Suites numériques. Christophe ROSSIGNOL. Année scolaire 2007/2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Suites numériques. Christophe ROSSIGNOL. Année scolaire 2007/2008"

Transcription

1 Suites numériques Christophe ROSSIGNOL Année scolaire 007/008 Table des matières 1 Notion de suite numérique 1.1 Définition Modes de génération d une suite Sens de variation d une suite Suites arithmétiques 4.1 Définition, exemples Expression en fonction de n Somme de termes consécutifs Suites géométriques Définition, exemples Expression en fonction de n Somme de termes consécutifs Ce cours est placé sous licence Creative Commons BY-SA 1

2 1 NOTION DE SUITE NUMÉRIQUE En préliminaire au cours : Test A page 198 [Déclic] : Puissances. Test C page 198 [Déclic] : Évolutions successives. Activité 1 page 199 [Déclic] : Des chiffres et leur place. Activité page 199 [Déclic] : Des nombres obtenus par un procédé. 1 Notion de suite numérique 1.1 Définition Définition : Une suite numérique est une liste indexée de nombres. Elle a un premier terme, un deuxième terme, etc. Exemple : Dans l activité 1 page 199, à chaque entier naturel, on associe un nombre suivant sa place dans la liste donnée. Ainsi : u (0) 8 u (1) 6 u () 9 u (3) u (4) Plus généralement, le terme u (n) correspond au (n 1) ième terme de la liste de nombres donnée. Remarque : Une suite numérique est donc une fonction qui, à tout entier naturel n, associe un nombre, noté u (n), ou, plus souvent, u n. Notations : On utilise généralement les lettres u, v, w,... pour caractériser une suite. u n est appelé terme d indice n (ou de rang n) de la suite. La suite dans sa globalité est notée u ou (u n ). Remarque : Attention! Il ne faut pas confondre le terme d indice n de la suite et le n ième terme de la suite. Voir exemple précédent. Exercices : 11 page 11 1 [Déclic] 1. Modes de génération d une suite Exemple 1 : A l aide d une formule explicite Soit (u n ) la suit définie par : u n n + n. On a : u ; u ; u + 4 ; u ; etc. Remarque : La suite est donc de la forme u n f (n), où f est une fonction. Pour calculer des termes de la suite, on peut donc utiliser les tableaux de valeurs de la calculatrice. Exemple : A l aide d un procédé Soit (v n ) la suite de premier terme v 0 5 et dont le terme suivant est obtenu en ajoutant 3 puis en divisant par. On a : v 1 v ; v v ; v 3 v et, plus généralement v n+1 vn+3. Remarques : 1 QCM. 1. Dans ce cas, le terme d indice n est calculé à partir du terme précédent. On calcule donc les termes de (v n ) de proche en proche (avant de calculer v 5, il faut déjà avoir calculé v 4, v 3, etc.). Une telle relation est appelée formule de récurrence.. On notera la suite (v n ) de la façon suivante : { v 0 5 v n+1 vn+3 3. On peut aussi utiliser la calculatrice pour calculer les premiers termes de suites définies par récurrence. Voir page 01 [Déclic] pour une explication du procédé.

3 1 NOTION DE SUITE NUMÉRIQUE 1.3 Sens de variation d une suite Exercices : 1, 13 page 11 17, 18 page 11 et 0, 1 page page 1 et 3, 34 page , 36 page 13 5 [Déclic] 1.3 Sens de variation d une suite Définition : Une suite (u n ) est croissante si, pour tout entier naturel n, on a u n+1 u n. Une suite (u n ) est décroissante si, pour tout entier naturel n, on a u n+1 u n. Remarque : On peut aussi définir une suite strictement croissante, strictement décroissante ou constante. Propriété 1 : Pour étudier les variations de la suite (u n ), il suffit d étudier le signe de u n+1 u n : Si pour tout n, u n+1 u n 0 alors (u n ) est croissante. Si pour tout n, u n+1 u n 0 alors (u n ) est décroissante. 1. Soit (u n ) la suite définie par u n 3 n+. On a : par suite : u n+1 3 (n + 1) + 3 n + 3 u n+1 u n 3 n n + 3 (n + ) 3 (n + 3) (n + 3) (n + ) 3n + 6 3n 9 (n + 3) (n + ) 3 (n + 3) (n + ) De plus, comme n est un entier positif, n + > 0 et n + 3 > 0. Par suite, pour tout n, u n+1 u n < 0 donc la suite (u n ) est décroissante.. Soit (v n ) la suite définie par v n 3n 4 n+. On a : v n+1 3n+1 4 (n+1)+ 3n (n+)+1 3n 3 4 n+ 4 3n 4 n+ 3 4 par suite : v n+1 v n 3 n 4 n n 3 n ( ) 3 4 n n ( 4 n+ 1 ) 4 4 n+ De plus, comme n est un entier positif, 3 n > 0 et 4 n+ > 0. Par suite, pour tout n, u n+1 u n < 0 donc la suite (u n ) est décroissante. Exercices : 40 page 13 6, 3, 5 page 1 7 [Déclic] QCM Vrai ou faux. 3 Calculs de termes à la main ou à la calculatrice. 4 Détermination d une formule de récurrence. 5 Calculs sur les termes d une suite. 6 Étude graphique. 7 Détermination du sens de variation par calcul de u n+1 u n. 3

4 SUITES ARITHMÉTIQUES Propriété : Soit (u n ) une suite définie par u n f (n). Si la fonction f est croissante sur [0 ; + [, alors la suite (u n ) est croissante. Si la fonction f est décroissante sur [0 ; + [, alors la suite (u n ) est décroissante. Remarque : La réciproque de cette propriété est fausse. Voir l exercice 40 page 13 [Déclic] pour un contreexemple. Exemple : Soit (u n ) la suite définie par u n 10 n+1. On a u n f (n) avec f (x) 10 x+1. La fonction f s obtient à partir de la fonction inverse par multiplication par 10 et translation de vecteur ı. Son tableau de variations est donc : x 1 + f (x) Par suite, f est décroissante sur [0 ; + [. La suite (u n ) est donc décroissante. Exercice : 6 page 1 8 [Déclic] Suites arithmétiques.1 Définition, exemples Définition : On dit qu une suite (u n ) est arithmétique si on passe d un terme au suivant en ajoutant toujours le même nombre réel r. On a donc : u n+1 u n + r Le réel r est alors appelé raison de la suite. 1. La suite : 1, 6, 11, 16, 1,... est arithmétique de raison 5.. La suite définie par : { u 0 10 u n+1 u n 3 est arithmétique de raison ( 3). 3. La suite des entiers naturels : 0, 1,, 3,4, 5,... est arithmétique de raison La suite des entiers naturels impairs est arithmétique de raison. Propriété : Une suite (u n ) est arithmétique si et seulement si la différence u n+1 u n est constante pour tout entier n. Dans ce cas, la constante trouvée est la raison de la suite. 1. Soit u la suite définie par u n 3n. u n+1 u n 3 (n + 1) (3n ) 3n + 3 3n + 3 La suite est donc arithmétique de raison 3 et de premier terme u 0.. Soit v la suite définie par v n n. v n+1 v n (n + 1) n n + n + 1 n n + 1 Le résultat dépend de n, la suite n est donc pas arithmétique. 8 Sens de variation d une suite en utilisant une fonction. 4

5 SUITES ARITHMÉTIQUES. Expression en fonction de n 3. Soit w la suite définie par : { w 0 1 w n+1 w n + Par définition, la suite est arithmétique de raison. Exercices : 4, 43 page 14 9 [Déclic] Théorème : Soit (u n ) une suite arithmétique de raison r. Si r > 0, alors la suite (u n ) est croissante. Si r < 0, alors la suite (u n ) est décroissante.. Expression en fonction de n Soit (u n ) une suite arithmétique de raison r. On a : u 1 u 0 + r u u 1 + r (u 0 + r) + r u 0 + r u 3 u + r (u 0 + r) + r u 0 + 3r Plus généralement, on a le résultat suivant : Théorème : Soit (u n ) une suite arithmétique de raison r. Alors : u n u 0 + nr Remarques : 1. En particulier, la représentation graphique d une suite arithmétique est formée de points alignés.. Plus généralement, si (u n ) est une suite arithmétique de raison r et si n et p sont deux entiers naturels, on a : u n u p + (n p) r. Exemple : Soit (u n ) la suite arithmétique de premier terme u 0 7 et de raison ( ). On a : u n u 0 + nr 7 + n ( ) 7 n. En particulier : u Exercices : 45, 46, 47 page page page 15 1 [Déclic].3 Somme de termes consécutifs Théorème : Soit (u n ) une suite arithmétique de raison r. On note S n la somme des (n + 1) premiers termes de la suite (u n ), c est-à-dire : S n u 0 + u 1 + u + + u n En effet : Alors, on a : S n (n + 1) (u 0 + u n ) S n u 0 + u 1 + u u n S n u n + u n 1 + u n u 0 S n (u 0 + u n ) + (u 1 + u n 1 ) + (u + u n ) (u n + u 0 ) 9 Reconnaissance de suites arithmétiques. 10 Calculs de termes. 11 Utilisation de la représentation graphique. 1 Application concrète. 5

6 3 SUITES GÉOMÉTRIQUES De plus : u 0 + u n u 0 + u 0 + nr u 0 + nr u 1 + u n 1 (u 0 + r) + (u 0 + (n 1) r) u 0 + r + u 0 + nr r u 0 + nr u 0 + u n et, plus généralement, pour tout k, u k + u n k u 0 + u n. On a donc : On a donc : soit, en divisant par : S n (u 0 + u n ) + (u 0 + u n ) + + (u 0 + u n ) } {{ } (n+1) termes S n (n + 1) (u 0 + u n ) S n (n + 1) (u 0 + u n ) Remarque : Il est plus facile de retenir cette formule sous la forme suivante : S (nombre de termes) premier terme + dernier terme Exercices : 50 page 14 et 5, 54, 55 page , 61 page 15 et 63 page [Déclic] 3 Suites géométriques 3.1 Définition, exemples Définition : On dit qu une suite (u n ) est géométrique si on passe d un terme au suivant en multipliant toujours par le même nombre réel q. On a donc : Le réel q est alors appelé raison de la suite. u n+1 q u n 1. La suite : 1,, 4, 8, 16,... est géométrique de raison.. La suite définie par : { u 0 3 u n+1 1 u n est arithmétique de raison ( 1 ). 3. La suite définie par u n ( 1) n est géométrique de raison ( 1). 4. On augmente tous les ans une quantité de 5%. La suite obtenue est u n+1 1, 05u n. C est donc une suite géométrique de raison 1, 05. Propriété : Une suite (u n ) est géométrique si et seulement si le quotient un+1 u n est constante pour tout entier n. Dans ce cas, la constante trouvée est la raison de la suite. 1. Soit u la suite définie par u n 5 3 n+. u n+1 u n 5 3n n+ 3n+3 n 3 La suite est donc géométrique de raison 3 et de premier terme u Calcul de sommes. 14 Applications concrètes. 6

7 3 SUITES GÉOMÉTRIQUES 3. Expression en fonction de n. Soit v la suite définie par v n 3n 4 n+1 v n+1 v n 3 n+1 4 n+ 3 3n+1 4n+1 n 4n+ 4 n+1 3 n 3n+1 n 4 n+ n La suite est donc géométrique de raison 3 4 et de premier terme v Exercices : 67, 69 page [Déclic] Théorème : Soit (u n ) une suite géométrique de raison q et de premier terme u 0 positif. Si q > 1, alors la suite (u n ) est croissante. Si 0 < q < 1, alors la suite (u n ) est décroissante. 3. Expression en fonction de n Soit (u n ) une suite géométrique de raison q. On a : u 1 u 0 q u u 1 q (u 0 q) q u 0 q u 3 u q ( u 0 q ) q u 0 q 3 Plus généralement, on a le résultat suivant : Théorème : Soit (u n ) une suite géométrique de raison q. Alors : u n u 0 q n Remarque : Plus généralement, si (u n ) est une suite géométrique de raison q et si n et p sont deux entiers naturels, on a : u n u p q n p. Exemple : Soit (u n ) la suite arithmétique de premier terme u 0 3 et de raison. On a : u n u 0 q n 3 n. En particulier : u Exercices : 64, 65 page , 71 page [Déclic] 3.3 Somme de termes consécutifs Théorème : Soit (u n ) une suite géométrique de raison q (avec q 1). On note S n la somme des (n + 1) premiers termes de la suite (u n ), c est-à-dire : S n u 0 + u 1 + u + + u n Alors, on a : S n u 0 1 q n+1 1 q En effet, si on note S 1 + q + q + + q n : S 1 + q + q q n qs q + q q n + q n+1 15 Reconnaissance de suites géométriques. 16 Calculs de termes. 17 Applications concrètes. S qs ( q n+1) 7

8 RÉFÉRENCES RÉFÉRENCES On a donc : S qs 1 q n+1 (1 q) S 1 q n+1 et, comme q 1, 1 q 0. D où : S 1 qn+1 1 q De plus : S n u 0 + u 1 + u + + u n u 0 + u 0 q + u 0 q + + u 0 q n u 0 ( 1 + q + q + + q n) u 0 S Par suite : S n u 0 1 q n+1 1 q Remarque : Il est plus facile de retenir cette formule sous la forme suivante : de termes 1 (raison)nbre S (premier terme) 1 raison Exercices : 75, 76, 78 page page 16 et 73, 79, 81, 8 page [Déclic] Exercices de synthèse : 89, 90 page , 9, 94 page page 19 et 10, 104, 105 page 0 [Déclic] Références [Déclic] Déclic 1re ES, Hachette éducation (édition 005), 3, 4, 5, 6, 7, 8 18 Calcul de sommes. 19 Applications concrètes. 0 Comparaison de suites. 1 Placements à intérêts simples ou composés. Applications. 8

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Rappels et compléments 3 1.1 Fonctions affines............................................. 3 1.2 Fonctions

Plus en détail

Suites : Rappels, récurrence et limites

Suites : Rappels, récurrence et limites Suites : Rappels, récurrence et limites Christophe ROSSIGNOL Année scolaire 015/01 Table des matières 1 Généralités sur les suites 1.1 Modes de génération d une suite....................................

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 202/203 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Mathématique -5SH - 3périodes/semaine.

Mathématique -5SH - 3périodes/semaine. Exemples : I. SUITES NUMÉRIQUES 1. Voici une suite de termes numériques : 3, 17, 87, 437, 2187, ou indice 0 1 2 3 4 5 termes Exemple 3 17 87 437 2187 p n-1 n A. DÉFINITION Intuitivement, une suite est

Plus en détail

Terminale ES Chapitre III Suites numériques.

Terminale ES Chapitre III Suites numériques. Terminale ES Chapitre III Suites numériques. I- Généralités. 1) Vocabulaire. Voici une liste de nombres : 1 3 6 10 15 21 (termes) On peut les numéroter : n 0 n 1 n 2 n 3 n 4 n 5 (rangs) Ainsi, le terme

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - notion de suite, représentation graphique, suites arithmétiques, suites géométriques : toutes sections - somme de termes, limite de suites arithmétique et

Plus en détail

Dérivation Étude de fonctions

Dérivation Étude de fonctions Dériation Étude de fonctions Christophe ROSSIGNOL Année scolaire 2011/2012 Table des matières 1 Nombre dérié et tangente 2 2 Fonction dériée 3 2.1 Définition.............................................

Plus en détail

Angles orientés de vecteurs Trigonométrie

Angles orientés de vecteurs Trigonométrie Angles orientés de vecteurs Trigonométrie Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Mesures d angles orientés de vecteurs 1.1 Cercle trigonométrique mesures d arcs orientés...........................

Plus en détail

L essentiel sur les suites. 3.1 Définition... 4. 1.2 Monotonie... 2. 2 Suites arithmétiques 2. 3.2 Propriétés... 4

L essentiel sur les suites. 3.1 Définition... 4. 1.2 Monotonie... 2. 2 Suites arithmétiques 2. 3.2 Propriétés... 4 Table des matières L essentiel sur les suites Généralités 2. Définition.................................................... 2.2 Monotonie.................................................... 2 2 Suites

Plus en détail

Suites numériques Généralités Exercices corrigés

Suites numériques Généralités Exercices corrigés Suites numériques Généralités Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : définition d une suite, notion de rang et termes d une suite Exercice 2 : calcul avec les termes d une suite

Plus en détail

Suites numériques : Définitions, suites arithmétiques et géométriques

Suites numériques : Définitions, suites arithmétiques et géométriques Suites numériques : Définitions, suites arithmétiques et géométriques Christophe ROSSIGNOL Année scolaire 013/014 Table des matières 1 Notion de suite numérique 1.1 Définition.................................................

Plus en détail

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro

SUITES NUMERIQUES. Une suite est un ensemble infini où chaque élément se voit attribuer un numéro SUITES NUMERIQUES I. Présentation des suites numériques Une suite est un ensemble infini où chaque élément se voit attribuer un numéro Définition d'une suite. Une suite (u n ) est une fonction définie

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2010/2011

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2010/2011 Suites numériques Christophe ROSSIGNOL Année scolaire 2010/2011 Table des matières 1 Notion de suite numérique 2 1.1 Définition................................................. 2 1.2 Modes de génération

Plus en détail

Statistiques à deux variables Ajustements affines

Statistiques à deux variables Ajustements affines Statistiques à deux variables Ajustements affines Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Série statistique à deux variables 2 1.1 Définition Nuage de points......................................

Plus en détail

Résolution d équations

Résolution d équations Résolution d équations Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Quelques rappels 2 1.1 Définition Première propriétés..................................... 2 1.2 Équations du premier

Plus en détail

Fonctions affines par morceaux

Fonctions affines par morceaux Fonctions affines par morceaux Année scolaire 2006/2007 Table des matières 1 Fonctions affines par morceaux 2 1.1 Définition Représentation graphique................................. 2 1.2 Un cas particulier

Plus en détail

Les Nombres. Année scolaire 2008/2009

Les Nombres. Année scolaire 2008/2009 Les Nombres Année scolaire 2008/2009 Table des matières Les ensembles de nombres 2. Différents types de nombres....................................... 2.2 Droite des nombres réels.........................................

Plus en détail

Cours de Terminale S / Suites. E. Dostal

Cours de Terminale S / Suites. E. Dostal Cours de Terminale S / Suites E. Dostal juillet 204 Table des matières Suites 2. Notion de Suites......................................... 2.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Fonctions : Limites et asymptotes

Fonctions : Limites et asymptotes Fonctions : Limites et asymptotes Christophe ROSSIGNOL Année scolaire 205/206 Table des matières Limite à l infini 3. Limite infinie en, en...................................... 3.2 Limite finie en, en

Plus en détail

Suites Limite de suite réelle Exercices corrigés

Suites Limite de suite réelle Exercices corrigés Suites Limite de suite réelle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : conjecture de la limite d une suite définie par une formule explicite

Plus en détail

Suites arithmétiques, suites géométriques et tableur.

Suites arithmétiques, suites géométriques et tableur. 1 Suites arithmétiques, suites géométriques et tableur. 1STG2 Utilisation du tableur (Excel) pour calculer les termes de la suite : terme à terme avec la formule de récurrence directement avec une formule

Plus en détail

Matrices. Table des matières. Année scolaire 2006/2007

Matrices. Table des matières. Année scolaire 2006/2007 Matrices Année scolaire 006/007 Table des matières 1 Notion de matrice 1.1 Dénition................................................. 1. Égalité de deux matrices.........................................

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

Forme trigonométrique d un nombre complexe Applications

Forme trigonométrique d un nombre complexe Applications Forme trigonométrique d un nombre complexe Applications Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Représentation géométrique d un nombre complexe 2 1.1 Rappels : affixe d un point........................................

Plus en détail

Graphes pondérés Graphes étiquetés Graphes probabilistes

Graphes pondérés Graphes étiquetés Graphes probabilistes Graphes pondérés Graphes étiquetés Graphes probabilistes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Graphe pondéré 2 1.1 Un peu de vocabulaire..........................................

Plus en détail

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés Chapitre 5 : Fonction logarithme népérien I. Fonction logarithme népérien 1. Définition et propriétés La fonction exponentielle est strictement croissante sur! à valeurs dans 0;+, donc d'après le théorème

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites I Limite infinie Un exemple On étudie l'évolution de la population des écureuils gris d'amérique. L'année où commence l'étude est appelée année 0. Pour tout entier n 0, on note A n le nombres d'écureuils

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Fiche BAC 01 Terminale S Raisonnement par récurrence Suites numériques Exercice n 1. [RÉSOLU] On considère la suite définie par : { u = 1 0 u n+1 = u n +2,n 0 1 ) A la calculatrice ou avec un tableur :

Plus en détail

CQP 208. Chapitre 2 Dérivée des fonctions algébriques. Olivier Godin. 22 octobre 2015. Université de Sherbrooke. Limite et continuité 1 / 103

CQP 208. Chapitre 2 Dérivée des fonctions algébriques. Olivier Godin. 22 octobre 2015. Université de Sherbrooke. Limite et continuité 1 / 103 CQP 208 Chapitre 2 Dérivée des fonctions algébriques Olivier Godin Université de Sherbrooke 22 octobre 2015 Limite et continuité 1 / 103 Plan du chapitre 1 Taux de variation moyen 2 Taux de variation instantané

Plus en détail

Fonctions exponentielles de base q et logarithme décimal

Fonctions exponentielles de base q et logarithme décimal Fonctions eponentielles de base q et logarithme décimal I) Fonctions eponentielles de base q : 1) Définition : q étant un nombre strictement positif différent de 1 Toute fonction qui à tout nombre réel

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires TABLE DES MATIÈRES Fonctions carrée et inverse. Autres fonctions élémentaires Paul Milan LMA Seconde le 6 février 200 Table des matières La fonction carrée 2. Fonction paire................................

Plus en détail

Chapitre 2 Les Suites

Chapitre 2 Les Suites Chapitre 2 Les Suites A) Généralités 1) Définitions Une suite (ou suite de nombres) est un ensemble ordonné de nombres réels construit sur une règle précise et non aléatoire. On note généralement (u n

Plus en détail

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 I) Généralités sur les fonctions affines : 1) Définition : Une fonction f définie sur R est dite affine si il existe deux nombres réels

Plus en détail

Puissances. A- Définitions et premières propriétés. 1- Définitions. 2- Propriétés

Puissances. A- Définitions et premières propriétés. 1- Définitions. 2- Propriétés Puissances L'opération qui consiste à répéter plusieurs fois la même addition peut être traduite par une multiplication, ainsi 3 + 3 + 3 + 3 = 3 4. Celle qui consiste à répéter plusieurs fois la même multiplication,

Plus en détail

Etude de fonctions polynômes, cours, terminale STMG

Etude de fonctions polynômes, cours, terminale STMG Etude de fonctions polynômes, cours, terminale STMG F.Gaudon 8 juillet 2015 Table des matières 1 Fonction dérivée 2 2 Opérations sur les fonctions dérivables 2 2.1 Somme..............................................

Plus en détail

Chapitre 2 : Etude de fonctions

Chapitre 2 : Etude de fonctions Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 :

Plus en détail

DW - COURS SUR LES POLYNOMES

DW - COURS SUR LES POLYNOMES DW - COURS SUR LES POLYNOMES Dans ce qui suit les ensembles de nombres considérés seront soit l ensemble R des nombres réels, soit l ensemble C des nombres complexes. Sauf lorsque la situation l exige,

Plus en détail

Ch 4 Fonctions 1 ère S

Ch 4 Fonctions 1 ère S Ch 4 Fonctions 1 ère S I. Fonctions, sens de variation...1 II. Fonctions de référence... A. Fonctions racine carrée...3 B. Fonctions inverse...3 C. Comparaison des fonctions constante, racine carrée, carré

Plus en détail

Les fonctions affines Seconde

Les fonctions affines Seconde Les fonctions affines Seconde Dernière mise à jour : Dimanche 3 Février 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - exponentielle et logarithme népérien : S, ES/L, STI2D, STL, hôtellerie - exponentielles de base a : ES/L, ST2S, STI2D, STL - logarithmes de base a : STI2D,

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

matrices 1 définition et opérations sur les matrices 2 1.1 activités... 2 1.1.1 activité 1... 2 1.2 à retenir... 3

matrices 1 définition et opérations sur les matrices 2 1.1 activités... 2 1.1.1 activité 1... 2 1.2 à retenir... 3 matrices Table des matières 1 définition et opérations sur les matrices 2 1.1 activités.................................................. 2 1.1.1 activité 1.............................................

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite DERNIÈRE IMPRESSION LE 4 octobre 205 à 9:20 Raisonnement par récurrence. Limite d une suite Table des matières Raisonnement par récurrence 2. Effet domino................................ 2.2 Intérêt du

Plus en détail

MATRICES. I) Résolution de système

MATRICES. I) Résolution de système MATRICES I) Résolution de système Exemple : On donne trois points A( ; 6), B( ; ) et C(0 ; 2). On recherche la fonction f du second degré telle que sa courbe représentative passe par les points A, B et

Plus en détail

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : donner la partie réelle et la partie

Plus en détail

FONCTIONS DE RÉFÉRENCE

FONCTIONS DE RÉFÉRENCE Fonctions affines Fonctions de référence Seconde Fonctions affines. Activité Trois tais T, T et T proposent les tarifs suivants : T : de prise en charge, puis 0,0 du kilomètre ; T : de prise en charge,

Plus en détail

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

Matrices. 1,n a 2,1 a 2,2 a 2,j a 2,n. A = j-ième colonne

Matrices. 1,n a 2,1 a 2,2 a 2,j a 2,n. A = j-ième colonne Matrices I Matrices et opérations I1 definitions Définition 1 Soit n un entier naturel non nul Une matrice carrée d ordre n est un tableau de nombres réels comportant n lignes et n colonnes Le nombre placé

Plus en détail

Théorie et codage de l information. - Chapitre 5 -

Théorie et codage de l information. - Chapitre 5 - Théorie et codage de l information Éléments d algèbre discrète - Chapitre 5 - Algèbre discrète Mise en oeuvre pour le codage de canal D après le second théorème de Shannon, le codage de canal permet de

Plus en détail

POLYNOMES. On appelle polynôme ou fonction polynôme (ou fonction polynomiale) à une indéterminée x sur R (ou C) l'expression définie par , 2 0

POLYNOMES. On appelle polynôme ou fonction polynôme (ou fonction polynomiale) à une indéterminée x sur R (ou C) l'expression définie par , 2 0 POLYNOMES.. Introduction. Nous vous proposons dans cette annee le chapitre sur les polynômes et les fractions rationnelles. Ce module est important pour la suite du cours. Il ne comporte pas d eercices

Plus en détail

Chapitre 3 : Vecteurs. Géométrie analytique

Chapitre 3 : Vecteurs. Géométrie analytique I. Vecteurs Chapitre 3 : Vecteurs. Géométrie analytique Un vecteur permet de caractériser un déplacement : Il est défini par une direction, un sens sur cette direction et une longueur. E F Il n'est en

Plus en détail

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c.

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c. Chapitre I : Révisions I. Le second degré a) fonction trinôme La représentation graphique d une fonction f définie sur par f() = a² + b + c (a non nul) est une parabole. La fonction f est appelée fonction

Plus en détail

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

Fonctions logarithme décimal

Fonctions logarithme décimal CHAPITRE 6 Fonctions logarithme décimal Échauffez-vous! a) Complétez par l eposant positif ou nul. = ; = ; = 7. b) Complétez par l eposant négatif., = ;, = 2 ;, = 7. c) Cochez les cases correspondant à

Plus en détail

Polynômes et Fractions rationnelles

Polynômes et Fractions rationnelles 3. Polynômes CHAPITRE 3 Polynômes et Fractions rationnelles 3.. Polynômes On désigne par K l ensemble R ou l ensemble C. Les élements de K sont les scalaires. 3... Définitions. Définition 3.. Soient a

Plus en détail

des fonctions numériques

des fonctions numériques Chapitre 3 Continuité et dérivabilité des fonctions numériques Dans ce chapitre on reprend les notations précédentes. 3.1 Rappels sur les fonctions 3.1.1 Injectivité, surjectivité Soient X et Y deux ensembles

Plus en détail

I) A quoi sert une fonction affine?

I) A quoi sert une fonction affine? FICHE METHODE sur les FONCTIONS AFFINES I) A quoi sert une fonction affine? a). Il a actuellement 3 euros d économies et en ajoute 5 par semaine! Comment varient ses économies en fonction du nombre x de

Plus en détail

Les puissances 1. A) Décomposition d un nombre en puissances positives d un autre nombre.

Les puissances 1. A) Décomposition d un nombre en puissances positives d un autre nombre. Les puissances A) Décomposition d un nombre en puissances positives d un autre nombre. Un entier naturel n est premier si n > et s'il a exactement deux diviseurs positifs et n. Il y a une infinité de nombres

Plus en détail

Ch. 10 : FONCTIONS INVERSES ET HOMOGRAPHIQUES (Les fonctions de référence partie 3)

Ch. 10 : FONCTIONS INVERSES ET HOMOGRAPHIQUES (Les fonctions de référence partie 3) Ch 10 : FONCTIONS INVERSES ET HOMOGRAPHIQUES (Les fonctions de référence partie ) I Rappel Propriétés des fractions : Le division par zéro est impossible Le diviseur, ou le dénominateur doit toujours être

Plus en détail

6 SH 3 h/sem. Fonctions exponentielles et logarithmiques Note de cours. f(2) = 2.2 + 4 = 8 (On remplace x par 2.)

6 SH 3 h/sem. Fonctions exponentielles et logarithmiques Note de cours. f(2) = 2.2 + 4 = 8 (On remplace x par 2.) I. Fonctions réciproques A. Introduction Que font réellement les fonctions? Exemple : f(x) = 2x + 4 Si j évalue f(2) =? f(2) = 2.2 + 4 = 8 (On remplace x par 2.) Si j évalue f(3) =? f(3) = 2.3 + 4 = 10

Plus en détail

Le second degré dans R

Le second degré dans R S-Second degré dans R-Cours Septembre 0 Livre pages à 9 Le second degré dans R Fonctions polynômes du second degré Définition P est une fonction polynôme à coefficients réels de degré n n N) si et seulement

Plus en détail

ÉQUATIONS Définitions et principes généraux de résolutions

ÉQUATIONS Définitions et principes généraux de résolutions ÉQUATIONS Définitions et principes généraux de résolutions DÉFINITIONS Considérons deux expressions non identiques A et B dépendant d une ou plusieurs variables x, y, z, Lorsqu on remplace les variables

Plus en détail

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications Université Paris XII Licence Économie-Gestion Mathématiques approfondies (parcours MID) Semestre 2 1. Ensembles et applications Exercice 1 On considère l ensemble F des fruits, l ensemble R des fruits

Plus en détail

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008 Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 La ligne droite fait partie de notre environnement naturel, mais comme tout objet mathématique, elle nécessite une définition.

Plus en détail

ROC (Restitution organisée des connaissances)

ROC (Restitution organisée des connaissances) TS 2015/2016 Les Suites ROC (Restitution organisée des connaissances) ROC N 1:Théorèmes de comparaison Théorèmes de comparaison Soit trois suites, et. L désigne un nombre réel. Si à partir d un certain

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires DERNIÈRE IMPRESSIN LE 29 janvier 205 à 9:44 Fonctions carrée et inverse. Autres fonctions élémentaires Table des matières La fonction carrée 2. Fonction paire............................... 2.2 Étude de

Plus en détail

( ) de premier terme

( ) de premier terme Suites arithmétiques Suites géométriques I Suites arithmétiques 1 Définition Une suite arithmétique est une suite obtenue en ajoutant au terme précédent toujours un même nombre, appelé raison Pour tout

Plus en détail

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Calcul des limites de Suites numériques

Calcul des limites de Suites numériques Fiche BAC 02 Calcul des ites de Suites numériques Exercice n 1 Calculer les ites des suites suivantes lorsqu'elles existent. Justifier votre réponse. Pour tout entier n : 1 ) u n =n 2 n+5 2 ) v n = 2n2

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence Raisonnement par récurrence V. Bansaye Niveau : Approfondir la Terminale S Diculté : Plutôt facile, un peu technique pour le second. Durée : 20 min pour le premier, une bonne demi heure pour le second.

Plus en détail

2. GENERALITES SUR LES FONCTIONS

2. GENERALITES SUR LES FONCTIONS . GENERALITES SUR LES FONCTIONS. Fonction d'une variable réelle à valeurs réelles.. Fonction et ensemble de déinition On appelle onction d'une variable réelle à valeurs réelles une application qui à tout

Plus en détail

Organisation et gestion de données, fonctions :

Organisation et gestion de données, fonctions : Organisation et gestion de données, fonctions : «Un des objectifs est de faire émerger progressivement sur des exemples la notion de «fonction en tant que processus faisant correspondre un nombre à un

Plus en détail

1 Opérations sur les ensembles

1 Opérations sur les ensembles UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan ÉLÉMENTS DE LA THÉORIE DES ENSEMBLES La théorie des ensembles est à elle seule une branche des mathématiques

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Suites arithmétiques Suites géométriques

Suites arithmétiques Suites géométriques Suites arithmétiques Suites géométriques Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Suites arithmétiques 2 1.1 Définition, exemples........................................... 2

Plus en détail

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition hapitre 05 I- Vecteurs et translations VETEURS DU PLN 1. Soit et deux points du plan. Lorsque, à tout point M du plan, on associe le point M tel que [M ] et [] ont le même milieu, on dit que M est l image

Plus en détail

COURS TERMINALE S LES NOMBRES COMPLEXES

COURS TERMINALE S LES NOMBRES COMPLEXES COURS TERMINALE S LES NOMBRES COMPLEXES A. Introduction des nombres complexes Au XVIème siècle, des algébristes italiens cherchent à résoudre des équations de degré telles que, par exemple, l'équation

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

Chapitre II : Matrices et opérations

Chapitre II : Matrices et opérations Terminale S Spécialité Chapitre II : Matrices et opérations Année scolaire 205/206 I Généralités sur les matrices : Définition : Soient n et p, deux entiers naturels non-nuls, une matrice de format n,p

Plus en détail

Relations d ordre, relations d équivalence

Relations d ordre, relations d équivalence Université de Provence Mathématiques générales 2 Relations d ordre, relations d équivalence 1 Relations d ordre Exercice 1. Dans la droite réelle, déterminer les minorants, les bornes inférieures et les

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Exercices : Étude de fonctions Exercice : Calculer les limites suivantes :. lim + lnx+x x+e x.. lim 3. lim x4 e x +3x x x 4. lim 5. lim 6. lim e x (lnx) (e 3 ) x e 3x +x ( (lnx) 3 +x ) x 7. lim x e x +e

Plus en détail

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Tableaux de variations et tableaux de signes Les exercices 1 et se réfèrent au graphique

Plus en détail

Université du Littoral - Côte d Opale Laurent SMOCH. Septembre 2012

Université du Littoral - Côte d Opale Laurent SMOCH. Septembre 2012 ISCID - PRÉPA 2ème année MATHÉMATIQUES APPLIQUÉES À L ÉCONOMIE ET À LA GESTION 2 Université du Littoral - Côte d Opale Laurent SMOCH Septembre 202 Laboratoire de Mathématiques Pures et Appliquées Joseph

Plus en détail

Exploitation de l information

Exploitation de l information MR : GARY Statistique Exploitation de l information Classe : 1 er Secondaire I ) Etude statistique à valeurs discrètes 1) Série statistique à valeurs discrètes a) Activité 1 P 242 Notes ( ) 3 4 5 6 7 9

Plus en détail

Chapitre IV : Les fonctions du premier degré

Chapitre IV : Les fonctions du premier degré Chapitre IV : Les fonctions du premier degré A. GÉNÉRALITÉS SUR LES FONCTIONS 1. Lecture d un graphique La température extérieure de ce 1 juillet à Norberville est donnée par le graphique suivant : 1 À

Plus en détail

Séries numériques. Exercice 1. Etudier la convergence des séries suivantes : Allez à : Correction exercice 1

Séries numériques. Exercice 1. Etudier la convergence des séries suivantes : Allez à : Correction exercice 1 Séries numériques Exercice 1. Etudier la convergence des séries suivantes : 1. 2. Allez à : Correction exercice 1 Exercice 2. Etudier la convergence des séries suivantes : Allez à : Correction exercice

Plus en détail

Seconde 1 Chapitre 3 : intervalles. Page n 1 2007 2008

Seconde 1 Chapitre 3 : intervalles. Page n 1 2007 2008 Seconde 1 Chapitre 3 : intervalles. Page n 1 Dans ce chapitre, nous allons aborder la notion d'intervalle que nous utilisons durant les trois années du lycée quelle que soit la section. Intervalle est

Plus en détail

Chapitre 4 - CALCUL MATRICIEL. Définition 1

Chapitre 4 - CALCUL MATRICIEL. Définition 1 4.1 Généralités sur les matrices Chapitre 4 - CALCUL MATRICIEL Définition 1 Une matrice de taille m x n est un tableau de nombres formé de m lignes n colonnes. Une telle matrice s'écrit sous la forme :

Plus en détail

Arithmétique. n(n + 1) 2. k = k=0. q k = 1 qn+1 1 q. n(n + 1)(2n + 1) 6. k 2 =

Arithmétique. n(n + 1) 2. k = k=0. q k = 1 qn+1 1 q. n(n + 1)(2n + 1) 6. k 2 = Université de Provence Mathématiques générales 1 Récurrence Arithmétique Exercice 1. Prouver l identité suivante: n k = k=0 n(n + 1) valable pour tout entier naturel n. Exercice. Prouver l identité suivante:

Plus en détail

Chapitre X : Statistique et probabilité.

Chapitre X : Statistique et probabilité. Chapitre X : Statistique et probabilité. I- Statistique descriptive. 1- Vocabulaire et définitions : Population : On appelle population ou univers, un ensemble d objets ou d être vivants. Individu : On

Plus en détail

Corrigé du Devoir Surveillé n 2

Corrigé du Devoir Surveillé n 2 Corrigé du Devoir Surveillé n Exercice : Autour de la fonction Arc cosinus Représentons la fonction définie par f(x) = Arccos (cosx) + Arccos (cos x). f est définie sur R, f est paire, f est π périodique

Plus en détail

Sélection de sujets de Bac

Sélection de sujets de Bac EXERCICE (PONDICHÉRY AVRIL 0 Sélection de sujets de Bac points Chaque jeune parent utilise chaque mois une seule marque de petits pots pour bébé Trois marques X, Y et Z se partagent le marché Soit n un

Plus en détail

Matrices symétriques réelles.

Matrices symétriques réelles. Université de Nice SL2M 2009-10 Algèbre 2 Matrices symétriques réelles. 4. Calcul matriciel 4.1. Application bilinéaire symétrique associée à une matrice symétrique. On considère une matrice symétrique

Plus en détail

Chapitre 4. Formules de Taylor. 4.1 Les trois formules de Taylor

Chapitre 4. Formules de Taylor. 4.1 Les trois formules de Taylor Chapitre 4 Formules de Taylor La formule de Taylor, du nom du mathématicien Brook Taylor qui l établit en 1715, permet l approximation d une fonction plusieurs fois dérivable au voisinage d un point par

Plus en détail