Epreuve de Mathématiques Durée 2 heures
|
|
|
- Danielle Plamondon
- il y a 9 ans
- Total affichages :
Transcription
1 ollège Jules Ferry Session 010 iplôme National du revet lanc n 1 preuve de Mathématiques urée heures L emploi des calculatrices est autorisé (circulaire n du 1 Novembre 1999 publiée au.o. n 4 du 5 Novembre 1999) n plus des points prévus pour chacune des trois parties de l épreuve, la présentation, la rédaction et l orthographe seront évaluées sur 4 points. Le candidat traitera obligatoirement l ensemble des exercices sur les copies mises à sa disposition. Activités numériques (1 points) xercice 1 (4 points) : et exercice est un questionnaire à choix multiple (QM). Pour chacune des questions, quatre réponses sont proposées. Une seule est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. (exemple d écriture de réponse : 5 ) ) Aucune justification n est demandée. haque réponse exacte rapporte 1 point. haque réponse inexacte enlève 0,5 point. L absence de réponse ne rapporte ni n enlève aucun point. Si le total des points est négatif, la note de l exercice est ramenée à 0. Questions Réponses A 1 ) La solution de l équation x + = 8 x 9 est : 5 ) La solution de l équation 1 x = 11 0 est : ) Une solution de l équation ( 4 x + ) ² = 5 est : ) Une solution de l équation 4 x ² 4 x = est : xercice ( points) : alculer A et en détaillant les calculs et donner le résultat sous forme d une fraction irréductible. A = 8 5 : 0 1 = xercice ( points) : Soit = ( x 1 ) ² ( x 1 ) ( x 5 ) a ) évelopper et réduire b ) Factoriser c ) Résoudre l équation : ( x 1 ) ( 4 x ) = 0 xercice 4 ( points) : Voici deux programmes de calcul : PROGRAMM A hoisir un nombre Lui ajouter 4 Multiplier le résultat par le nombre choisi Ajouter 4 hoisir un nombre Lui ajouter alculer le carré du résultat précédent a ) ffectuer chacun de ces programmes de calcul avec les nombres et 5. Que remarque t-on? b ) Prouver que les programmes A et calculent la même chose. 1
2 Activités Géométriques (1 points) xercice 1 (4 points) : a ) onstruire en vraie grandeur le triangle A rectangle en A tel que A = cm et = 9 cm. b ) alculer la mesure de l angle A arrondie au degré près. c ) éduire de la question précédente la mesure de l angle A arrondie au degré près. d ) alculer A à 0,1 cm près. xercice (4 points) : On considère la figure suivante qui n est pas faite en vraie grandeur On sait que : les points, O, F et A sont alignés ainsi que les points, O, et. les droites (A) et (F) sont parallèles O = 9 cm, O = 8 cm, O = 5cm, OF = cm et FA = 1,5 cm a ) alculer A et. b ) Les droites () et (F) sont-elles parallèles? xercice (4 points) : On considère la figure ci-dessous qui n est pas faite en vraie grandeur. On sait que : les points A,, sont alignés. les points,, sont alignés. [A] est un diamètre du cercle. A = 15 cm, = 10 cm, = 8 cm et = cm O F 1,5 A A 15 cm 10 cm 8 cm cm a ) Prouver que le triangle A est rectangle. b ) Prouver que le triangle est rectangle. c ) éduire des questions précédentes que les droites (A) et () sont parallèles. d ) alculer A.
3 Problème (1 points) Sur un plan, un terrain rectangulaire est représenté par un rectangle A de largeur A = 9 cm et de longueur = 1 cm. est un point du segment [A] tel que A = 4 cm. Première partie ans cette première partie, F est un point du segment [] tel que F = cm. La figure ci-dessous n est pas faite en vraies grandeurs. a) alculer l aire du triangle A et l aire du triangle F. b) n déduire l aire du quadrilatère AF. c) alculer A. d) Prouver que le droites (F) et (A) sont parallèles. e) alculer la mesure de l angle F arrondie au degré près. euxième partie ans cette deuxième partie, F est un point qui «bouge» sur le segment []. On pose F = x. (x est donc compris entre 0 et 9). La figure ci-dessous n est pas faite en vraies grandeurs. a) Montrer que l aire du triangle F est 4 x. b) Pour quelle valeur de x l aire du triangle F est-elle égale 1 cm²? c) xprimer l aire du quadrilatère AF en fonction de x. Troisième partie Sachant que la largeur réelle du terrain rectangulaire est 7 m : a) éterminer l échelle de la reproduction A. b) alculer l aire du terrain rectangulaire (en m²).
4 ORRTION U PRMIR RVT LAN Activités numériques xercice 1 : (4 points) Question 1 : réponse Question : réponse A Question : réponse Question 4 : réponse 1 ) On peut essayer les 4 valeurs proposées ou résoudre ) On peut essayer les 4 valeurs proposées ou résoudre l équation x + = 8 x 9 l équation 1 x = 8 x x = 11 0 x + 15 = 8 x 1 x + 15 x = 8 x x x = donc 1 x = donc 1 x = = 5x onc x = ) Si on remplace x par 1 dans le membre de gauche : ( )² = ( 4 + )² = ( 1)² = donc 1 n est pas solution. Avec x =, on trouve ( 8 + )² = 5. Une solution de l équation est. xercice ( points) : A = 8 5 : 0 1 A = A = A = A = A = 11 1 xercice ( points) : Soit = ( x 1 )² ( x 1 ) ( x 5 ) a ) On développe. = x² x + 1 [x² 5x x + 5] = x² x + 1 [x² 7x + 5] = x² x + 1 x² + 7x 5 = x² + 5 x 4 c ) Résoudre l équation : ( x 1 ) ( 4 x ) = 0 Si un produit est nul alors au moins un des facteurs est nul x 1 = 0 ou 4 x = 0 x = 1 ou 4 = x Les solutions de l équation sont 1 et 4. xercice 4 ( points) : a) Si le nombre choisi est : PROGRAMM A + 4 = 7 7 = = 5 Le résultat est 5. Si le nombre choisi est 5 : PROGRAMM A = = = 5 Le résultat est 49. donc 1 x = 1 donc 1 x = 1 donc x = 1 4 ) On procède comme dans la question ) Si on remplace x par dans le membre de gauche : 4 ² 4 = = 7 = Une solution de l équation est. = = = = = = b) On factorise. = ( x 1 ) ( x 1 ) ( x 1 ) ( x 5 ) = ( x 1 ) [( x 1 ) ( x 5 )] = ( x 1 ) [ x 1 x + 5 ] = ( x 1 ) ( x + 4 ) + = 5 5² = 5 Le résultat est = 7 7² = 49 Le résultat est 49. On remarque que les deux programmes semblent donner le même résultat si on choisit le même nombre au départ. 4
5 b ) Si le nombre choisi est x : PROGRAMM A x x + 4 (x + 4) x = x² + 4x x² + 4x + 4 Le résultat est x² + 4x + 4. x x + (x + )² = x² + x + ² = x² + 4 x + 4 Le résultat est x² + 4x + 4. Les programmes A et calculent bien la même chose. Activités Géométriques xercice 1 (4 points : 1 point par question) : a) b ) ans le triangle A rectangle en A on a : sin( A A ) = sin( A ) = 9. A = sin -1 9 A 4 c ) La somme des mesures des angles d un triangle fait 180 donc A + A + A = 180. A 180 (90 + 4) A A 48 d ) J utilise le théorème de Pythagore dans le triangle A rectangle en A pour calculer A. ² = A² + A² onc A² = ² A² = 9² ² = 45 onc A = 45 A,7 cm. xercice (4 points : points par question) : 9 5 O 8 F 1,5 A a ) On sait que les droites (F) et (A) sont parallèles, les points O, et sont alignés ainsi que les points O, F et A, donc d après le théorème de Thalès on a : O O = OF OA = F A. 5 Avec les valeurs numériques, on a : O = 7,5 = A. 5
6 La règle du produit en croix donne : O = 5 7,5 =,5 cm et A = 7,5 =,75 cm omme = O O, on a =,5 5 = 1,5 cm. b ) Les droites () et (F) sont-elles parallèles? Le tableau suivant est-il un tableau de proportionnalité? Petit triangle O = 5 cm OF = cm Grand triangle O = 8 cm O = 9 cm Les produits en croix donnent 5 9 = 45 et 8 = donc le tableau n est pas un tableau de proportionnalité donc, d après le théorème de Thalès, les droites () et (F) ne sont pas parallèles. xercice (4 points : 1 point par question) : A 15 cm 10 cm 8 cm cm a ) est un point du cercle de diamètre [A] donc le triangle A est rectangle en. ² = 10² = 100 b ) Le plus grand côté est [] : ² + ² = 8² + ² = 4 + = 100 On a donc ² = ² + ². après la réciproque du théorème de Pythagore, le triangle est rectangle en. c ) Les droites (A) et () sont perpendiculaires à la même droite (), elles sont donc parallèles. d ) On sait que les droites (A) et () sont parallèles, les points, et sont alignés ainsi que les points A, et, donc d après le théorème de Thalès on a : A = = A n particulier, on a : A = donc A = = 9 cm
7 Problème (1 points) Première partie (,5 points : a) points b) 1 point c) 1,5 points d) 1 point e) 1 point) ans cette première partie, F est un point du segment [] tel que F = cm. a) A et F sont deux triangles rectangles en. L aire d un triangle rectangle est : (longueur largeur) : A A(A) = = 1 9 = 54 cm² F A(F) = = 8 = 4 cm² b) L aire du quadrilatère AF (partie grisée) est : A (AF) = A(A) A(F) A (AF) = 54 4 = 0 cm² c) Les angles du rectangle A sont droits. Pour calculer A, j utilise le théorème de Pythagore dans le triangle A rectangle en (ou A rectangle en ) : A² = A² + ² donc A² = 9² + 1² = 5. donc A = 5= 15 cm d) Les points A,, et, F, sont alignés dans le même ordre. Le tableau suivant est-il un tableau de proportionnalité? Petit triangle = 8 cm F = cm Grand triangle A = 1 cm = 9 cm Les produits en croix donnent 8 9 = 7 et 1 = 7. Ils sont égaux. Le tableau est un tableau de proportionnalité donc, d après la réciproque du théorème de Thalès, les droites (A) et (F) sont parallèles. e) ans le triangle F rectangle en on a tan( F F ) = donc tan( F ) = 8. F = tan -1 8 donc F 7. euxième partie (,5 points : a) 1,5 points b) 1 point c) 1 point ) F a) A(F) =. On sait que = 8 et F = 9 x 8 (9 x) donc A(F) = = 4 (9 x) = 4x b) A(F) = 1 signifie que 4x = 1 On résout cette équation 1 = 4x donc 4 = 4x c est-à-dire x = L aire du triangle F est-elle égale à 1 cm², pour x = cm. c) A (AF) = A(A) A(F) donc A (AF) = 54 ( 4x) = x = x Troisième partie ( points : a) 1 point b) 1 point ) a) La largeur A est de 9 cm sur la figure et la largeur réelle est de 7 m. Sur la figure 9 cm 1 cm Sur le terrain réel 7 m = 700 cm? 1 cm sur la figure correspond donc à 700 : 9 = 00 cm sur le terrain. L échelle est donc b) La largeur réelle est 7 m et la longueur réelle est 00 1 = 00 cm = m. L aire du terrain rectangulaire est 7 = 97 m²
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
4G2. Triangles et parallèles
4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Chapitre N2 : Calcul littéral et équations
hapitre N : alcul littéral et équations Sujet 1 : Le problème des deux tours Deux tours, hautes de 0 m et de 0 m, sont distantes de 0 m. Un puits est situé entre les deux tours. Deux oiseaux s'envolent
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Quels polygones sont formés par les milieux des côtés d un autre polygone?
La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Classe de troisième. Exercices de Mathématiques
lasse de troisième Exercices de Mathématiques 2 hapitre I : Révision d algèbre 1 alculer : = 21 7 + 2 4 21 = 7 2 1 5 2 = 84 17 4 27 5 2 D = 4 9 2 + 25 9 10 E = 7 12 (1 9 + 18 7 ) F = 12 7 2 5 + 8 5 2 Soit
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Comment réaliser une capture d écran dans Word. Alors comment ouvrir une page Word?
Comment réaliser une capture d écran dans Word Pour réaliser une capture d écran dans Word, l idéal est d ouvrir d abord la page Word. Mais on peut bien l ouvrir après la capture d écran. Alors comment
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Développer, factoriser pour résoudre
Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Je découvre le diagramme de Venn
Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Séquence 8. Fonctions numériques Convexité. Sommaire
Séquence 8 Fonctions numériques Conveité Objectifs de la séquence Introduire graphiquement les notions de fonctions convees et de fonctions concaves. Établir le lien entre le sens de variation d une fonction
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Donner les limites de validité de la relation obtenue.
olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Exercice n o 54 : Tracer le graphique d une fonction
Eercice n o 54 : Tracer le graphique d une fonction G- Pour chaque fonction donnée dans les problèmes à 6 : a) Dessine le graphique correspondant. b) Indique le domaine et l'image. c) Évalue f(0). d) Trouve
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Livret de liaison Seconde - Première S
Livret de liaison Seconde - Première S I.R.E.M. de Clermont-Ferrand Groupe Aurillac - Lycée Juin 2014 Ont collaboré à cet ouvrage : Emmanuelle BOYER, Lycée Émile Duclaux, Aurillac. Patrick DE GIOVANNI,
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
Chapitre 14. La diagonale du carré
Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral
Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne
