INTRODUCTION AUX SÉRIES TEMPORELLES. Julien JACQUES jjacques/

Dimension: px
Commencer à balayer dès la page:

Download "INTRODUCTION AUX SÉRIES TEMPORELLES. Julien JACQUES http://eric.univ-lyon2.fr/ jjacques/"

Transcription

1 INTRODUCTION AUX SÉRIES TEMPORELLES Julien JACQUES jjacques/

2 Table des matières 1 Introduction et premières définitions Tendances et composantes saisonnières Indices descriptifs d une série temporelle Indices de tendance centrale Indices de dispersion Indices de dépendance Mise en oeuvre sous R TP 1 : Introduction Données de varicelle Simulations de séries temporelles Lissages exponentiels Lissage exponentiel simple Lissage exponentiel double Méthode de Holt-Winters Méthode non saisonnière Méthode saisonnière additive Méthode saisonnière multiplicative Mise en oeuvre sous R TP 2 : Lissage Exponentiel Lissage et prévision de données simulées Lissage et prévision de la concentration en co Lissage et prévision du CAC Estimation et élimination de la tendance et de la saisonnalité Bruit blanc Processus stationnaire Une estimation paramétrique de la tendance (trend) Estimation non paramétrique : moyenne mobile Elimination de la tendance et de la saisonnalité par la méthode des différences Test sur la série résiduelle Comment tester si on est en présence d un bruit blanc? Mise en oeuvre sous R TP 3 : Tendance et saisonnalité DonnéesAirPassengers Données simulées Modélisation des séries stationnaires Auto-corrélation partielle Les processus auto-régressifsar p Exercice : cas particulier de l AR Illustrations Les processus en moyenne mobilema q Exercice : cas particulier duma Illustrations Les processus mixtesarma p,q Exercice : le processusarma 1, Illustrations Récapitulatif des propriétés des processusma q,ar p etarma p,q

3 7.6 Estimation, choix de modèle et prévision Estimation Choix de modèle Prévision Processus non stationnaire : ARIMA et SARIMA Exemple Les processus ARIMA et SARIMA Mise en oeuvre sous R : processus ARMA, ARIMA, SARIMA TP 4 : Processus ARMA et ARIMA Simulation de processus ARMA Identification d un processus ARMA Prévision dans un processus ARMA Précipitations mensuelles à San Fransisco entre 1932 et Taux d intérêt au Royaume-Uni Processus ARCH et GARCH Définitions Quelques rappels de probabilités Propriétés des processus ARCH Processus GARCH et propriétés Mise en oeuvre sous R TP 5 : Processus ARCH et GARCH Données simulées Données réelleseustockmarkets Données réelles :NYSE

4 Ce document est uniquement un support de cours, et ne constitue pas à lui seul un cours sur les séries temporelles. Les différentes démonstrations, applications et exercices nécessaires à la compréhension des notions présentées dans ce document n y figurent pas (ou alors sous la forme d exercice), mais seront développés en cours. A la fin de chaque chapitre figurent les commandes R nécessaires à l application des notions du chapitre. 4

5 1 Introduction et premières définitions Une série temporelle (ou série chronologique) à temps discret est une suite réelle finie(x t ) 1 t n, oùtreprésente le temps (en minute, jour, année...). Voici quelques exemples de séries temporelles : Ex. 1 : Nombre de morts accidentelles aux Etats-Unis de 1973 à 1978 (figure 1). USAccDeaths Time FIGURE 1 Nombre de morts accidentelles aux Etats-Unis de 1973 à 1978 Ex. 2 : Nombre de passagers par mois (en milliers) dans les transports aériens, de 1949 à 1960 (figure 2). AirPassengers Time FIGURE 2 Nombre de passagers (en milliers) dans les transports aériens 5

6 Ex. 3 : Nombre annuel de tâches solaires observées à la surface du soleil de 1700 à 1980 (figure 3). sunspot.year Time FIGURE 3 Nombre annuel de tâches solaires Ex. 4 : Taille de la population française (en milliers) de 1985 à 2005 (figure 4). FIGURE 4 Population française de 1985 à 2005 Ex. 5 : Valeurs de clôtures journalières du CAC40 de 1991 à 1998 (figure 11). EuStockMarkets[, 3] Time FIGURE 5 Valeurs de clôtures journalières du CAC40 de 1991 à 1998 Excepté l exemple 4, ces données sont disponibles dans le logiciel R sous les noms : EuStockMarkets, USAccDeaths, AirPassengers et sunspot.year. 6

7 Exercice 1. Repérer les tendances (croissance, décroissance, linéaire, quadratique...) et saisonnailités (périodicités) de chacune de ces séries. Un des objectifs principaux de l étude d une série temporelle est la prévision des réalisations futures, très souvent pour des raisons économiques (prévoir l évolution de la vente d un produit pour ajuster au mieux les moyens de production, prévoir l évolution d un marché financier...). Bien entendu, aucun modèle ne correspond exactement à la réalité, et il est impossible de prévoir parfaitement le devenir d une série temporelle. Lorsque cela sera possible, nous donnerons des intervalles de prévisions, afin de pouvoir apporter une information quant à la précision de la prévision. Pour ce faire, il existe un large choix de modèle utilisable : les modèles de régression, comme par exemple : x t = α 1 t 2 +α 2 t+α 3 +ǫ t, t = 1,...,n. Une fois les coefficients de ce modèle estimés, la prévision dex t+1 sera ˆx t+1 = ˆα 1 (t+1) 2 + ˆα 2 (t+1)+ ˆα 3. les lissages exponentiels qui sont très simples à mettre en oeuvre, et qui feront l objet d un chapitre suivant, les modèles de type ARMA, qui consistent à enlever de la série les tendances et saisonnalités (ou périodicités) évidentes et à modéliser le résidu restant. Ces méthodes sont plus sophistiquées et plus lourdes numériquement (temps de calcul) que les précédentes, mais également plus performantes. Parmi les 5 exemples précédents, celui relatif au nombre de passagers dans les transports aériens (figure 2) est une série assez typique de ce que l on rencontre en économétrie, et elle donne lieu à de bonnes prévisions pour toutes les méthodes classiques. Au contraire, l évolution des marchés boursiers (figure 11) est beaucoup plus difficile à prévoir. Les défis que nous allons devoir relever sont les suivants : définir un modèle avec un nombre fini de paramètres, estimer les paramètres de ce modèle, vérifier la qualité d ajustement du modèle, comparer différents modèles (partage de l échantillon d observations en 80% pour l apprentissage et 20% pour le test), effectuer des prédictions. 1.1 Tendances et composantes saisonnières On parle de tendance lorsque la série (x t ) 1 t n peut s écrire, à une erreur d ajustement ǫ t près, comme une combinaison linéaire de m fonctions du temps, choisies a priori (par exemple fonction puissance, exponentielle, logarithmique...) : x t = m α j f j (t)+ǫ t 1 t n. j=1 Lorsquex t = αt+β +ǫ t la tendance est linéaire (m = 1 et f(t) = αt+β). Une tendance polynomiale se traduira parx t = α 1 t p +α p 1 t p α p+1 +ǫ t. Exercice 2. Comment semble être la tendance dans l exemple 5? On parle de composante périodique lorsque la série (x t ) 1 t n peut se décomposer en : x t = s t +ǫ t 1 t n, oùs t est périodique, c est-à-dires t+t = s t, avect la période (supposée entière). Lorsque la période est de 6 mois ou 1 an, on parle généralement de composante saisonnière. Enfin, il est fréquent qu une série comporte à la fois une tendance et une composante périodique (cf. exemple 2). 7

8 1.2 Indices descriptifs d une série temporelle Indices de tendance centrale Nous utilisons comme indicateur de la tendance centrale la moyenne : x n = 1 n Indices de dispersion n x t. t=1 Nous utilisons comme indicateur de dispersion la variance empirique (et sa racine carrée, l écart-type empirique) : ˆσ n (0) = 1 n Indices de dépendance n (x t x n ) 2. t=1 Ces notions, plus spécifiques à l étude de série temporelle, renseignent sur la dépendance entre les donnéesx t. L auto-covariance empirique d ordre 1 renseigne sur la dépendance entre deux données succes- Auto-covariance sives : ˆσ n (1) = 1 n 1 (x t x n )(x t+1 x n ), n 1 t=1 l auto-covariance empirique d ordre 2 renseigne sur la dépendance entre deux données écartées de deux pas de temps : ˆσ n (2) = 1 n 2 (x t x n )(x t+2 x n ), n 2 t=1 et ainsi de suite. Pour des raisons de bon sens statistique, nous ne considèrerons les covariances empiriques que jusqu à un ordre h pas trop grand. On appelle fonction d auto-covariance (empirique) la fonction qui àhassocie ˆσ n (h). Auto-corrélation empirique : Les auto-corrélations empiriques sont les quotients des covariances empiriques par la variance ˆρ n (h) = ˆσ n(h) ˆσ n (0). Ce sont les auto-corrélations empiriques que nous utiliserons pour caractériser la dépendance entre les variables. On appelle fonction d auto-corrélation (empirique) la fonction qui à h associe ˆρ n (h). Visualisation de l auto-corrélation d ordre 1 La représentation graphique des nuages de points (x t,x t+1 ), pour t = 1,...,n 1, est une bonne illustration de la valeur de l auto-corrélation d ordre 1 ˆρ n (1) : plus le nuage sera arrondi, plus ˆρ n (1) sera proche de 0, et plus le nuage sera allongé, plus ˆρ n (1) sera proche de 1. Ceci est vrai pour toutes les auto-corrélations ˆρ n (k), 1 k n. 8

9 x[2:length(x)] x[3:length(x)] x[4:length(x)] x[1:(length(x) 1)] x[1:(length(x) 2)] x[1:(length(x) 3)] x[5:length(x)] x[6:length(x)] x[7:length(x)] x[1:(length(x) 4)] x[1:(length(x) 5)] x[1:(length(x) 6)] Series x x[8:length(x)] x[9:length(x)] ACF x[1:(length(x) 7)] x[1:(length(x) 8)] Lag FIGURE 6 Nuages de points(x t,x t+k ) pourk = 1,...,8 et auto-corrélation pour la série temporelle du nombre de morts accidentelles aux Etats-Unis de 1973 à

10 Première analyse de la série à l aide des auto-corrélations Proposition 1. Si la série(x t ) 1 t n est une tendance linéaire purex t = at+b,t = 1,...,n, alors on a pourhfixé : Exercice 3. Faire la preuve. ˆρ n (h) n 1. Proposition 2. Si la série (x t ) 1 t n est une série périodique purex t = acos 2tπ T,t = 1,...,n, on a pourhfixé : ˆρ n (h) n cos 2hπ T. En interprétant l auto-corrélation grâce à ces deux propositions, il sera possible de «deviner»si une série temporelle admet une tendance (l auto-corrélation tend vers 1) ou une saisonnalité (la saisonnalité se voit sur l autocorrélation). 1.3 Mise en oeuvre sous R Quelques fonctions R utiles à l étude des séries temporelles : Lire un fichier de données en sautant les k premières lignes : data=scan(file= donnee.dat,skip=k). Créer un objet de type série temporelle :serie <- ts (data,start,end,frequency). data contient le vecteur des données (un fichier contenant les données peut être mentionné en remplaçant data par file= donnees.dat ),start et end mentionne les dates de début et de fin de la série (ex : start=c(1990,1) et end=c(1999,6) pour des données allant de janvier 90 à juin 99), et enfin frequency mentionne le nombre de données par unité de temps (par exemple, si les dates de début et de fin sont des années, et que les données sont mensuelles, il faudra indiquerfrequency=12). Représenter graphiquement un objet de type série temporelle :plot.ts(serie) La fonction acf(x, lag.max = 10, type = c("correlation", "covariance"), plot = TRUE) calcule (et trace si l optionplot est àtrue) leslag.max premières auto-corrélations et auto-covariances. Quelques conseils utiles pour les graphiques en R : pour représenter plusieurs courbes sur le même graphique, tracer la première à l aide de la commande plot qui créé la fenêtre graphique et y insère la courbe, puis tracer les autres courbes à l aide de la commandelines qui trace une courbe sur une fenêtre graphique existante. pour partager la fenêtre graphique en plusieurs (n p) sous-graphes, utiliser la commande par(mfrow=c(n,p)). préciser les limites des axes des graphiques :plot(...,xlim=c(0,10),ylim=c(-10,10)). pour exporter les graphiques en jpeg (idem pour bmp, png), il faut lui procéder de la sorte 1. jpeg(filename= nomfichier%d.jpeg ), 2. réaliser le graphique, 3. la commande dev.off() permet enfin de rediriger le dernier graphique tracé vers le fichier nomfichier1.jpeg, et ainsi de suite après chaque graphique. Le nom de fichier sera automatiquement incrémenté. 10

11 2 TP 1 : Introduction Préliminaires Lancer Open Office Writer et créer un fichier TP1_ST.odt. Dans ce fichier, vous répondrez clairement aux questions ci-dessous, en incluant vos codes R, les résultats obtenus sous R (graphique y compris 1 ), vos interprétations, remarques... Une fois ce TP fini, vous metterez en forme votre compte-rendu et l exporterez au formatpdf. Le jour de l examen, la même démarche vous sera demandée. Seul le fichierpdf sera pris en compte pour la correction. Entrainez-vous donc dès maintenant, notamment pour l exportation des graphiques de R vers Open Office Writer. Consignes Durée du TP : 2h. Indispensables pour la suite : exercices 1 et Données de varicelle Récupérer le fichier 2 contenant le nombre de cas de varicelle relevés à New-York de janvier 1931 à juin Créer un objet de type série temporelle contenant cette série. Représenter graphiquement la série. 2. Analyser qualitativement cette série, c est-à-dire repérer d éventuelles tendance et/ou saisonnalité (changer d échelle si besoin). 3. Quel est le nombre de cas de varicelles mensuel moyen? 4. Tracer les 25 premières auto-corrélations. Intérpreter ces résultats. Que représentent les traits pointillés horizontaux sur le graphique de l auto-corrélation. 5. Tracer sur un même graphique, les évolutions mensuelles du nombre de cas de varicelle pour chaque année. 6. Tracer sur un graphique l évolution annuelle du nombre de cas de varicelle. 7. Ces deux dernières questions vous permettent-elles d améliorer vos conclusions de la question 2? 2.2 Simulations de séries temporelles On appelle bruit blanc gaussien une suite de variables aléatoires indépendantes et identiquement distribuéesǫ t de loi normale centrée réduite. 1. Quelle est la fonction d auto-corrélation d un bruit blanc? 2. Simuler un bruit blanc gaussien de taille 100, et représenter le graphiquement. 3. Tracer la fonction d auto-corrélation. 4. Recommencer les deux questions précédentes et observer la variabilité des résultats. Jouer sur la longueur de la série. 5. Simuler maintenant la série temporellex(t) = 0.5t+2ǫ t avecǫ t N(0,1) (taille 100). 6. Représenter graphiquement la série et interpréter-la qualitativement. 7. Faites de même pourx(t) = 0.5t+ǫ t +3cos ( t π 6) avecǫt N(0,1). 1. se référer au document de cours, à la fin du premier chapitre, pour l exportation de graphique sous R 2. les fichiers de données sont disponibles sur jacques/ 11

12 3 Lissages exponentiels Les méthodes de lissages exponentiels constituent un outil permettant de réaliser des prévisions à partir de l observation d une série temporelle. Ces méthodes étant relativement basiques et simples de mise en oeuvre, elles sont souvent utilisées dans l industrie, notamment lorsque le nombre de prévisions à réaliser est important (par exemple, prévisions des ventes de centaines de produits dans une grande surface). Nous présentons trois types de lissage exponentiel : le lissage exponentiel simple qui consiste à ajuster localement à la série temporelle une constante, le lissage exponentiel double qui ajuste quant à lui une droite, le lissage exponentiel de Holt-Winters qui considère des fonctions plus complexes (polynomiales, périodiques...). 3.1 Lissage exponentiel simple Disposant d une série temporelle x 1,...,x n, l objectif du lissage exponentiel est d estimer la valeur x n+h non encore observée. Nous noterons ˆx n,h cette prévision. Etant donnée une constante de lissage 0 < α < 1, on définit la prévision par lissage exponentiel simple : n 1 ˆx n,h = α (1 α) j x n j. (1) j=0 La prévision est une moyenne de toutes les observations passées, pondérée de sorte que plus l observation soit ancienne moins elle ait d importance. Une constante de lissage α proche de 0 ( 0.3) donne une importance significative aux observations éloignées, tandis qu un α proche de 1 ( 0.7) tend à négliger ces observations éloignées. Remarque : la prévision ˆx n,h ne dépend pas deh! Formules récursives de mise à jour La définition (1) vérifiant la formule récursive suivante ˆx n,h = αx n +(1 α)ˆx n 1,h, la prévision ˆx n,h peut être obtenue immédiatement à partir de la connaissance de : 1- la prévision ˆx n 1,h basée sur lesn 1-èmes premières observations, 2- l observationx n. L utilisation de cette récurrence permet de réaliser des algorithmes très rapides d estimation de la prévision par lissage exponentiel (en initialisant à ˆx 1,h = x 1 ). Exercice 4. Ecrire et interpréter la valeur de ˆx n,1 à partir de l équation de récurrence. Exercice 5. Montrer que ˆx n,h défini en (1) est solution asymptotique d un problème de moindres carrés pondérés. Choix de la constante de lissage Pour choisir la constante de lissage, une solution pragmatique consiste à tester plusieurs valeurs et à choisir celle minimisant un critère d erreur minimale. Pour cela on partage l échantillon d observations en un échantillon d apprentissage (les80% premières observations :x 1,...,x m oùmest par exemple l entier le plus proche de 8 10 n) et un échantillon test (les 20% dernières : x m+1,...,x n ), on estime le modèle de lissage exponentiel à partir de l échantillon d apprentissage, et on évalue l erreur sur l échantillon test : n m erreur = (ˆx t,h x t,h ) 2 h=1 On répéte cette opération pour plusieurs valeurs de la constante de lissage α, et on choisit celle conduisant à l erreur la plus petite. 12

13 3.2 Lissage exponentiel double On ajuste au voisinage de l instantn une droite d équationy t = a 1 +a 2 (t n). La prévision par lissage exponentiel double est : oùâ 1 (n) et â 2 (n) sont solution de inf a 1,a 2 R j=0 ˆx n,h = â 1 (n)+â 2 (n)h n 1 (1 α) j (x n j (a 1 +a 2 j)) 2. Les solutions de cette équation sont â 1 (n) = 2L 1 (n) L 2 (n) et â 2 (n) = α 1 α (L 1(n) L 2 (n)) où L 1 (n) = α n 1 j=0 (1 α)j x n j et L 2 (n) = α n 1 j=0 (1 α)j L 1 (n j) sont deux lissages exponentiels simples successifs. Remarque : comme pour le lissage exponentiel simple, l estimateur de la prévision est la meilleure approximation au sens des moindres carrés pondérés. Formules récursives de mise à jour â 1 (n) = â 1 (n 1)+â 2 (n 1)+α(2 α)(x n ˆx n 1,1 ), â 2 (n) = â 2 (n 1)+α(2 α)(x n ˆx n 1,1 ), où â 1 (n) et â 2 (n) sont les estimations des paramètres a 1 et a 2 lorsque l on a observé la série jusqu à la n-ème réalisation. Les valeurs intiales étantâ 1 (0) = x 1 et â 2 (0) = x 2 x Méthode de Holt-Winters Méthode non saisonnière Comme la méthode de lissage exponentiel double, celle de Holt-Winters non saisonnière revient à estimer au voisinage de l instant n une droite y t = a 1 +a 2 (t n). La prévision prend la forme ˆx n,h = â 1 (n)+â 2 (n)h. La variante par rapport à la méthode de lissage exponentiel double est au niveau des formules de mise à jour dans l estimation des paramètresa 1 eta 2. Soient deux constantes de lissages 0 < α < 1 et 0 < β < 1. Les formules de mise à jour sont : â 1 (n) = αx n +(1 α)[â 1 (n 1)+â 2 (n 1)], â 2 (n) = β[â 1 (n) â 1 (n 1)]+(1 β)â 2 (n 1). Exercice 6. Montrer que les formules de mise à jour du lissage exponentiel double sont un cas particulier de ces dernières. Remarque : l introduction de deux constantes rend la méthode plus souple que le lissage exponentiel double : la constante α joue un rôle dans l estimation de l ordonnée à l origine de la droite,a 1, et la constanteβ dans celle de la pente de la droite,a 2. si α etβ sont petits le lissage est important car on tient compte du passé lointain. 13

14 3.3.2 Méthode saisonnière additive On cherche maintenant à ajuster au voisinage de l instantnune droite d équation oùs t est une composante périodique de périodet. Les formules récursives de mise à jour sont : Les prévisions sont de la forme : y t = a 1 +a 2 (t n)+s t, â 1 (n) = α(x n ŝ n T )+(1 α)[â 1 (n 1)+â 2 (n 1)], â 2 (n) = β[â 1 (n) â 1 (n 1)]+(1 β)â 2 (n 1), ŝ n = γ[x n â 1 (n)]+(1 γ)ŝ n T. ˆx n,h = â 1 +â 2 h+ŝ n+h T 1 h T, ˆx n,h = â 1 +â 2 h+ŝ n+h 2T T +1 h 2T. et ainsi de suite pourh 2T. Les trois constantes de lissages, α,β et γ ont le même effet que précédemment, plus elles sont petites et plus l importance des données éloignées est significative. Elles agissent respectivement sur les paramètresa 1,a 2 et s t. Se référer à Gouriéroux et Monfort 1983 [5] pour les valeurs d initialisation Méthode saisonnière multiplicative On ajuste au voisinage de l instantn une droite d équation oùs t est une composante périodique de périodet. Les formules récursives de mise à jour sont : Les prévisions sont de la forme : y t = [a 1 +a 2 (t n)] s t, â 1 (n) = α x n ŝ n T +(1 α)[â 1 (n 1)+â 2 (n 1)], â 2 (n) = β[â 1 (n) â 1 (n 1)]+(1 β)â 2 (n 1), ŝ n = γ x n â 1 (n) +(1 γ)ŝ n T. ˆx n,h = [â 1 +â 2 h]ŝ n+h T 1 h T, Se référer également à [5] pour les valeurs d initialisation. ˆx n,h = [â 1 +â 2 h]ŝ n+h 2T T +1 h 2T. 14

15 3.4 Mise en oeuvre sous R Les méthodes de lissages exponentiels sont disponibles sous R, grâce à la fonctionholtwinters. Pour une série temporellex, cette procédure permet : un lissage exponentiel simple : xlisse <- HoltWinters(x,alpha=α,beta=FALSE,gamma=FALSE), un lissage de Holt-Winters sans composante saisonnière : xlisse <- HoltWinters(x,alpha=α,beta=β,gamma=FALSE), un lissage Holt-Winters additif : xlisse <- HoltWinters(x,alpha=α,beta=β,gamma=γ,seasonal= add ), un lissage Holt-Winters multiplicatif : xlisse <- HoltWinters(x,alpha=α,beta=β,gamma=γ,seasonal= mul ). A noter que pour un lissage de Holt-Winters avec composante saisonnière la série temporelle x doit obligatoirement être un objet de type série temporelle, défini avec la fonctionts en précisant la saisonnalité. L affichage et la visualisation des résultats peuvent être réalisés à l aide des commandes : summary(xlisse) : description de l objet xlisse obtenu précédemment par la procédure HoltWinters, plot(xlisse) : représentation des valeurs observées et des valeurs lissées, plot(xlisse$fitted[,1]) : représentation de l ajustement de la série remis à jour à chaque observation. Les prévisions à l horizon h sont réalisées à l aide de la fonctionpredict : p<-predict(xlisse,n.ahead=h). Un intervalle de confiance (dont le fondement théorique n a pas été étudié dans ce cours) peut être obtenu en validant (àtrue) l optionprediction.interval. Remarque : lorsque les constantes de lissage sont fixées ànull (valeur par défaut), un algorithme interne à la procédureholtwinters se charge d estimer la meilleur constante possible à partir de la série des observations. 15

16 FIGURE 7 Lissage et prévision par lissage exponentiel double d un bruit blanc gaussien 16

17 FIGURE 8 Lissage et prévision par lissage exponentiel double de la série X(t) = 0.5t+2ǫ t avecǫ t N(0,1) 17

18 FIGURE 9 Lissage et prévision par lissage exponentiel double de la série X(t) = 0.5t + ǫ t + 3cos ( t π 6) avec ǫ t N(0,1) 18

19 Lissage Exponentiel Simple bb Time Lissage Exponentiel Double, alpha=0.5 bb Time HoltWinters Seasonal bb Time FIGURE 10 Lissage et prévision par lissage exponentiel simple, double, et Holt-Winters avec composante saisonnière de la sériex(t) = 0.5t+ǫ t +3cos ( t π 6) avecǫt N(0,1) 19

20 4 TP 2 : Lissage Exponentiel Consignes Durée du TP : 2h. Indispensables pour la suite : exercices 1 et Lissage et prévision de données simulées Simuler les trois séries temporelles suivantes (cf. TP1), de taille 100 : X 1 (t) = ǫ t, X 2 (t) = 0.5t+2ǫ t, X 3 (t) = 0.5t+ǫ t +3cos ( t π 6), oùǫ t N(0,1). Les 70 premières données de chaque série vont être utilisées pour prédire les 30 dernières. 1. Pour chaque série, effectuer la prévision par lissage exponentiel simple et double. Tester différentes valeurs du paramètre de lissage α (4 à 5 valeurs), et représenter graphiquement la série ainsi que la prévision. Commenter chaque résultat, et essayer de déterminer graphiquement le lissage le plus adaptée pour chaque série. 2. Calculer pour chaque prévision effectuée la somme des carrés des erreurs, et selectionner le meilleur modèle à l aide de cette quantité. 3. Tester maintenant le lissage exponentiel de Holt-Winters avec composante saisonnière additive puis multiplicative. 4. Les prédictions obtenues sont-elles meilleures? Rq : la commande par(mfrow=c(n,p)) permet d afficher n p graphique sur la même page. 4.2 Lissage et prévision de la concentration en co2 Le fichier de données co2 contenu dans R contient les concentrations en CO2 à proximité du volcan Mauna Loa (Hawaï) de 1959 à Après avoir représenté graphiquement ces données, quel modèle de lissage exponentiel vous semble le mieux approprié? Afin de valider ce modèle, tester la prédiction des données de 1990 à 1997 en utilisant celles de 1959 à Si cela vous semble graphiquement correct, utilisez cette méthode pour prédire les concentrations en co2 de 1997 à Sinon, tester d autres méthodes de lissage exponentiel. 4.3 Lissage et prévision du CAC40 Récupérer le fichier contenant les valeurs de cloture journalière du CAC40 de 1991 à 1998 (données R EuStockMarkets). Essayer de prédire par lissage exponentiel les valeurs de cloture de 1998 en utilisant les valeurs de cloture de 1991 à EuStockMarkets[, 3] Time FIGURE 11 Valeurs de cloture journalières du CAC40 de 1991 à

21 5 Estimation et élimination de la tendance et de la saisonnalité Une série temporelle(x t ) 1 t n est l observation desnpremières réalisations d un processus stochastique(x t ) t. C est ce processus que l on cherche désormais à modéliser. Pour cela, la démarche suivante doit être adoptée : représenter graphiquement la série afin de repérer les tendances et saisonnalités, estimer et supprimer les tendances et saisonnalités (partie déterministe du processus stochastique), choisir un modèle pour les résidus (partie aléatoire du processus stochastique) et l estimer, prédire les réalisations futures à l aide de ce modèle. L objectif de cette section est de donner quelques méthodes pour estimer et supprimer les tendances et saisonnalités. La fin de ce cours sera concentré sur la modélisation de processus stationnaires. 5.1 Bruit blanc Définition 1. Un processus de bruit blanc est une suite de variables aléatoires(x t ) t indépendantes, d espérance et de variance constantes. Si l espérance est nulle, le bruit blanc est centré, et si les variables aléatoires sont gaussiennes, le bruit blanc est gaussien. 5.2 Processus stationnaire Un processus aléatoire(x t ) t est stationnaire s il est d espérance constante E[X t ] := µ t, et si les covariances sont stables par translation dans le temps, c est-à-dire, pour touth Cov(X t,x t+h ) := σ(h) t. On appelle fonction d auto-covariance du processus stationnaire la suite σ(h), et fonction d auto-corrélation du processus stationnaire la suite ρ(h) := σ(h) σ(0). Exercice 7. Montrer que σ(h) = σ( h). 5.3 Une estimation paramétrique de la tendance (trend) Nous supposons que la série temporelle étudiée soit la réalisation d un processus stochastique composé d une tendance déterministem t et d une partie aléatoireǫ t (supposée de moyenne nulle) : X t = m t +ǫ t. Une méthode simple consiste à supposer que cette tendance est linéaire : m t = a+bt, et d estimer les paramètres a et b par moindres carrés. Ainsi, si on observe la sériex 1,...,x n, il faut trouveraet b qui minimisent la quantité : Les solutions de ce problème sont : â = n (x t a bt) 2 t=1 ( 6 n(n 1) ˆb = 12 n(n 2 1) ) n tx t + 2n+1 n x, 3 ) tx t n+1 n x. 2 t=1 ( n t=1 21

22 Exercice 8. Ecrire le problème sous forme matricielle... et le résoudre. L hypothèse de linéairité de la tendance convient très bien à certaines séries temporelles : par exemple, celles des figures 1, 2 (et encore...), 4... Mais ce n est pas le cas de toutes les séries : voir par exemple celle représentant le cours du CAC40, figure 11. Il est alors possible de supposer que la tendance soit de forme polynomiale : m t = a+bt+ct 2 et d estimer les paramètresa,betcpar moindres carrés. Mais il est parfois difficile d estimer le degré du polynôme, et lorsque le degré est trop important, le nombre de paramètres à estimer devient grand et les calculs fastidieux. Dans cette situation, on a recourt à une méthode d estimation non paramétrique. 5.4 Estimation non paramétrique : moyenne mobile Tendance Supposons que la tendancem t soit linéaire dans un petit intervalle[t q,t+q] autour det. Dans ce cas, un bon estimateur de la tendance est la moyenne sur cet intervalle : ˆm t = 1 2q +1 On peut donc estimer la tendance à chaque tempsten calculant la moyenne sur les observations étant dans une fenêtre de largeur2q +1 autour de t : c est ce que l on appelle une estimation par moyenne mobile. Pour éviter les problèmes de bord, on suppose quex t = x 1 si t < 1 et x t = x n si t > n. Tendance et saisonnalité Supposons désormais que le processus ne comporte pas uniquement une tendance, mais également une saisonnalité : X t = m t +s t +ǫ t, avecs t une fonctiont -périodique. Le principe d estimation est (en simplifiant légèrement) le suivant : on estime la tendance moyenne sur une période, puis on estime la composante saisonnière en moyennant sur toutes les périodes les écarts à la tendance moyenne de la période. Application à la série du nombre de morts accidentelles aux Etats-Unis La figure 12 représente la série du nombre de morts accidentelles aux Etats-Unis de 1973 à 1978 (déjà présentée en introduction), la figure 13 représente la tendance (estimée par moyenne mobile) et la figure 14 représente la composante saisonnière. La figure 15 représente la série après élimination de la tendance et la figure 16 représente la série après élimination de la tendance et de la composante saisonnière. La série 16 ainsi obtenue est une série (supposée) stationnaire, sur laquelle nous chercherons plus tard à ajuster un modèle. q k= q x t+k. 22

23 USAccDeaths Time FIGURE 12 Série USAccDeaths : nombre de morts accidentelles aux Etats-Unis de 1973 à 1978 m$trend Time FIGURE 13 Tendance de la série USAccDeaths m$seasonal Time FIGURE 14 Composante saisonnière de la série USAccDeaths 23

24 USAccDeaths m$trend Time FIGURE 15 Série USAccDeaths après élimination de la tendance USAccDeaths m$trend m$seasonal Time FIGURE 16 Série USAccDeaths après élimination de la tendance et de la composante saisonnière 24

25 5.5 Elimination de la tendance et de la saisonnalité par la méthode des différences Cette méthode permet de supprimer les tendance et saisonnalité d une série temporelle sans les estimer. Soit T l opérateur qui associe (X t X t T ) à(x t ) : T X t = X t X t T. On note l opérateur 1, et k T l opérateur T... } {{ T. } k fois Proposition 3. Soit un processus admettant une tendance polynomiale d ordre k : X t = k a j t j +ǫ t. j=0 } {{ } m t Le processus X t admet une tendance polynomiale d ordrek 1. Exercice 9. Faire la preuve. Ainsi, en appliquantk fois, on élimine la tendance. Remarque : il est important de remarquer que si l on applique t quelque soit t, le résultat est le même quant à l élimination de la tendance. Comme en pratique il n est pas évident de connaître le degrék, on appliquera l opérateur jusqu à ce que la moyenne du processus soit nulle (k sera généralement 1, 2 ou 3). Proposition 4. Soit un processus admettant une tendancem t et une saisonnalité, de périodet : Dans ce cas, X t = m t +s t +ǫ t. T X t = (m t m t T )+(ǫ t ǫ t T ) est un processus désaisonnalisé. De plus, si la tendance du processus est linéaire, elle est également supprimée. Exercice 10. Faire la preuve. Si la tendance est plus que linéaire, il suffit d appliquer la procédure précédente pour finir de supprimer la tendance, et obtenir ainsi un processus que l on supposera stationnaire. La figure 17 illustre l élimination de la tendance linéaire et de la saisonnalité de la série x t = t 2 +3cos tπ 6 ǫ t avec ǫ t N(0,1). 5.6 Test sur la série résiduelle L objectif des techniques présentées dans la section 5.5 est d obtenir une série stationnaire (ou tout au moins le plus stationnaire possible), et en particulier sans tendance ou saisonnalité. L étape suivante consiste à modéliser la série résiduelle obtenue. La première chose à faire est donc de tester s il y a dépendance entre les termes de cette série. Si ce n est pas le cas, on dit que la série résiduelle (stationnaire) est un bruit blanc (définition 1). Si la série résiduelle obtenue après désaisonalisation et élimination de la tendance, est un bruit blanc, il n est donc pas utile d aller plus loin dans la modélisation si ce n est d estimer la moyenne et variance du bruit blanc. 25

26 Serie avec tendance lineaire et saisonnalité (période 12) bb Time Serie avec la tendance eliminée par la méthode des différences bb_diff Time Serie avec la saisonnalité (et la tendance) eliminées par la méthode des différences bb_diff Time FIGURE 17 Elimination de la tendance et de la saisonnalité par la méthode des différences (figure du haut : série x t = t 2 +3cos tπ 6 ǫ t avecǫ t N(0,1) ; figure du milieu : sériex t x t 1 ; figure du bas : série x t x t 12 26

27 5.6.1 Comment tester si on est en présence d un bruit blanc? Par l étude de la fonction d auto-corrélation empirique Lorsque n est assez grand, les auto-corrélations d un bruit blanc sont approximativement indépendantes et de loi N(0, 1 n ). Ainsi, 95% des auto-corrélations devraient se trouver dans l intervalle[ 1.96 n, 1.96 n ], et en traçant les 40 premières auto-corrélations il ne devrait pas y en avoir plus de 2 voir 3 en dehors de ces limites. A noter que ces bornes sont tracées lorsque l on demande à R de représenter graphiquement les auto-corrélations. A l aide du test du portemanteau Plutôt que de regarder si chaque auto-corrélation est dans les bornes de l intervalle précédent, nous considérons la statistique définie par la somme deshpremières auto-corrélations au carré Q = n h ˆρ 2 (j). j=1 D après la remarque précédente sur la normalité des auto-corrélations, la statistiqueqsuit une loi duχ 2 àhdegrés de liberté. Il est donc possible de construire un test qui consistera à rejeter l hypothèse nulle (la série est un bruit blanc) si Q est supérieur au quantileχ 2 h,1 α. Ljung et Box (1978) ont amélioré ce test en considérant la statistique Q LB = n(n+2) h j=1 ˆρ 2 (j) n j, dont la distribution est mieux approximée que la précédente par une loi du χ 2 à h degrés de liberté. C est ce test qui est implémenté dans la fonction Box.test de R. 5.7 Mise en oeuvre sous R La fonction decompose permet d extraire d une série temporelle (via la méthode de la moyenne mobile) : serie_decomp<-decompose(serie,type=c( additive, mutliplicative )) la composante saisonnière : serie_decomp$seasonal, que l on suppose additive ou multiplicative dans l option type, la tendance :serie_decomp$trend, le partie aléatoire stationnaire de la série :serie_decomp$random. La fonctiondiff.ts(serie,lag=t,difference=k) permet d appliquer l opérateur de différeciation k T. La fonction Box.test(serie,lag=H) examine l hypothèse nulle de nullité des H première auto-covariance, à l aide du test du portemanteau. Par défaut H est fixé à 1, et seule la nullité de l auto-covariance d ordre 1 est testée. Pour tester si la série peut-être apparentée à un bruit blanc, nous fixerons arbitrairement un H de l ordre de 20 (nous considérerons abusivement que si les 20 premières auto-corrélations sont nulles, la série est indépendante). 27

28 6 TP 3 : Tendance et saisonnalité Consignes Durée du TP : 2h. Indispensable pour la suite : exercice Données AirPassengers Nous étudions la série chronologique du nombre de passagers par mois (en milliers) dans les transports aériens, de 1949 à Cette série est disponible sous R (AirPassengers). 1. Estimation paramétrique de la tendance (a) Représenter graphiquement la série. Ce processus vous semble-t-il stationnaire? Présente-t-il des tendances et saisonnalités? (b) Estimer les paramètres d une tendance linéaire at + b. (c) Supprimer cette tendance et représenter graphiquement la série ainsi obtenue. Vérifier que la série des résidus est de moyenne nulle. (d) Calculer et représenter l auto-corrélation de la série des résidus. 2. Méthode des différences (a) Appliquer la méthode des différences pour enlever la tendance et la saisonnalité. Préciser la période de la saisonnalité, le degré du polynôme de tendance. (b) La série obtenue semble-t-elle stationnaire? 3. Méthode des moyennes mobiles (a) Appliquer la méthode des moyennes mobiles pour enlever la tendance et la saisonnalité. (b) La série obtenue semble-t-elle stationnaire? Pourrait-on la modéliser par un bruit blanc? Remarque : la fonctionbox.test permet de tester l indépendance d une suite de variables aléatoires. Remarque : la fonction Box.test, qui permet de tester l indépendance d une suite de variable aléatoire, peut être utilisée pour 6.2 Données simulées Récupérer la série temporelle contenue dans le fichiersimulation.dat. Cette série a été simulée à partir d un processus relativement simple. Essayer de le retrouver! 1. Analyser qualitativement cette série temporelle. 2. Pouvez-vous proposer une modélisation pour cette série (c est-à-dire définir le processus X t qui a généré cette série)? Indication : la partie saisonnière est de la formeacos(t pi b ) ouasin(tpi b )... à vous de deviner! 28

29 7 Modélisation des séries stationnaires Nous présentons dans cette section comment modéliser une série, qui une fois tendance et saisonnalité supprimées, est stationnaire. A noter que le seul fait de supprimer la tendance et la saisonnalité ne rend pas la série nécessairement stationnaire, puisque cela n affecte pas la variance et l auto-covariance, qui dovient être constantes pour un processus stationnaire. 7.1 Auto-corrélation partielle Le coefficient de corrélation partielle entre les deux variablesx 1 et X n d un processus stochatistique (X t ) t est le coefficient de corrélation entre les deux variables auxquelles on a retranché leurs meilleures explications en terme dex 2,...,X n 1 : r X2,...,X n 1 (X 1,X N ) = corr(x 1 P X2,...,X n 1 (X 1 ),X n P X2,...,X n 1 (X n )), où corr est le coefficient de corrélation classique (quotient de la covariance par le produit des écarts-types), et où P X2,...,X n 1 (X 1 ) est la projection 3 de la variablex 1 dans l espace vectoriel engendré par les variablesx 2,...,X n 1. Ce coefficient exprime la dépendance entre les variablesx 1 etx n qui n est pas due aux autres variablesx 2,...,X n 1. La fonction d auto-corrélation partielle r(h) d un processus stationnaire est définie par : r(h) = r X2,...,X h (X 1,X h+1 ) h 2 r(h) = r( h) h 0 r(1) = ρ(1) L algorithme de Durbin-Watson, que nous ne présentons pas ici, permet d estimer les auto-corrélations partielles d un processus stationnaire. Dans le logiciel R, la fonctionpacf permet ces estimations. 7.2 Les processus auto-régressifs AR p Les premiers modèles que nous présentons sont les processus auto-régressifs, construits à partir de l idée que l observation au temps t s explique linéairement par les observations précédentes. Définition 2. On dit que(x t ) est un processus auto-régressif d ordrep(centré) s il s écrit oùǫ t est un bruit blanc centré de varianceσ 2. X t = ǫ t + p a j X t j, (2) j=1 L observation X t au temps t est alors la somme d un choc aléatoire à l instant t, ǫ t, indépendant de l historique, et d une fonction linéaire de son passé p j=1 a jx t j, qui peut être vue comme la prédiction de X t à partir des p dernières observations passées. ǫ t est l innovation contenue dans le processus au tempst. On dit que(ǫ t ) est le processus d innovation. Les coefficients a j doivent vérifier la contrainte suivante pour assurer la stationnarité du processus : le polynôme caractéristique du processus (2), A(z) = 1 a 1 z... a p z p, ne doit avoir que des racines (réelles ou complexes) de module strictement supérieur à 1. La démonstration sort du cadre de ce cours. Remarque 1 : en prenant l espérance de (2) et en utilisant la stationarité du processus, on obtient que l espérance µ du processus vérifieµ(1 p j=1 a j) = 0. Comme 1 ne peut être racine du polynômea(z), on a nécessairementµ = 0. Remarque 2 : dans ce cours, conformément à la définition (2), nous ne considèrons que des processus AR p centrés. Un processusar p non centré serait défini parx t = µ+ǫ t + p j=1 a jx t j. 3. la projection P X2,...,X n 1 (X 1 ) = γ 2 X γ n 1 X n 1 peut être interprétée comme la meilleure explication linéaire de X 1 en fonction dex 2,...,X n 1. 29

30 Exercice 11. Vérifier la stationnarité et expliciter l expression du processus autorégressif de polynôme caractéristique A(z) = 1 z 1 2 z2. Proposition 5. La variance du processusar p défini en (2) est : et l auto-covariance, pour tout h > 0 : Exercice 12. Faire la démonstration. σ(0) = σ 2 + σ(h) = p a j σ(j) j=1 p a j σ(h j). L auto-covariance d un processusar p vérifie donc la formule de récurrence d ordrep suivante : j=1 σ(h) a 1 σ(h 1)... a p σ(h p) = 0. (3) Le polynôme caractéristique de cette relation de récurrence est : z p a 1 z p 1... a p 1 z a p = z p( 1 a 1 z... a ) ( ) p 1 z p = z p A. z Les racines λ i de ce polynôme sont les inverses des racines du polynôme A, et sont donc de module strictement inférieur à 1. En supposant que A a toute ses racines distinctes, les solutions de l équation de récurrence précédente sont de la forme : p σ(h) = c i λ h i. Ainsi, puisque λ i < 1, l auto-covariance décroit exponentiellement avech. Ces résultats s étendent immédiatement à l auto-corrélation d un processusar p. i=1 p : Quant à l auto-corrélation partielle, elle est nulle à tout ordre strictement supérieur à p, et vauta p à l ordre r(h) = 0 h > p, r(p) = a p. La démonstration de ce résultat très utile ne sera pas abordée dans ce cours Exercice : cas particulier de l AR 1 Soit le processusar 1 (centré) suivant oùǫ t est un bruit blanc centré de varianceσ 2. X t = ax t 1 +ǫ t, 1. Quelle condition sur a doit on imposer pour que ce processus soit stationnaire? 2. Calculer la variance de ce processus. 3. Montrer que l auto-covariance d un tel processus est σ(h) = σ 2 a h 1 a 2 4. En déduire la décroissance vers 0 de l auto-covariance lorsque h tend vers l infini. 5. Calculer l auto-corrélation partielle. 30

31 7.2.2 Illustrations Voici quelques simulations de processus ainsi que leurs auto-corrélation et auto-corrélation partielle empiriques : AR 1 avec coefficient positif puis négatif : figures 18 et 19, AR 2 : figures 20 et Les processus en moyenne mobilema q La seconde catégorie de modèles classiques regroupe les processus en moyenne mobile. Définition 3. On appelle moyenne mobile (Moving Average) d ordreq un processus de la forme X t = ǫ t +b 1 ǫ t b q ǫ t q, où lesǫ j pourt q j t sont des bruits blancs centrés de varianceσ 2. On notera parfoisx t = q j=0 b jǫ t j en imposantb 0 = 1. A noter que pour l instant aucune condition n est nécessaire sur lesb i pour que le processus stationnaire 4. Un processus moyenne mobile est nécessairement centré, et son auto-covariance vérifie la proposition suivante. Proposition 6. L auto-covariance d un processus moyenne mobilex t = ǫ t +b 1 ǫ t b q ǫ t q est Exercice 13. Faire la démonstration (simple). q h σ σ(h) = 2 b k b k+h h q k=0 0 h > q oùb 0 = 1 L auto-corrélation est donc également nulle au dessus de l ordre q. On retrouve le même comportement que l autocorrélation partielle d unar p. L auto-corrélation partielle d un processus moyenne mobile est compliquée à calculer, et sans grand intérêt. Néanmoins, il est important de savoir qu elle tend vers 0 à vitesse exponentielle lorsquehtend vers l infini. Ce comportement symétrique entre les processus moyenne mobile et auto-régressif est du à la propriété suivante : Proposition 7. Un processus auto-régessif est un processus moyenne mobile d ordre infini, et réciproquement un processus moyenne mobile est un processus auto-régressif d ordre infini. Exercice 14. De la définition d un processus moyenne mobile, extraire la valeur de l innovation au temps t, puis ré-écrire la définition d unma q en remplaçant les innovations par leur valeur. Conclure Exercice : cas particulier du MA 1 Calculer les coefficients d auto-corrélation d un tel processus Illustrations Voici quelques simulations de processus ainsi que leurs auto-corrélation et auto-corrélation partielle empiriques : MA 1 avec coefficient positif puis négatif : figures 22 et 23, MA 3 : figure pour des questions de prévision, nous serons amené à supposer que le polynôme caractéristique B(z) = 1 + b 1 z +...+b qz q a toute ses racines de module strictement supérieurs à 1. 31

32 ar Time Series ar1 ACF Lag Series ar1 Partial ACF Lag FIGURE 18 Simulation d unar1 :X t = 0.8X t 1 +ǫ t, auto-corrélation et auto-corrélation partielle. 32

33 ar Time Series ar1 ACF Lag Series ar1 Partial ACF Lag FIGURE 19 Simulation d unar1 : X t = 0.8X t 1 +ǫ t, auto-corrélation et auto-corrélation partielle. 33

34 ar Time Series ar2 ACF Lag Series ar2 Partial ACF Lag FIGURE 20 Simulation d unar 2 : X t = 0.9X t 2 +ǫ t, auto-corrélation et auto-corrélation partielle. 34

35 ar Time Series ar2 ACF Lag Series ar2 Partial ACF Lag FIGURE 21 Simulation d unar 2 :X t = 0.5X t 1 0.9X t 2 +ǫ t, auto-corrélation et auto-corrélation partielle. 35

36 ma Time Series ma1 ACF Lag Series ma1 Partial ACF Lag FIGURE 22 Simulation d unma 1 : X t = ǫ t 0.8ǫ t 1, auto-corrélation et auto-corrélation partielle. 36

37 ma Time Series ma1 ACF Lag Series ma1 Partial ACF Lag FIGURE 23 Simulation d unma 1 : X t = ǫ t +0.8ǫ t 1, auto-corrélation et auto-corrélation partielle. 37

38 ma Time Series ma3 ACF Lag Series ma3 Partial ACF Lag FIGURE 24 Simulation d unma 3, auto-corrélation et auto-corrélation partielle. 38

39 7.4 Les processus mixtes ARMA p,q Cette classe plus générale de modèles définit des processus sous la forme d une récurrence auto-régressive avec un second membre de type moyenne mobile. Définition 4. Un processus auto-régressif moyenne mobile d ordresp etq est de le forme : X t = p a k X t k + k=1 q b j ǫ t j. où lesǫ j pourt q j t sont des bruits blancs centrés de varianceσ 2. La stationnarité d unarma p,q est assurée lorsque toutes les racines du polynômea(z) = 1 a 1 z... a p z p sont de module strictement supérieur à 1. Ce polynôme forme avecb(z) = 1+b 1 z+...+b q z p les deux polynômes caractéristiques du processus. On supposera également que les polynômesa et B n ont pas de racine commune, afin de s assurer qu il n y a pas de représentation plus courte. Exercice 15. Soit le processusarma 1,1 défini parx t +ax t 1 = ǫ t +aǫ t 1. Est-ce un processus stationnaire? Existe-t-il une écriture plus simple de ce processus? Ainsi, j=0 On peut écrire le processusarma p,q sous la forme suivante X t a 1 X t 1... a p X t p = ǫ t +b 1 ǫ t b q ǫ t q. Cov(X t+h a 1 X t+h 1... a p X t+h p,x t ) = σ(h) a 1 σ(h 1)... a p σ(h p) = Cov(ǫ t+h +b 1 ǫ t+h b q ǫ t+h q,x t ) qui est nulle dès que h > q. L auto-covariance d un processus ARMA p,q évolue selon la même récurrence qu un AR p (cf. équation (3)). Ainsi, l auto-covariance (et l auto-corrélation) d un processus ARMA p,q vont tendre exponentiellement vers 0 lorsque h tend vers l infini, à partir de l ordre q Exercice : le processusarma 1,1 Considérons le processus X t = ax t 1 +ǫ t +bǫ t Montrer que la variance du processus est σ(0) = σ 2 1+b2 +2ab 1 a Montrer que l auto-covariance d ordre 1 est σ(1) = σ 2a+b+ab2 +a 2 b 1 a En déduire les auto-corrélationsρ(1) = (a+b)(1+ab) b 2 +2ab+1 et ρ(h) = a h 1 ρ(1) Illustrations Voici une simulation d un processus ARMA 2,2 (figure 25) ainsi que ses auto-corrélation et auto-corrélation partielle empiriques. 39

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

1 Définition de la non stationnarité

1 Définition de la non stationnarité Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles

Plus en détail

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38 Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Statistiques descriptives

Statistiques descriptives Statistiques descriptives L3 Maths-Eco Université de Nantes Frédéric Lavancier F. Lavancier (Univ. Nantes) Statistiques descriptives 1 1 Vocabulaire de base F. Lavancier (Univ. Nantes) Statistiques descriptives

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

1 Importer et modifier des données avec R Commander

1 Importer et modifier des données avec R Commander Université de Nantes 2015/2016 UFR des Sciences et Techniques Département de Mathématiques TP1 STATISTIQUE DESCRIPTIVE Frédéric Lavancier Avant propos Ouvrir l application R Saisir dans la console library(rcmdr)

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

IBM SPSS Forecasting. Créez des prévisions d'expert en un clin d'œil. Points clés. IBM Software Business Analytics

IBM SPSS Forecasting. Créez des prévisions d'expert en un clin d'œil. Points clés. IBM Software Business Analytics IBM SPSS Statistics 19 IBM SPSS Forecasting Créez des prévisions d'expert en un clin d'œil Points clés Développer des prévisions fiables rapidement Réduire les erreurs de prévision Mettre à jour et gérer

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Econométrie pour la Finance

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Econométrie pour la Finance MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Université d Orléans Econométrie pour la Finance Modèles ARCH - GARCH Applications à la VaR Christophe Hurlin Documents et Supports Année Universitaire

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail