TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS"

Transcription

1 SOMMAIRE LIMITES DE FONCTIONS *. 1. LIMITES D UNE FONCTION... 2 LIMITES A L INFINI... 2 LIMITE REELLE ( OU FINIE) EN + ET LIMITE INFINIE EN + ET LIMITES EN UN REEL A... 3 LIMITE INFINIE EN A (DU DOMAINE DE DEFINITION DE F, OU UNE BORNE)... 3 LIMITE FINIE EN A (DU DOMAINE DE DEFINITION DE F, OU UNE BORNE)... 3 LIMITES A DROITE, A GAUCHE... 4 *. 2. LIMITES ET OPERATIONS... 4 LIMITES D UNE SOMME... 4 LIMITES D UN PRODUIT... 4 LIMITES D UN QUOTIENT... 5 FORMES INDETERMINEES... 5 CAS PARTICULIERS... 5 *. 3. THEOREMES DE COMPARAISON... 5 THEOREME D ENCADREMENT DIT THEOREME DES GENDARMES... 5 COMPARAISON DE DEUX FONCTIONS... 6 *. 4 LIMITES D UNE FONCTION COMPOSEE... 6 THEOREME (ADMIS)... 6 *. 5 EXERCICES... 6 touchaplimiess 1/6

2 *. 1. Limites d une fonction Limites à l infini Limite réelle ( ou finie) en + et - Définition : Dire qu une fonction f a pour limite le nombre l en + signifie que tout intervalle ouvert de centre l contient toutes les valeurs f() prises pour tous les assez grands. On écrit : lim f() = l Les valeurs de f(), pour les grandes valeurs de, «s accumulent autour de l.» On dit que f() tend vers l quand tend vers + Interprétation graphique : Dans un repère la droite d équation y = l est asymptote horizontale à la courbe représentative de f en + Eemples : Les fonction 1, 1 ², 1 n, 1 ont pour limite 0 en + et - Limite infinie en + et - Définitions : Dire qu une fonction f a pour limite + en + signifie que tout intervalle ouvert ]M ; + [ contient toutes les valeurs f() prises pour tous les assez grands. On écrit : lim f() =+ Les valeurs de f() finissent, pour les grandes valeurs de, par dépasser n importe quel nombre M aussi grand soit-il. On dit que f() tend vers + quand tend vers + Dire qu une fonction f a pour limite - en + signifie que tout intervalle ouvert ]- ; M [ contient toutes les valeurs f() prises pour tous les assez grands. On écrit : lim f() =- On dit que f() tend vers - quand tend vers + Eemples : Les fonction, ², n pour n entier naturel non nul, ont pour limite + en + Les fonction ², n pour n entier naturel pair non nul, ont pour limite + en - Les fonction, n pour n entier naturel impair non nul, ont pour limite - en- Asymptote oblique : a et b sont des réels, a non nul, dire que la droite y = a + b est asymptote oblique à la courbe représentative de f en + signifie lim [f() -(a+b)] = 0 touchaplimiess 2/6

3 NB : idem pour - Limites en un réel a Limite infinie en a (du domaine de définition de f, ou une borne) Définition : Dire qu une fonction f a pour limite le nombre + en a signifie que tout intervalle ]M ; + [contient toutes les valeurs f() prises pour tous les proches de a, c'est-à-dire tous les de Df et dans un intervalle de la forme ]a α ; a + α[. On écrit : lim a f() = + Les valeurs de f(), pour les valeurs de de plus en plus proches de a, finissent par dépasser n importe quel nombre M aussi grand soit-il. On dit que f() tend vers + quand tend vers a Interprétation graphique : Dans un repère la droite d équation = a est asymptote verticale à la courbe représentative de f en + Eemple: Soit la fonction 1, définie sur D = ]0 ; + [. Quelle est la limite de f en 0? Conjecture à la calculatrice : il semble que f() prenne des valeurs de plus en plus grande. Donc que lim f() = +. 0 est une borne de D. 0 On aura 1 > M dès que 0 < < 1 M Ainsi, aussi grand que soit le réel M, les nombres f() dépassent M pour tout de ]0 ; 1 M [ Conclusion : lim 0 f() = +. Limite finie en a (du domaine de définition de f, ou une borne) Définition : Dire qu une fonction f a pour limite le nombre k lorsque tend vers a signifie que tout intervalle ouvert de centre k contient toutes les valeurs f() prises pour tous les proches de a, c'est-à-dire tous les de Df et dans un intervalle de la forme ]a α ; a + α[. On écrit : lim f() = k a Les valeurs de f(), pour les valeurs de de plus en plus proches de a, finissent par s accumuler autour de k, c'est-à-dire que les distances de f() à k tendent vers 0. lim f() = k signifie donc que lim f() - k = 0 a a On dit que f() tend vers k quand tend vers a Interprétation graphique : Si a est dans D et si f a une limite k en a alors cette limite est f(a). Autrement dit : a étant un élément de l ensemble de définition de f et si f est une fonction usuelle (polynôme, sin, cos, rationnelle, ) alors f admet une limite en a et lim f() = f(a) a touchaplimiess 3/6

4 Eemple: Soit la fonction 1, définie sur D = ]0 ; + [. Quelle est la limite de f en 0? Conjecture à la calculatrice : il semble que f() prenne des valeurs de plus en plus grande. Donc que lim f() = +. 0 est une borne de D. 0 On aura 1 > M dès que 0 < < 1 M Ainsi, aussi grand que soit le réel M, les nombres f() dépassent M pour tout de ]0 ; 1 M [ Conclusion : lim 0 f() = +. Limites à droite, à gauche Eemple : la fonction f : - 1 n a pas de limite en 0. Mais sur ]0 ; + [ elle a pour limite + en 0 et on écrit : lim f(). n dit que f a une limite à droite en De même sur ] - ; 0[ f a une limite à gauche en 0 car lim f() = - 0- *. 2. Limites et opérations Limites d une somme Si f a pour limite l l l Si g a pour limite l' alors f + g a pour limite l + l' + - +????? - Limites d un produit Si f a pour limite l l > 0 l > 0 l < 0 l < Si g a pour limite l' alors f g a pour limite ll' ?????????? touchaplimiess 4/6

5 Limites d un quotient Si f a pour limite l l l ου + Si g a pour limite l' + - l' > 0 l' < 0 l' > 0 l' < 0 - ου + alors f/g a pour limite l/l' ????? Si f a pour limite l > 0 l < l > 0 l < 0 0 Si g a pour limite alors f/g a pour limite ????? Formes indéterminées Les résultats notés????? sont appelés des formes indéterminées. On ne peut pas conclure directement, il faut étudier cas par cas. Cas particuliers La limite d un polynôme en - et + est la limite de son terme de plus haut degré. La limite d une fonction rationnelle en - et + est la limite du quotient de ses termes de plus haut degré. *. 3. Théorèmes de comparaison Théorème d encadrement dit théorème des gendarmes Théorème f, g, h sont trois fonctions définies sur I = ]b ; + [ et l un réel. Si pour tout dans I, g() f() h() et si g et h ont pour limite l en +, alors lim f() = l Démonstration : Par hypothèse, tout intervalle ouvert de centre l contient toutes les valeurs de g() et de h() pour assez grand (et supérieur à b) et donc toutes les valeurs de f() puisque g() f() h() donc lim f() = l Eemple : Soit f() = sin pour tout réel de ]0; + [, on a -1 sin() + 1 et donc - 1 f() 1 or lim 1/ = lim -1/ = 0 alors d après le théorème, lim f() = 0 touchaplimiess 5/6

6 Comparaison de deu fonctions Théorème Soit f et g deu fonctions définies sur un intervalle I = = ]b ; + [. Si pour tout dans I f() g() et si lim Si pour tout dans I f() g() et si lim Démonstration : g() = + alors lim g() = - alors lim f() = + f() = - Par hypothèse, tout intervalle de la forme ]M ; + [ contient toutes les valeurs de g() pour assez grand (et supérieur à b) et donc toutes les valeurs de f() puisque g() f() donc lim f() = + Eemple : soit f() = + cos. Limite de f en +? Pour tout réel, cos -1 donc + cos -1 + soit f() 1. Or lim ( - 1) = +, + inf d après le théorème, lim f() = +. *. 4 Limites d une fonction composée Théorème (admis) Théorème f, g, h sont trois fonctions telles que h() = g(f()) et a, b, c sont trois réels ou + o u -. Si lim f() = b et si lim g() = c alors lim h() = c a b a Eemple : Cherchons la limite de h() = ² en + h ² f g ² ² comme lim (² - + 1) = + et lim g()= + alors lim h() = + *. 5 Eercices 7, 9, 10 p.80 13, 14, 15, 16, 18 p , 22, 26 p.82 35, 41 p. 83 touchaplimiess 6/6

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Limites de fonctions

Limites de fonctions DERNIÈRE IMPRESSIN LE 9 octobre 204 à 9:32 Limites de fonctions Table des matières Limite finie ou infinie à l infini 2. Limite finie à l infini........................... 2.2 Limite infinie à l infini..........................

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

I. Limites d une fonction à l infini

I. Limites d une fonction à l infini T STI SIN Limites de fonctions 6//202 Lycée Don Bosco 202-203 I. Limites d une fonction à l infini Activité a. Limites infinies On considère la fonction f définie sur ]0 ; + [ par : f(x) = x 2 x +, et

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Terminale SSI 1 Chapitre 1 : limites et continuité 1

Terminale SSI 1 Chapitre 1 : limites et continuité 1 Terminale SSI 1 Chapitre 1 : limites et continuité 1 1 Introduction 1.1 Limites de suites En classe de première, on a déjà rencontré les limites de suites. Définition On dit qu'une suite u, définie sur

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

x f(x)

x f(x) Limites de fonctions I) Limite d une fonction en plus l infini Etudier la ite d une fonction f en + c est étudier le comportement des nombres f(x) lorsque x tend vers +. ) Exemples Exemple : x 0 20 30

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Chapitre 2 : Limites et asymptotes

Chapitre 2 : Limites et asymptotes I Eercices 1 Limites sans indétermination Calculer les ites des fonctions suivantes, et préciser lorsque la courbe représentative de f (notée (C f )) admet une asymptote horizontale ou verticale. 1. f()

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

Limites et comportement asymptotique Exercices corrigés

Limites et comportement asymptotique Exercices corrigés Limites et comportement asymptotique Eercices corrigés Sont abordés dans cette fiche : Eercice 1 : détermination graphique d une limite et d une équation d asymptote à une courbe (asymptote verticale et

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

5 Limites de fonctions

5 Limites de fonctions 5 Limites de fonctions Manuel Repères p.54. Objectifs : Comprendre les notions de ite finie ou infinie d une fonction, en un point ou à l infini Savoir déterminer la ite d une somme, d un produit, d un

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Limites et continuité

Limites et continuité ANALYSE Limites et continuité Connaissances nécessaires à ce chapitre Déterminer la ite éventuelle d une suite géométrique Étudier la ite d une somme, d un produit ou d un quotient de deu suites Auto-évaluation

Plus en détail

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions T.S Limites de fonctions, continuité et dérivabilité. L 2 Le second degré, vu en classe de ère S, est à connaître IMPÉRATIVEMENT : solutions événtuelles d une équation du second degré, signe d une epression

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

CHAPITRE 4 : LIMITES

CHAPITRE 4 : LIMITES CHAPITRE 4 : LIMITES La lettre grecque α désigne soit +, soit, soit a un réel ini ( a R. LIMITES Le plan est muni d un repère ( O; i ; j, et on note C la courbe représentative de la onction dans ce repère..

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions Limites de suites et de fonctions Le chapitre précédent traitait des suites numériques. On avait, en particulier, dit qu elles avaient des variations tout comme les fonctions. Il est rare de devoir calculer

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

LIMITES et CONTINUITE

LIMITES et CONTINUITE LIMITES et CONTINUITE I. LIMITES EN L INFINI a) Limite infinie Par exemple, considérons la fonction f dont la courbe représentative est : Lorsque x s'en va vers +, f(x) devient de plus en plus grand. il

Plus en détail

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ Table des matières - Limites en l'infini- Asmptotes... -- Limite finie en l'infini... --- Définition... --2- Interprétation graphique:... 2 --3- Eemple:... 2-2- Limite infinie en l'infini... 2-2-- Définition...

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Limites Comportement asymptotique

Limites Comportement asymptotique Limites Comportement asymptotique Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Limite d une fonction en, en 3. Limite infinie en, en...................................... 3.2 Limite

Plus en détail

Terminale S Exercices limites et continuité Exercice 1 : limite finie en l'infini. Soit f la fonction définie sur]0;+ [ par f(x) = x.

Terminale S Exercices limites et continuité Exercice 1 : limite finie en l'infini. Soit f la fonction définie sur]0;+ [ par f(x) = x. Terminale S Eercices limites et continuité 0-0 Eercice : limite finie en l'infini Soit f la fonction définie sur]0;+ [ par f() = +. ) Soit r un réel strictement positif et I = ] r; + r[. Montrer que, si

Plus en détail

Fiche d exercices 2 : Limites de fonctions

Fiche d exercices 2 : Limites de fonctions Fiche d eercices : Limites de fonctions Notion de ite et asymptotes Eercice Dans chacun des cas suivants, on donne la représentation graphique d une fonction f ainsi que les éventuelles asymptotes. En

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES LIMITES EXERIES ORRIGES Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) 4 ) Déterminer la ite éventuelle en de chacune des onctions suivantes : 4) 5) 5 6) Déterminez les

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

Limite et continuité d une fonction

Limite et continuité d une fonction CHAPITRE 3. LIMITE ET CONTINUITÉ D UNE FONCTION Chapitre 3 Limite et continuité d une fonction I Exercices Limite en `8 et en `8 3. Compléter ci-dessous, sans justifier.?. a) lim x...... b) lim x2......

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Limites de fonctions, cours, terminale STI

Limites de fonctions, cours, terminale STI Limites de fonctions, cours, terminale STI F.Gaudon 7 octobre 2 Table des matières Limites nies à l'inni 2 2 Limites innies à l'inni 3 3 Opérations sur les limites à l'inni 5 3. Addition.............................................

Plus en détail

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand.

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. Chapitre 1 Étude de fonctions Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. 1 Fonctions usuelles 1.1 Fonction en escalier Définition 1.1 Une fonction en escalier

Plus en détail

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ;

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ; Vdouine Terminale S Chapitre Fonctions, limites, continuité, dérivabilité La fonction cosinus Tracer la courbe représentative du cosinus Etablir le tableau de variations et le tableau de signes du cosinus

Plus en détail

I. Limites : 1. Limites usuelles : Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f.

I. Limites : 1. Limites usuelles : Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f. Fonctions numériques d une variable réelle Dans la suite, f est une fonction de R dans R et son ensemble de définition est noté D f. On note alors : D f = { R ; f() eiste} On note C f sa courbe représentative.

Plus en détail

Cours IV : Etude locale de fonctions

Cours IV : Etude locale de fonctions ENIHP1 : mathématiques étude locale p.1 Cours IV : Etude locale de fonctions L'étude d'une fonction consiste à : I Plan d'étude d'une fonction - Définir l'ensemble de définition - Etudier la parité et

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Limites de fonctions.

Limites de fonctions. . Définitions... p2 2. Règes opératoires sur es imites... p4 3. Théorème de comparaison des imites, théorème des gendarmes... p6 Copyright meieurenmaths.com. Tous droits réservés . Définitions.. Limite

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

1.2 Plan d étude et exemples types.

1.2 Plan d étude et exemples types. Université de Rennes Licence Biologie Mathématiques Année 2008-2009.2 Plan d étude et exemples types..2. But Le but de ce chapitre est d étudier les fonctions comme celles données dans les exemples précédents.

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

Partie A : Limites de fonctions

Partie A : Limites de fonctions Chapitre 2 I Limite d une fonction en ou en A) Limite finie en ou en 1) Activité 1 Partie A : Limites de fonctions On considère la fonction définie pour tout par de courbe représentative a) A l aide d

Plus en détail

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées. On appellera voisinage d un réel a tout intervalle ouvert contenant a. (*) WWW.SEGBM.NET 1 Portail des étudiants d'économie Mathématiques Ch. 3 : Limites et Dérivées 1 Notion de limites 1.1 Voisinages On appellera voisinage d un réel a tout intervalle ouvert contenant a.

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MTB - ch3 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un nombre

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

TITRE : «M le maudit» AUTEUR : FRITZ LANG PRÉSENTATION SUCCINTE : Il s agit du premier film parlant de Fritz Lang. Avec

TITRE : «M le maudit» AUTEUR : FRITZ LANG PRÉSENTATION SUCCINTE : Il s agit du premier film parlant de Fritz Lang. Avec CHAPITRE 4 DÉPASSER SES LIMITES HORS SUJET Document réalisé à l aide de LATEX Auteur : Site : wicky-math.fr.nf (Carcassonne) TITRE : «M le maudit» AUTEUR : FRITZ LANG PRÉSENTATION SUCCINTE : Il s agit

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et Sciences

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

NOTIONS DE BASE SUR LES FONCTIONS

NOTIONS DE BASE SUR LES FONCTIONS NOTONS DE BASE SUR LES FONCTONS 1. GENERALTES 1. Notations, définitions On dit qu une fonction f est définie sur une partie de un nombre réel et un seul y noté f ( x ). quand, à tout x de on associe est

Plus en détail

La calculatrice est autorisée. CORRIGE. x 2. g x

La calculatrice est autorisée. CORRIGE. x 2. g x Mathématiques TS7 04-05 Continuité et TVI IE Lundi 0 novembre «C est justement pour préserver ce qui est neuf et révolutionnaire dans chaque enfant que l éducation doit être conservatrice, c'est-à-dire

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine Titre du dossier : Calculs de dérivées Sujet : Etudier les dérivées et le sens de variation d une fonction Auteur : MAIRONE Yvon, SESE Sandrine Société : Ecole de la deuième Chance Marseille Mots clés

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Chapitre 2 Développements limités. Etude locale d une fonction.

Chapitre 2 Développements limités. Etude locale d une fonction. hapitre 2 Développements limités. Etude locale d une fonction. I Introduction : le cas de la fonction eponentielle A Approimation affine de ep au voisinage de 0 n notera f la fonction eponentielle f :

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Limites et continuité de fonctions Limites. Limites en + Dénition Soit f une fonction réelle dénie sur un intervalle de la forme [A, + [.. Soit l R. On dit que f tend vers l en + et on note f() = l si

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

Généralités sur les fonctions numériques à variables réelles

Généralités sur les fonctions numériques à variables réelles «I» : Définitions 1/ Fonction Généralités sur les fonctions numériques à variables réelles Une fonction numérique à variable réelle f est une «machine mathématique» qui associe à chaque réel, soit un unique

Plus en détail

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants :

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants : Cours DERIATION 0 ACTIITE DERIATION et CALCUL FORMEL - Odyssée Le professeur de mathématiques a donné le «devoir maison» suivant : Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats

Plus en détail

Domaines de définition, variations

Domaines de définition, variations Licence MIASHS première année, UE Analyse S MI0A0X Cours : Marc Perret Feuille d exercices numéro du 04 octobre 202 Important : - les exercices sans astérisque doivent être maitrisés Ils sont du type de

Plus en détail

Les développements limités.

Les développements limités. PCGI re année, L32 : outils mathématiques 2 Les développements limités. Dans toute la suite, I désigne un intervalle de R non vide et non réduit à un singleton, x 0 un point de I et f : I R une fonction

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Etude de fonctions. lim x = + lim x = Opérations sur les limites

Etude de fonctions. lim x = + lim x = Opérations sur les limites Etude de fonctions I Limites 1) Rappels Limites de fonctions monômes k = k avec k constante x 2 = + x = + x = x 2= + x 3 = x 3 = + Photocopie du livre 1 ère ES page 98 Opérations sur les ites 2) Des nouveaux

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail