paris 15 e. Claire BeRLIOZ Lycée Français de New York Livre du professeur Mathématiques collection zénius 3 e Delphine ALeIXANDRe Collège Camille Sée, Paris 15 e Claire BeRLIOZ Lycée Français de New York Laure BROTReAUD Collège Pierre Loti, Rochefort Jean-Claude

Plus en détail

A propos de la progression spiralée : Réponse à 4 questions

A propos de la progression spiralée : Réponse à 4 questions propos de la progression spiralée : Réponse à 4 questions 1. Organisation de la prise de note du cours pour les élèves?. Découpage de certains chapitres et durée?. Réaction des élèves face à ce type de

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

Introduction 1. I Géométrie plane 11

Introduction 1. I Géométrie plane 11 Table des matières Introduction 1 I Géométrie plane 11 1 Géométrie pure 13 1.1 Parallélisme......................... 13 1.1.1 Axiomes d incidence................ 13 1.1.2 Positions relatives de deux droites.........

Plus en détail

Leçon : Les fonctions

Leçon : Les fonctions Leçon : Les fonctions 1. Notion de fonction et généralités 1.a) Fonction Soit D une partie R. Définir une fonction sur un ensemble D, c est associer à chaque réel x de D, un unique réel, appelé image de

Plus en détail

Révisions obligatoires Mathématiques Seconde à première 2013

Révisions obligatoires Mathématiques Seconde à première 2013 Des bases solides sont nécessaires pour réussir l entrée en classe de première. 50 questions à choix multiples. Cocher dans le tableau de la feuille de réponse les propositions vraies et laisser vierge

Plus en détail

Progression et compétence 6 ème

Progression et compétence 6 ème Progression et compétence 6 ème 2016-2017 Droites parallèles, perpendiculaires Non Début GF1 : Connaître / utiliser le vocabulaire et les notations : point, droite, demidroite, segment. GF2 : Tracer une

Plus en détail

COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR ORGANISATION ET GESTION DE DONNEES, FONCTIONS.

COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR ORGANISATION ET GESTION DE DONNEES, FONCTIONS. COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR ORGANISATION ET GESTION DE DONNEES, FONCTIONS. INTRODUCTION ANCIEN PROGRAMME L'un des objectifs est de faire émerger progressivement,

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Progression spiralée sur l'année de 3ème : fils rouge : le calcul mental, la proportionnalité et l'espace.

Progression spiralée sur l'année de 3ème : fils rouge : le calcul mental, la proportionnalité et l'espace. Progression spiralée sur l'année de 3ème : fils rouge : le calcul mental, la proportionnalité et l'espace. Septembre Toussaint Noël Hiver Pâques Arithmétique => PGCD en lien avec espace (pavé droit et

Plus en détail

MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème ORGANISATION ET GESTION DES DONNEES

MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème ORGANISATION ET GESTION DES DONNEES MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème Proportionnalité CM1 - Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité. Proportionnalité CM2 - Résoudre des

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

Comparaison entre ancien et nouveau programmes de 1 ère STI2D/STL

Comparaison entre ancien et nouveau programmes de 1 ère STI2D/STL Comparaison entre ancien et nouveau programmes de 1 ère STI2D/STL Introduction Le programme est commun aux deux séries STI2D et STL. Comme en 1èreS, en plus des trois domaines «Analyse, Géométrie, Statistiques

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

Projet de programme de mathématiques

Projet de programme de mathématiques Programmes du Lycée Post-consultation Projet de programme de mathématiques - Classe de seconde générale et technologique - 19 mai 2009 eduscol.education.fr/prog Programme de mathématiques pour la classe

Plus en détail

Mathématiques en seconde, rentrée 2009

Mathématiques en seconde, rentrée 2009 Mathématiques en seconde, rentrée 2009 Projet initial. Consultation. Projet post-consultation ( 19 mai 2009, Eduscol) Présentation au C.S.E. le 11 juin 2009. Motivations d un changement de programme? Continuité

Plus en détail

COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR GEOMETRIE.

COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR GEOMETRIE. COMPARAISON ANCIENS ET NOUVEAUX PROGRAMMES CLASSE DE TROISIEME SUR GEOMETRIE. INTRODUCTION ANCIEN PROGRAMME Les objectifs des travaux géométriques demeurent ceux des classes antérieures du collège : représentation

Plus en détail

Objectifs. Connaissances Capacités Commentaires

Objectifs. Connaissances Capacités Commentaires Classe de quatrième Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle sont écrits en italiques. Si la phrase en italiques est précédée d un astérisque

Plus en détail

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative.

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative. Mathématiques - classe de 1ère des séries STD2A 1. Analyse Le programme d analyse met en évidence l apport des fonctions et de leurs représentations graphiques dans des situations purement mathématiques

Plus en détail

Chapitre 1 - L algèbre de base

Chapitre 1 - L algèbre de base Mathématique d appoint 4 e édition Table des matières Chapitre 1 - L algèbre de base 1.1 Les ensembles de nombres 1.2 Les intervalles 1.3 Les relations entre deux ensembles 1.4 Les opérations sur les ensembles

Plus en détail

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016 Lycée Beaupré d Haubourdin Cahier de vacances de nde été 06 L objectif de ce cahier de vacances est de vous aider à revoir des notions de base indispensables pour bien démarrer votre année de seconde en

Plus en détail

Comparaison des programmes de mathématiques au cycle terminal du lycée

Comparaison des programmes de mathématiques au cycle terminal du lycée Comparaison des programmes de mathématiques au cycle terminal du lycée 10 avril 2013 Plan du document Préambule........................................................... 2 A - Première S.........................................................

Plus en détail

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources N chapitre 1 5 Durée Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources heure s Proportionnalité calcul calculs (1) Valeur approchée Troncature Arrondi Critères de divisibilité

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN Introduction. page 2 Classe de cinquième page 3 Classe de quatrième page 7-1 - INTRODUCTION D une manière générale on mettra

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Technicien en installation des systèmes énergétiques et climatiques Exemple de progression pédagogique Programmes : Mathématiques : I : Activités numériques et graphiques

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Mathématiques. préparation à la Terminale S

Mathématiques. préparation à la Terminale S Mathématiques préparation à la Terminale S Le programme de Terminale S est chargé et est la continuité de celui de 1 ère ère S. Les nouvelles notions sont nombreuses et le rythme de progression est rapide.

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

Progression 1ère S MATHÉMATIQUES

Progression 1ère S MATHÉMATIQUES Progression 1ère S MATHÉMATIQUES Mme MAINGUY M.ELBAGHLI 2016-2017 Ce que dit le B.O Infos diverses Nouveau manuel : Maths X 1ere S 2015 ISBN : 978-2-278-08084-7 Calculatrice recommandée : TI nspire CX

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Carrosserie (réparation) Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques I : Activités numériques et

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

Cours de mathématiques de troisième

Cours de mathématiques de troisième Cours de mathématiques de troisième Bertrand Carry SOMMAIRE 1. Notion de fonction... 1 1.1 Fonction dont la courbe est tracée... 1 1. Fonction dont on connaît un tableau de valeurs... 3 1.3 Fonction déterminée

Plus en détail

PROGRESSION CALCUL MENTAL

PROGRESSION CALCUL MENTAL PROGRESSION CALCUL MENTAL Décomposer pour jertrefdggdfg Périod e Titre Programmes Socle commun Objectifs Additionner rapidement Soustraire rapidement Consolider les connaissances et capacités en calcul

Plus en détail

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma).

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma). EXERCICE 1 : (CALCULS NUMERIQUES) Soit A = 5 3 7 3 9 4 Exercices type brevet ; B = 45 1 5 ; C = ( ) 4 3 10 1, 10 3 0, 10 1) Calculer A et donner le résultat sous la forme d une fraction irréductible. )

Plus en détail

Examen d admission aux études de l enseignement supérieur de 1 er cycle

Examen d admission aux études de l enseignement supérieur de 1 er cycle Examen d admission aux études de l enseignement supérieur de 1 er cycle Programme de Mathématiques COMPÉTENCES GÉNÉRALES Le ou la candidat e doit être capable d'utiliser les notions de base énumérées ci-après

Plus en détail

Fonctions linéaires, Fonctions affines

Fonctions linéaires, Fonctions affines Fonctions linéaires, Fonctions affines I Proportionnalité, et fonctions linéaires A Généralité 1 tableau de proportionnalité On dit qu'un tableau est un tableau de proportionnalité si les termes de la

Plus en détail

Brevet : le minimum vital à connaître

Brevet : le minimum vital à connaître Brevet : le minimum vital à connaître Thème Cours Exemples Calcul Fractions Puissances Règles de priorité: On commence par les parenthèses, puis les multiplications ou division et enfin les additions ou

Plus en détail

Partie A - bilan numérique

Partie A - bilan numérique Partie A - bilan numérique Exercice 1. Effectuer les calculs suivants. A = 1 3 1 3 4 7 ; B = 2 3 + 3 2 ; C = (5 3 1 5 ) (1 6 + 3 2 ) ; D = 1 + 1 3 3 4 1 ; E = 10 3 (10 2 1 10 ) ; 2 F = 114 3 2 5 6 5 7

Plus en détail

COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE

COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE Le cours de deuxième année termine l étude des sujets de l école obligatoire (quelques éléments de la 10e année, mais principalement les sujets étudiés en 11e)

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

Progression 6 ème

Progression 6 ème Progression 6 ème 2011-2012 Chapitre 1 : nombres décimaux La résolution de problèmes a pour objectifs : - de consolider le sens des opérations, de développer le calcul mental, le calcul à la main et l

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail