COURS MPSI 13. FONCTIONS DE 2 VARIABLES R. FERRÉOL 09/10

Dimension: px
Commencer à balayer dès la page:

Download "COURS MPSI 13. FONCTIONS DE 2 VARIABLES R. FERRÉOL 09/10"

Transcription

1 IESPACER 2 1R 2 est unr-espacevectoriel euclidienorienté. Voir cours sur les espaces ( vectoriels euclidiens. i, La base canonique j est orthonormée directe. Leproduitscalaireestnotésimplement u v,etlanormeeuclidienne u 2. 2R 2 est unr-espaceaffine euclidienorienté. Sesélémentssontalorsvuscommedespoints: sia=(x A,y A etb=(x B,y B, AB=(xB x A,y B y A 2 AB estsimplifiéenab. 3R 2 est unr-espacevectoriel normé. Onavulanormeeuclidienne: (x,y 2 = x 2 +y 2,maisilyenad autres: DEF: Lanorme sup ou infinie estdéfiniepar (x,y =sup( x, y =max( x, y. Lanorme 1 estdéfiniepar (x,y 1 = x + y. (onmontrequecesontbiendesnormessurr 2 (appeléeslesnormesusuellessurr 2 Explicationdesnotations 1,2, Pourt>0, lanorme t estdéfiniepar (x,y t = (x,y t + t = (x,y. 4R 2 est unespace métrique. ( x t + y t 1/t : onpeutmontrerquec estbienunenorme, etque DEF:unedistance surunensemblee estuneapplicationddee 2 dansr + vérifiant x,y,z E d(x,y = 0 x=y d(x,y = d(y,x (propriétédesymétrie d(x,y d(x,z+d(z,y (inégalitétriangulaire un ensemble muni d une distance est appelé un espace métrique. PROP:toutespacevectorielnorméestunespacemétriquepourladistanceddéfiniepard( x, y= y x. Remarque: toute norme engendre donc une distance, mais une distance ne provient pas forcément d une norme. R 2 estdoncmunide3distancesusuelles d 1 (A,B = x B x A + y B y A d 2 (A,B = (x B x A 2 +(y B y A 2 notétoutsimplementab d (A,B = max( x B x A, y B y A Sans indication, dans la suite, désignera la norme euclidienne. 5 R 2 est unespace topologique. Rappel: unintervalledutype]x 0 α,x 0 +α[avecα>0estappeléunvoisinage dex 0 R 1

2 DEF:undisqueouvert centréenm 0 D(M 0,α={M /M 0 M <α}estappeléunvoisinage dem 0 R 2. DEF:onditqu unepartieu der 2 estouverte sipourtoutpointm deu ilexisteunvoisinagedem inclusdansu ; autrement dit si M U α>0 N R 2 MN <α N U EXEMPLES: (1leplantoutentieretl ensemblevide un disque ouvert leplanmoinsunpoint leplanmoinsunedroite un demi-plan sans son bord le complémentaire d une demi-droite fermée(i.e. contenant son extrémité. D1 PROP: (2 Toute réunion d ouverts est un ouvert (3 toute intersection FINIE d ouverts est un ouvert, mais cela peut être faux pour une intersection non finie. D4 Coro: un carré ouvert,le complémentaire d un ensemble fini sont ouverts. CNS:U estouvertssic estuneréuniondedisquesouverts. D3 On désigne plus généralement par espace topologique tout ensemble pour lequel on a décrété certaines parties"ouvertes", tellesquesoientexacteslespropriétés(1(2(3ci-dessus;voicipourquoionpeutdirequer 2 estunespacetopologique. IIFONCTIONSDER 2 dansr,itesetcontinuité. 1 Généralités. f fonctionder 2 dansr;f((x,yestsimplifiéenf(x,y. D f =ensemblededéfinitiondef (partieder 2. Surfacereprésentative: S f = M x y / (x,y D f etz=f(x,y,d équationcartésienne: z=f(x,y. z EXEMPLES: E1 2 Limites Définition générale d une ite: E 1 ete 2 sontdeuxespacestopologiques, f unefonctiondee 1 danse 2, X unepartieded f x 0 unpointadhérentàx (c est-àdirequetoutvoisinagedex 0 rencontrex lunpointdee 2 Alors f(x l def W voisinagedel V voisinagedex 0 / x D f x V f(x W x x0 x X PourE 1 =E 2 =R,onretrouvebienladéfinition f(x l def ε>0 α>0 x X x x 0 <α f(x l <ε x x0 x X PourE 1 =R 2,E 2 =R,casquinousconcerneici,onobtient f(x,y l def ε>0 α>0 (x x 0,y y 0 <α f(x,y l <ε 2

3 (x x 0,y y 0 pouvantêtreremplacéparl unedes3normesusuelles. PROP1: sielleexiste,laiteestunique. Onpeutdoncutiliserlanotation: l= PROP 2: ite restreinte (x,y (x 0,y 0 f(x,y. siy X et(x 0,y 0 Y l= f(x,y l= (x,y Y f(x,y PROP3: opérationssurlesites si f(x,y=l 1 et alors sil 2 0 si x l1 x f(x (f+g(x,y=l 1 +l 2 (fg(x,y=l 1 l 2 f g (x,y= l 1 l 2 g(x,y=l 2 h(x=l 3 (hfonctionderdansr h(f(x,y=l 3. Exemples: f(x,y= xy x 2 +y 2, g(x,y= x2 y x 4 +y 2 =f(x2,y, h(x,y= x2 y x 2 +y 2. 1f n admetpasdeiteen(0,0,cecibienque f(x,0= g(0,y=0 x 0 y 0 2gn admetpasdeiteen(0,0,cecibienqu elleadmettepourite0en(0,0surtoutedroitepassantpar(0,0!! 3 h=0 (0,0 D5 3 Continuité Définitiondelacontinuité: si(x 0,y 0 D f f estcontinue(c 0 en(x 0,y 0 def f(x,y=f(x 0,y 0 ε>0 α>0 (x,y D f (x x 0,y y 0 <α f(x,y f(x 0,y 0 <ε six D f,festcontinuesurxsilarestrictiondefàxestcontinueentoutpointdex(c estàdire f(x,y= f(x 0,y 0 pour(x 0,y 0 dansx. Exemplesdebase: toutefonctionconstante,etlesdeuxfonctionscoordonnées(x,y xet(x,y y sontcontinues surr 2. D6 PROP 4: toute somme, produit, quotient, composées de fonctions continues est continue. D7 Corollaire : toute fonction f telle que f(x,y s exprime algébriquementàl aide de x,y, de constantes etdes fonctions usuelles(sauf la partie entière est continue sur son ensemble de définition. 3

4 E4 xy f définie par f(x,y = x 2 +y 2 et f(0,0 = 0 est continue sur R2 \{(0,0} mais pas sur R 2, par contre h définie par h(x,y= x2 y 2 x 2 +y 2 eth(0,0=0estcontinuesurr2. D8 III DÉRIVATION 1 Dérivées partielles. DEF:f fonctionder 2 dansr;(x 0,y 0 D f { f estdérivable(partiellementparrapportàlapremièrevariableen(x 0,y 0 silafonctionpartielle dérivableenx 0,autrementdit,si R R x f(x,y 0 est Notations: f(x 0 +u,y 0 f(x 0,y 0 u f(x 0 +u,y 0 f(x 0,y 0 u 0 u tendversuneitefinieqdu 0 = f 1 (x 0,y 0 =D 1 (f(x 0,y 0 = f x(x 0,y 0 = f x (x 0,y 0 De même, EXEMPLES E5 f(x 0,y 0 +u f(x 0,y 0 u 0 u = f 2(x 0,y 0 =D 2 (f(x 0,y 0 = f y (x 0,y 0 = f y (x 0,y 0 ATTENTION : la dérivabilité partielle par rapport aux deux variables en un point n entraine pas la continuité en ce point! Exemple: f définieparf(x,y= xy x 2 +y 2 etf(0,0=0. D9 2 Dérivée suivant un vecteur, dérivabilité dans une direction. DEF:M 0 =(x 0,y 0 D f, u =(v,w R 2 f estdérivablesuivantlevecteur u enm 0 silafonctiond unevariablet f(m 0 +t uestdérivableen0,autrement dit, si f(x 0 +tv,y 0 +tw f(x 0,y 0 tendversuneitefinieqdt 0 t f(x 0 +tv,y 0 +tw f(x 0,y 0 Notations: =f t 0 t u (x 0,y 0 =D u (f(x 0,y 0 = f u (x 0,y 0. Remarque: cette notion généralise celle de dérivée partielle, en effet f x = f i et f y = f j 4

5 D10 Exemple: E6 PROP:sif estdérivableenm 0 suivant u elleestdérivablesuivanttoutvecteurcolinéaireà u et onditdoncquef estdérivable dansladirectionde u. D11 D λ u (x 0,y 0 =λd u (x 0,y 0 ATTENTION:l application u ϕ( u=d u (x 0,y 0 vérifieϕ(λ u=λϕ( u,maisellen estpasforcémentlinéaire; exemple: f définieparf(x,y= x3 x 2 +y 2 etf(0,0=0. Onvavoirquecettefonctionϕseraquandmêmeforcémentlinéairesif estdeclassec 1. 3 Fonctionde classec 1. DEF:U ouvertinclusdansd f f estdeclassec 1 suru si 1. f estdérivablepartiellementparrapportauxdeuxvariablesentoutpointdeu 2. lesdeuxdérivéespartielles(x,y f f (x,yet(x,y x y (x,ysontcontinuessuru TH Fondamental Sif estdeclassec 1 suru,alors 1. f estcontinuesuru. 2. f estdérivabledanstoutelesdirectionsentoutpointdeu 3. Si(x,y U,et u =(v,w R 2 f f (x,y= u x (x,yv+ f y (x,yw (l application u f u (x,yestdonclinéairepourtoutpoint(x,ydeu. DEF:danscecaslaformelinéaire u =(v,w f f (x,y= u x (x,yv+ f (x,yws appelleladifférentielle def en y (x,y,notéedf (x,y. f Autrement dit: u (x,y=df (x,y( u= f x (x,yv+ f y (x,yw. Levecteur u estsouventnoté(dx,dy,cequidonne: Notations simplifiées pratiques, mais abusives: df (x,y (dx,dy= f x (x,ydx+ f y (x,ydy z = f(x,y dz = z x dx+ z y dy (ceci explique pourquoi les dérivées partielles doivent impérativement s écrire avec des d ronds. PROP: différentielle d une somme, d un produit, d un quotient et d une composée: 5

6 Sif etgsontdeclassec 1 suru,alorsf+g,fget f g (sigjamaisnullesuruaussiet d(f+g (x,y =df (x,y +dg (x,y d(fg (x,y =f(x,ydg (x,y +g(x,ydf ( (x,y f d = g(x,ydf (x,y f(x,ydg (x,y g g 2 (x,y (x,y sideplush:r RestdeclasseC 1 surf(u,h f estdeclassec 1 suru et d(h f (x,y =h (f(x,ydf (x,y en simplifié: d(z 1 +z 2 =dz 1 +dz 2 d(z ( 1 z 2 =z 1 dz 2 +z 2 dz 1 z1 d = z 2dz 1 z 1 dz 2 z 2 z2 2 du= du dz dz EXEMPLES: E7 4 Développements ités. DEF:f:R 2 R,(x 0,y 0 D f ; f possèdeundéveloppementitéàl ordre1en(x 0,y 0 s ilexistedeuxréelsaetbtelsque f(x 0 +u,y 0 +v=f(x 0,y 0 +au+bv+ o (u,v (0,0 ( (u,v Remarque: siledl1existe,alorsa= f x (x 0,y 0 etb= f y (x 0,y 0 ;parcontrel existencedesdeuxdérivéespartielles xy n entraîne pas l existence d un DL1(exemple: toujours x 2 +y 2. D12 TH:sif estc 1 suru,f admetundlàl ordre1entoutpointdeu. Exemple: E8 5 Plan tangent et gradient. DEF:sif estc 1 suru,m 0 =(x 0,y 0 U,z 0 =f(x 0,y 0 alorslepland équation z=z 0 + f x (x 0,y 0 (x x 0 + f y (x 0,y 0 (y y 0 estleplantangentàlasurfacereprésentatives ( f aupointm 0 =(x 0,y 0,z 0 ;c estleplanpassantparm 0 etorthogonal f au vecteur x (x 0,y 0, f y (x 0,y 0, 1 der 3. ( f CORO:lacourbedeniveauz 0,d équationf(x,y=z 0 dansr 2 aunetangenteorthogonaleauvecteur x (x 0,y 0, f y (x 0,y 0 enm 0. D 13 6

7 DEF:levecteur ( f x (M 0, f y (M 0 (s ilexisteestappelélegradientdef enm 0 ;notation gradf M0. Remarque1: onadonc,surunouvertoùf estc 1 : df M ( u= gradf M. u,cequi,ensimplifié,donne: dz= gradz.d M Remarque2: legradientenm esttoujoursorthogonalàlacourbedeniveaupassantparm. 6 Dérivées partielles des composées. adérivéedeg(f(x,y. Données: f:r 2 R,C 1 suru,g: R R,C 1 surf(u,h=g f ;alors Soit, en simplifié: D14 bdérivéedef(g(x,h(x. h x (x,y=... h y (x,y=... sif(x,y = z,g(z=u u x = du z dz x, u y = du z dz y Données: geth: R R,C 1 suri,f:r 2 R,C 1 suru contenantles(g(x,h(xpourx I,k(x=f(g(x,h(x; alors k (x=d 1 f(g(x,h(xg (x+d 2 f(g(x,h(xh (x soit,ensimplifié,enposantg(x=u,h(x=v,f(u,v=z: dz dx = z du udx + z dv vdx D15 cdérivéespartiellesdef(g(x,y,h(x,y Données : g et h : R 2 R, C 1 sur U, f : R 2 R, C 1 sur V contenant les (g(x,y,h(x,y pour (x,y U, k(x,y=f(g(x,y,h(x,y;alors D 1 k(x,y=d 1 f(g(x,y,h(x,y.d 1 g(x,y+d 2 f(g(x,y,h(x,y.d 1 h(x,y soit,ensimplifié,enposantg(x,y=u,h(x,y=v,f(u,v=z: z x = z u u x + z v v x D16 7 Dérivées d ordres supérieurs. 7

8 DEF:sii 1,...,i k sontdesentierségauxà1ou2, D i1,...,i k =D i1... D ik parexemple,pourk=2 (D 1 D 1 f = (D 1 D 2 f = (D 2 D 1 f = (D 2 D 2 f = ( x x ( x y ( y x ( y y f notations = D 1,1 f = 2 f f notations = D 1,2 f = 2 f f notations = D 2,1 f = 2 f x 2 ( x 2 =f x y =f xy y x =f yx f notations = D 2,2 f = 2 f ( y 2 =f y 2 EXEMPLE:E8 DEF:f estdeclasse C k surunouvertu sitoutes lesdérivéespartiellesde f jusqu àl ordrekinclusexistentetsont continues sur U. TH:toutesomme,produit,quotient,composéedefonctionsdeclasseC k estdeclassec k. THÉORÈME de SCHWARZ: Sif estdeclassec 2 surunouvertu,lesdeuxdérivéespartiellesd 1,2 f=f xy etd 2,1 f =f yx sontégalessuru. D 17: ceci revient à démontrer la simple interversion de ites suivante: u 0v 0 f(x+u,y+v f(x+u,y f(x,y+v+f(x,y uv = v 0 u 0 f(x+u,y+v f(x+u,y f(x,y+v+f(x,y uv COROLLAIRE:sif estdeclassec k suru,lesd i1,...,i k f nedépendentpasdel ordredesi q. D oùlanotation: D 1 k 12 k 2 = k ( x k1 ( y k2,aveck 1+k 2 =k. Question: combien existe-t-il donc de dérivées partielles distinctes à l ordre k? 8 Extremums. DEF:f fonctionder 2 dansr;(x 0,y 0 { X D f. maximumabsolu(ouglobal surx Onditquef possède(ouprésenteun minimumabsolu(ouglobalsurx en(x 0,y 0 si f(x,y{ f(x 0,y 0 { maximum(local Onditquefpossèdeun minimum(local en(x 0,y 0,autrementdit,s ilexisteα>0telque { maximumabsolusurunvoisinagede (x0,y en(x 0,y 0 sifàpossèdeun 0 minimumabsolusurunvoisinagede (x 0,y 0 (x,y D f ( x x 0 <αet y y 0 <α f(x,y{ f(x 0,y 0 8

9 extremum signifie minimum ou maximum Lavaleur dumaximumouduminimumestalorsf(x 0,y 0. On définit aussi la notion d extremum strict par \{(x 0,y 0 } f(x,y{ < > f(x 0,y 0 TH : si les deux dérivées partielles de f existent en (x 0,y 0, et si (x 0,y 0 est intérieur à X (c est-à dire s il existe un voisinagede(x 0,y 0 inclusdansxalors f présenteunextremumen (x 0,y 0 surx f x (x 0,y 0 = f y (x 0,y 0 =0 (c est-àdire,sif estdeclassec 1, gradf (x0,y 0 = 0, oudf (x0,y 0 =0. D18 ATTENTION: 1Laréciproqueestfausse: exemples: f(x,y=xy(casd un col ou point-selle,ouf(x,y=x 3 (casd un palier. D19 2Unefonctionpeuttrèsbienavoirunextremum -enunpointoùellen apassesdeuxdérivéespartielles: exemples: f(x,y= x 2 +y 2 ouf(x,y= x. -enunpointdela"frontière"dex : exemple: f(x,y=x 2 +y 2 etx : x 2 +y 2 1. DEF:sifestdeclasseC 1 surunouvertu,lespointscritiquesdefsuru sontlespointsoùladifférentielledef s annule. REM:M estunpointcritiquessileplantangentenm àlasurfaces f esthorizontal. OnsaitdoncquelespointsdeU oùf estextrémalesontàrechercherparmilespointscritiques. Poursavoirsiunpointcritique(x 0,y 0 correspondàunextremum,onétudielesignedef(x 0 +u,y 0 +v f(x 0,y 0 au voisinage de(0, 0. E9: f(x,y=(y x ( y x 2. 9

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Joseph Fourier, Grenoble Maths en Ligne Fonctions de plusieurs variables Bernard Ycart Ce chapitre contient des techniques que vous utiliserez très souvent en physique, mais les justifications

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Licence de Mathématiques 3

Licence de Mathématiques 3 Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés Département GPI 1ère année Avril 2005 INPT-ENSIACET 118 route de Narbonne 31077 Toulouse cedex 4 Mail : Xuan.Meyer@ensiacet.fr

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Pierre BOUSQUET, Raphaèle HERBIN et Florence HUBERT

Pierre BOUSQUET, Raphaèle HERBIN et Florence HUBERT Université d Aix-Marseille Licence de mathématiques, première année Mathématiques générales II - Algèbre linéaire Pierre BOUSQUET, Raphaèle HERBIN et Florence HUBERT

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Exercices et corrigés Mathématique générale Version β

Exercices et corrigés Mathématique générale Version β Université libre de Bruxelles Années académiques 2008-2050 Université catholique de Louvain Exercices et corrigés Mathématique générale Version β Laurent Claessens Nicolas Richard Dernière modification

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

XI- Division euclidienne, pgcd et algorithme d Euclide

XI- Division euclidienne, pgcd et algorithme d Euclide XI- Division euclidienne, pgcd et algorithme d Euclide L arithmétique consiste à travailler exclusivement avec des nombres entiers. Quand on additionne deux nombres entiers, on obtient un nombre entier,

Plus en détail

Dérivées et différentielles des fonctions de plusieurs variables

Dérivées et différentielles des fonctions de plusieurs variables UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 6 : Dérivées et différentielles des fonctions de plusieurs variables Christelle MELODELIMA Année

Plus en détail

Calcul différentiel et intégral

Calcul différentiel et intégral Chapitre 27. Calcul différentiel et intégral 27 Limites... 27 2 Limite en un point fini... 27 2 Limite à droite ou à gauche... 27 2 Limite à l infini... 27 2 Utilisation de conditions... 27 2 Dérivation...

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

AOT 13. et Application au Contrôle Géométrique

AOT 13. et Application au Contrôle Géométrique AOT 13 Géométrie Différentielle et Application au Contrôle Géométrique Frédéric Jean Notes de cours Édition 2011/2012 ii Table des matières 1 Variétés différentiables 1 1.1 Variétés différentiables............................

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail