Vecteurs, cours pour la classe de seconde

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vecteurs, cours pour la classe de seconde"

Transcription

1 F.Gaudon 24 janvier 2010 Table des matières 1 Notions de translation et de vecteurs 2 2 Coordonnées de vecteurs 3 3 Somme de vecteurs Relation de Chasles Différence de deux vecteurs Coordonnées de sommes de vecteurs

2 1 Notions de translation et de vecteurs Soient A et B deux points du plan. Á tout point M du plan, on associe l unique point M tel que [AM ] et [BM] ont le même milieu. On dit que M est l image de M par la translation de vecteur AB. Propriété et définition : M est l image de M par la translation de vecteur AB si et seulement si ABM M est un parallélogramme (éventuellement aplati). On dit alors que MM et AB sont deux vecteurs égaux et on note AB = MM. On pourra noter aussi u tout vecteur tel que u = AB = MM. Immédiat : on sait que ABM M est un parallélogramme si et seulement si ses diagonales [AM ] et [BM] ont le même milieu. Remarque : Deux vecteurs AB et A B sont donc égaux si et seulement si les trois conditions suivantes sont vraies : les droites (AB) et (A B ) sont parallèles : on dit qu elles ont la même direction ; le sens de A vers B est le même que de A vers B ; les segments [AB] et [A B ] ont même longueur : on dit qu ils ont la même norme. Soit A et B deux points du plan. On appelle : vecteur opposé au vecteur AB le vecteur BA. On note AB = BA. vecteur nul, le vecteur AA ou BB. On note AA = BB = 0. http: // mathsfg. net. free. fr 2

3 2 Coordonnées de vecteurs Soit (O; I; J) un repère du plan. Soit u un vecteurs. On appelle coordonnées du vecteur u dans le repère (O; I; J), les coordonnées de l unique point M tel que OM = u. Exemple : Sur la figure ci-dessus, A a pour coordonnées (1; 3) et B a pour coordonnées (5; 5). ( Les coordonnées ) du point M tel que OM = AB sont (4; 2). Les coordonnées du vecteur AB 4 sont donc 2 Remarque : Les coordonnées de vecteurs peuvent être notées verticalement pour éviter les confusion avec les coordonnées de points. Propriété : Deux vecteurs u et v sont égaux si et seulement si ils ont les mêmes coordonnées dans un repère. Soient A et B deux points tels que AB = u et C et D deux points tels que CD = v. Soit M le point tel que OM = AB et N le point tel que ON = CD. Alors u = v si et seulement si AB = CD c est à dire OM = ON = AB c est à dire encore M et N sont confondus ce qui signifie qu(ils ont les mêmes coordonnées dans le repère (O; I; J). Propriété : Soient A et B deux points de coordonnées (x A ; y A () et (x B ; y B ) dans un repère (O; i; j). Alors les coordonnées de AB xb x sont A. y B y A ) http: // mathsfg. net. free. fr 3

4 Exemple : Soient A, B et C les points de coordonnées respectives ( 2; 3), (2; 1) et (1; 4) dans un repère du plan. Cherchons les coordonnées du point D tel que ABCD est un parallélogramme. ABCD est un ( ) AB xb x a pour coordonnées A c est à dire y B ) y A. Les deux vecteurs parallélogramme si et seulement si AB = DC. Or ( ) ( ) ( 2 ( 2) 4 donc. Le vecteur 1 xd DC a lui pour coordonnées y D sont égaux si et seulement si leurs coordonnées sont égales c est à dire 4 = 1 x S et 2 = 4 y D d où x D = 1 4 et y D = donc x D = 3 et y D = 6. D a donc pour coordonnées ( 3; 6). Algorithmique : Algorithme de calcul des coordonnées (x AB ; y AB ) du vecteur pour coordonnées (x A ; y A ) et (x B ; y B ) : Entrées : x A, y A, x B, y B ; Début traitement x AB prend la valeur x B x A ; y AB prend la valeur y B y A ; Fin traitement. Sorties : x AB, y AB. AB dont les extrémités A et B ont Algorithme de test de l égalité de deux vecteurs u 1 et u 2 dont les coordonnées (x 1, y 1 ) et (x 2 ; y 2 ) sont données : Entrées : x 1, y 1, x 2, y 2 ; Début traitement si (x 1 = x 2 ) et (y 1 = y 2 ) alors Afficher vecteurs égaux ; sinon Afficher vecteurs pas égaux ; fin Fin traitement. http: // mathsfg. net. free. fr 4

5 3 Somme de vecteurs 3.1 Relation de Chasles Soient u et v deux vecteurs et A, B et C trois points tels que u = AB et v = BC. La somme des vecteurs u et v, notée u + v, est le vecteur AC. Propriété (relation de CHASLES) : Pour tous les points A, B et C on a donc AB + BC = AC. Règle du parallélogramme : Soient A, B, C et D quatre points non alignés. seulement si ABDC est un parallélogramme. AB + AC = AD si et Si ABDC est un parallélogramme, alors AC = BD donc AB + AC = AB + BD = AD d après la relation de Chasles. Si AB + AC = AD, on a BA + AB + AC = BA + AD en ajoutant BA dans les deux membres donc AC = BA + AD et d après la relation de Chasles, AC = BD ce qui signifie que ABDC est un parallélogramme. http: // mathsfg. net. free. fr 5

6 3.2 Différence de deux vecteurs Soient u, v deux vecteurs. On appelle différence du vecteur u par le vecteur v le vecteur noté u v égale à u + ( v). 3.3 Coordonnées de sommes de vecteurs Propriétés : Soit (O; i; j) un repère du plan. On considère deux vecteurs u et v de coordonnées (x; y) et (x ; y ( ). ) x u a pour coordonnées ( y ) x + x u + v a pour coordonnées y + y ; ( ) soient A et B sont deux points tels que u = AB. xb x Les coordonnées de u sont donc A. ( ) y B y A Or BA xa x = u et a pour coordonnées B qui sont opposées à celles de u ; y A y B Soient A, B et C trois points tels que u = AB et v = BC. D après la relation de Chasles on peut écrire que u + v = AB + BC = AC. Or les alscisses de AB et BC sont respectivement xb x A et x C x B. Leur somme est x B x A + x C x B = x C x A qui est l abscisse de AC. De même pour les ordonnées. http: // mathsfg. net. free. fr 6

7 Exemple : Soient A, B et C trois points ( ) du plan de coordonnées respectives ( 3; ( 1), (1, ) 4) et (2; 3). Alors le vecteur AB 2 a pour coordonnées, le vecteur BC 3 a pour coordonnées. On peut vérifier que AC 3 1 a ( ) ( ) pour coordonnées soit http: // mathsfg. net. free. fr 7

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 2 septembre 2009 Table des matières 1 Notions de translation et de vecteurs 2 2 Somme de vecteurs 3 3 Coordonnées de vecteurs 5 1 1 Notions de translation et de vecteurs Soient A et B deux points

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs I. Notion de vecteurs a) Vecteurs et translations Définition : A et B désignent deux points du plan. La translation qui transforme A en B associe à tout point C du plan l'unique point D tel que les segments

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Vecteurs du plan Seconde 5 L.F.B. 2010/2011 Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Définitions Translation Définition 1 Étant donnés trois points du plan A, B et M, on dit que M est l image

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

Produit d un vecteur par un nombre, cours pour la classe de seconde

Produit d un vecteur par un nombre, cours pour la classe de seconde Produit d un vecteur par un nombre, cours pour la classe de seconde F.Gaudon 13 mai 2010 Table des matières 1 Produit d un vecteur par un nombre 2 2 Traduction vectorielle de propriétés géométriques 3

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs Notion de ecters coordonnées de ecters I. Notion de ecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe

Plus en détail

LES VECTEURS : Un exemple de cours.

LES VECTEURS : Un exemple de cours. LES VECTEURS : Un exemple de cours. I) De la translation Du latin transfere transporter aux vecteurs Du latin vector véhicule, de vehere transporter Introduction : Activités de groupe. Objectif : utiliser

Plus en détail

Vecteurs et translations

Vecteurs et translations Vecteurs et translations p. 1 Vecteurs et translations Classe de Seconde Y. BRENEY - Professeur de Mathématiques ybreney@free.fr Lycée Lumière - Luxeuil-les-Bains 1 - Translations Vecteurs et translations

Plus en détail

Seconde Suite du cours sur les vecteurs Page 1 sur 9

Seconde Suite du cours sur les vecteurs Page 1 sur 9 Seconde Suite du cours sur les vecteurs Page 1 sur 9 III) Somme de vecteurs : 3) Somme de vecteurs et configurations : a) Parallélogramme Propriété : Parallélogramme Si ABCD est un parallélogramme alors

Plus en détail

D.S. n 9 : Vecteurs 2 nde 7

D.S. n 9 : Vecteurs 2 nde 7 D.S. n 9 : Vecteurs nde 7 Vendredi 6 avril 013, 55 min. Ce sujet est à rendre avec la copie. SUJET D Nom :.................... Prénom :................. Communication: + ± Technique : + ± Raisonnement

Plus en détail

Notion de vecteur Vecteurs égaux

Notion de vecteur Vecteurs égaux Notion de vecteur Vecteurs égaux I) Translation 1) Définition A et B sont deux points du plan. La translation qui transforme A en B associe à tout point C du plan l unique point D tel que ABDC soit un

Plus en détail

Fiche méthode : Vecteurs dans un repère

Fiche méthode : Vecteurs dans un repère Table des matières 1 Calcul des coordonnées 2 1.1 Cas général................................................ 2 1.2 exemple.................................................. 2 2 vecteurs égaux 2 2.1 rappels...................................................

Plus en détail

7 Vecteurs du plan. Hyperbole 2010 p.196.

7 Vecteurs du plan. Hyperbole 2010 p.196. 7 Vecteurs du plan Hyperbole 2010 p.196. Objectifs : Définir une translation et le vecteur associé Savoir caractériser et reconnaître deux vecteurs égaux, deux vecteurs opposés Savoir construire géométriquement

Plus en détail

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2 Vecteurs 2 nde Table des matières I.Translations et Vecteurs du plan...1 A.Translation et vecteur associé...1 B.Égalité de deux vecteurs...1 C.Vecteur nul...2 D.Opposé d un vecteur...2 II.Somme et différence

Plus en détail

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme.

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme. Seconde Exercices sur les vecteurs Page 1 Définition, égalité de vecteurs ---------------------------------------------------------------------------------------------------- Exercice 1 : A vue d œil,

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

cours de mathématiques en seconde

cours de mathématiques en seconde cours de mathématiques en seconde Vecteurs, translations et coordonnées dans le plan 0 Point de vue historique : Le mot «vecteur» vient du latin «vehere» (conduire, transporter) La notion de vecteur est

Plus en détail

Le barycentre dans le plan et dans l espace

Le barycentre dans le plan et dans l espace Le barycentre dans le plan et dans l espace Livre pages 160 à 171 Introduction : QCM + exercices sur les vecteurs niveau seconde; recherche de point d équilibre. 1 Vecteurs dans l espace 1.1 Propriétés

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

Seconde Les vecteurs Année scolaire 2013/2014

Seconde Les vecteurs Année scolaire 2013/2014 Seconde Les vecteurs Année scolaire 2013/2014 I) Notion de vecteur : 1) Lien translation/vecteur : On fait glisser la figure marron le long de la droite (AB), dans le sens de A vers B, de la longueur AB.

Plus en détail

Chapitre 3 : Vecteurs. Géométrie analytique

Chapitre 3 : Vecteurs. Géométrie analytique I. Vecteurs Chapitre 3 : Vecteurs. Géométrie analytique Un vecteur permet de caractériser un déplacement : Il est défini par une direction, un sens sur cette direction et une longueur. E F Il n'est en

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Chapitre 6 Géométrie vectorielle

Chapitre 6 Géométrie vectorielle 6. Translation et vecteurs 6.. Définition DÉFINITIN n considère et deux points distincts du plan. hapitre 6 Géométrie vectorielle. n appelle translation qui transforme en la transformation qui à tout point

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Chapitre 4 : Vecteurs et repères

Chapitre 4 : Vecteurs et repères Chapitre 4 : Vecteurs et repères Dans tout ce chapitre on fixe un plan P qu on appelle le plan. 1 Définitions et généralités. 1.1 Couples et bipoints On rappelle qu un couple est la donnée de deux éléments

Plus en détail

COURS SUR LES TRANSLATIONS ET HOMOTHETIES

COURS SUR LES TRANSLATIONS ET HOMOTHETIES COURS SUR LES TRANSLATIONS ET HOMOTHETIES Translations Soit un vecteur du plan La translation du vecteur, notée, est l application qui à tout point M du plan ou de l espace associe le point M tel que Remarques

Plus en détail

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé.

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé. Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 Exercice 1 : (4 points) ABCDEF est un hexagone régulier de centre O. Répondre aux questions suivantes en utilisant uniquement les points de la figure. 1) Trouver

Plus en détail

Brevet Blanc Première Session

Brevet Blanc Première Session Collège Victor Hugo Puiseaux Année Scolaire 2014-2015 Brevet Blanc Première Session Épreuve de Mathématiques Durée : 2 heures Matériel autorisé : calculatrice, matériel de géométrie Page 1 sur 7 Exercice

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse THEME : VECTEURS-TRANSLATIONS DEfinitions - Proprietes Notion de direction et de sens : Direction ( n.f. ) Orientation vers un point donné «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction,

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition hapitre 05 I- Vecteurs et translations VETEURS DU PLN 1. Soit et deux points du plan. Lorsque, à tout point M du plan, on associe le point M tel que [M ] et [] ont le même milieu, on dit que M est l image

Plus en détail

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3 I INTRODUCTION Dans le plan muni d un repère O; i, j, on cherche à établir une relation entre les coordonnées (x;) des points du plan appartenant à une droite D. EXEMPLE 1 Dans le plan muni d un repère

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Minimisation d une somme de distances, points de Fermat

Minimisation d une somme de distances, points de Fermat Minimisation d une somme de distances, points de Fermat Arnaud de Saint Julien 26 décembre 2004 Table des matières 1 Présentation du problème 2 1.1 Définitions et objectifs..................................

Plus en détail

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur ours 5 VETEURS U PLN 1 éfinitions 11 Translation éfinition 1 Étant donnés trois points du plan, et M, on dit que M est l image de M par la translation qui transforme en si les segments [M ] et [ M] ont

Plus en détail

VECTEURS DE L'ESPACE

VECTEURS DE L'ESPACE 1 VECTEURS DE L'ESPACE I. Caractérisation vectorielle d'un plan 1) Notion de vecteur dans l'espace Définition : Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur).

Plus en détail

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x.

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x. I REPÈRE DU PLAN 1 DÉFINITION On appelle repère du plan, tout triplet (O; i, ) tel que O désigne un point du plan et i, deux vecteurs non colinéaires Le point O est appelé origine du repère ; les vecteurs

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

CH III Matrices. 1 / 8

CH III Matrices. 1 / 8 CH III Matrices. 1 / 8 Objectifs : Définition, dimension et opérations de matrices. Matrice transposée. Multiplication de deux matrices. Application à la résolution de système linéaire. I. La notion de

Plus en détail

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10)

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Problème 1, les baguettes de bois Jean et Cécile forment chacun une ligne en mettant bout à bout des baguettes de bois. Toutes les baguettes utilisées

Plus en détail

Géométrie analytique

Géométrie analytique Géométrie analytique Cédric Milliet Version préliminaire Cours de première année de licence Université Galatasaray Année 2011-2012 Ces notes doivent beaucoup aux notes de cours de Marie-Christine Pérouème.

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

L outil vectoriel et géométrie analytique

L outil vectoriel et géométrie analytique L outil vectoriel et géométrie analytique 1 Table des matières 1 Définition et théorème 1.1 Définition................................. 1. Egalité entre deux vecteurs....................... Addition de

Plus en détail

Vecteurs et droites du plan

Vecteurs et droites du plan Vecteurs et droites du plan I Rappel sur les vecteurs dans le plan 1. Définitions Un bipoint est un ensemble de 2 points. Le "bipoint " est noté (, ). Deu bipoints (, ) et (C, D) sont équipollents si les

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

Vecteurs et colinéarité

Vecteurs et colinéarité Chapitre 3 Vecteurs et colinéarité Ce que dit le programme : Géométrie plane. Vecteurs Condition de colinéarité de deux vecteurs : xy' x'y. Vecteur directeur d une droite. Équation cartésienne d une droite.

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Repérage et vecteurs

Repérage et vecteurs Repérage et ecters Chapitre 10 page 241 Introdction : Rappels por démarrer : Page 241 I-Egalité de ecters 1- Détermination d'n ecter. Un ecter non nl est déterminé par : - sa direction ; - son sens ; -

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

Vecteurs du plan. Chapitre 3. Introduction. Les translations du plan. Vous pouvez consulter ces deux sites : http ://epvf.net/

Vecteurs du plan. Chapitre 3. Introduction. Les translations du plan. Vous pouvez consulter ces deux sites : http ://epvf.net/ Chapitre Vecteurs du plan. I Introduction. Vous pouvez consulter ces deux sites : http ://epvf.net/ http ://www.curiosphere.tv/mecanique-du-vol/ On voit, pour expliquer le vol d un avion, la présence d

Plus en détail

Vecteurs et translations

Vecteurs et translations 2015 Les vecteurs Seconde 9 I Vecteurs et translations I.1 Translation Soit et B deux points du plan. À tout point C du plan, on associe le point D tel que [D] et [BC] ont le même milieu. B B CD D C L

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

Géométrie analytique ( En seconde )

Géométrie analytique ( En seconde ) Géométrie analytique ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs I. Définitions 1- Notions de direction et de sens : On dit que deux droites ont le même direction si et seulement si elles sont parallèles. Une direction

Plus en détail

Vecteurs du plan. Définition. Un vecteur est une «flèche», caractérisée par sa longueur, sa direction et son sens. 1

Vecteurs du plan. Définition. Un vecteur est une «flèche», caractérisée par sa longueur, sa direction et son sens. 1 Vecters d plan. Définitions et généralités Définition. Un vecter est ne «flèche», caractérisée par sa longer, sa direction et son sens. Exemple. Sr la figre ci-contre, on a représenté le vecter = AB, d

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I.

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I. Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5 I) Rappels sur les configurations du plan COURS pages 248 et 249 du manuel Exercice 2 page 268 (utiliser la rotation de centre C et d angle 60 ) Exercices

Plus en détail

Cours BTS Calcul vectoriel

Cours BTS Calcul vectoriel Cours BTS Calcul vectoriel S. B. Lycée des EK Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique

Plus en détail

Forme trigonométrique d un nombre complexe Applications

Forme trigonométrique d un nombre complexe Applications Forme trigonométrique d un nombre complexe Applications Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Représentation géométrique d un nombre complexe 2 1.1 Rappels : affixe d un point........................................

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

RSA - bases mathématiques

RSA - bases mathématiques RSA - bases mathématiques Jang Schiltz Centre Universitaire de Luxembourg Séminaire de Mathématiques 162A, avenue de la Faïencerie L-1511 Luxembourg Luxembourg E-mail:schiltzj@cu.lu 1 Divisibilité Définition

Plus en détail

Nombres complexes : Forme Trigonométrique

Nombres complexes : Forme Trigonométrique Nombres complexes : Forme Trigonométrique I) Module et argument d un nombre complexe 1) Définitions Soit le nombre complexe On note M le point d affixe dans le repère orthonormé ;, ) On appelle module

Plus en détail

Leçon n 7 Les vecteurs Opérations de base

Leçon n 7 Les vecteurs Opérations de base Leçon n 7 Les vecteus Opéations de base Il est tès impotant de bien tavaille cette notion ca cet outil est tès utilisé en Mathématiques et en Physique. Il faut bien compende d où vient la notion de vecteu

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

VII. Lieux géométriques.

VII. Lieux géométriques. VII. Lieux géométriques.. Généralités. Définition. Un lieu géométrique est un ensemble de points qui vérifient une propriété géométrique déterminée.. Méthodes. Pour déterminer un lieu géométriques, différentes

Plus en détail

1 Translation. 2 Vecteurs

1 Translation. 2 Vecteurs Lycée assini ours : Vecteurs du plan seconde 6 1 Translation Définition Soient et deux points du plan. On appelle translation qui transforme en la transformation qui à tout point du plan associe l unique

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

Matrices. Par exemple, voici comment est notée et indexée une matrice 3 5 : (a 11. a 13. a 12. a 15 a 21 a 22 a 23 a 24 a 25 a 31. a 14 A = a 32.

Matrices. Par exemple, voici comment est notée et indexée une matrice 3 5 : (a 11. a 13. a 12. a 15 a 21 a 22 a 23 a 24 a 25 a 31. a 14 A = a 32. Matrices I- Généralités Définition : Une matrice A de taille n p est un tableau à deux dimensions de nombres a i j où i est la ligne et j la colonne, avec i n et j p Par exemple, voici comment est notée

Plus en détail

COURS TERMINALE S LES NOMBRES COMPLEXES

COURS TERMINALE S LES NOMBRES COMPLEXES COURS TERMINALE S LES NOMBRES COMPLEXES A. Introduction des nombres complexes Au XVIème siècle, des algébristes italiens cherchent à résoudre des équations de degré telles que, par exemple, l'équation

Plus en détail

Chapitre II : Matrices et opérations

Chapitre II : Matrices et opérations Terminale S Spécialité Chapitre II : Matrices et opérations Année scolaire 205/206 I Généralités sur les matrices : Définition : Soient n et p, deux entiers naturels non-nuls, une matrice de format n,p

Plus en détail

Repères et coordonnées dans le plan

Repères et coordonnées dans le plan A Repères et coordonnées dans le plan Repères et coordonnées dans le plan A-1 Définir un repère et les coordonnées d un point Dans un plan (P), on considère 3 points non alignés O, I, J. les droites (OI)

Plus en détail

2/ Écrire C sous la forme a b où a et b sont des entiers naturels, b étant le plus petit possible : C = 2 45 3 5 + 20

2/ Écrire C sous la forme a b où a et b sont des entiers naturels, b étant le plus petit possible : C = 2 45 3 5 + 20 Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé conformément à la circulaire n 99-186 du 16 novembre 1999. Exercice 1 (5 points)

Plus en détail

Géométrie vectorielle et analytique dans l'espace, cours, terminale S

Géométrie vectorielle et analytique dans l'espace, cours, terminale S Géométrie vectorielle et analytique dans l'espace, cours, terminale S F.Gaudon 21 mars 2013 Table des matières 1 Vecteurs de l'espace 2 1.1 Extension de la notion de vecteur à l'espace.........................

Plus en détail

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1 Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. Exercice n 1 : Partie numérique

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan Mathématiques Première S Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud Coordination : Jean-Michel Le Laouénan Ce cours est la propriété du Cned Les images et textes intégrés à ce cours sont

Plus en détail

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme :

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme : Exercice 1 : On considère la figure ci-contre où est un parallélogramme : 1) Quelle est la longueur du segment [AB]? ) Quelle est la mesure de l angle BCD? Exercice : Sur la figure ci-contre, et BCEF sont

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES OLYMPIADES ACADEMIQUES DE MATHEMATIQUES SESSION 2012 MERCREDI 21 MARS 2012 (8h 12h) SUJET PREMIERE S Ce sujet comporte 5 pages numérotées de 1 à 5. Sujet S page 1 Exercice National 1 : On dit qu un nombre

Plus en détail

Produit scalaire dans l espace-equations de plans et de droites

Produit scalaire dans l espace-equations de plans et de droites Mme Morel-TS 1 Produit scalaire dans l espace-equations de plans et de droites 1 Produit scalaire dans l espace 1.1 Définition Définition 1.1.1. Dasn l espace, une unité de longueur étant choisie, le produit

Plus en détail

Statistiques à une ou deux variables, cours, terminale STG

Statistiques à une ou deux variables, cours, terminale STG Statistiques à une ou deux variables, cours, terminale STG F.Gaudon 15 novembre 2009 Table des matières 1 Statistiques à une variable (rappels) 2 2 Statistiques à deux variables 2 2.1 Vocabulaire...........................................

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 2012 Enoncés On demandait de résoudre trois questions

Plus en détail

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1 hapitre 2 olinéarité et équation de droite TLE DES MTIÈRES page -1 hapitre 2 olinéarité et équation de droite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé Baccalauréat S Nouvelle-Calédonie //0 Corrigé. P. M. E. P. EXERCICE Commun à tous les candidats Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + x.. Étude d une fonction

Plus en détail

Géométrie analytique et équation de droite

Géométrie analytique et équation de droite Géométrie analtique et équation de droite ) Géométrie analtique.. Généralités. Définitions : Dire que ( ; ) sont les coordonnées du point M dans le repère (O ; i ; j ) signifie que : OM = i + j et on note

Plus en détail

Cours de mathématiques. Thomas Rey

Cours de mathématiques. Thomas Rey Cours de mathématiques Thomas Rey Classe de seconde le 29 août 2010 «Ce qui est affirmé sans preuve peut être nié sans preuve.» EUCLIDE D ALEXANDRIE Table des matières 1 Fonctions numériques 5 1.1 Notion

Plus en détail

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu.

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu. Lycée JNSN E SILLY 10 novembre 015 VETEURS U PLN nde 5 I NTIN E VETEUR 1 PRLLÉLGRE ÉFINITIN Un quadrilatère est un parallélogramme si, et seulement si ses diagonales ont le même milieu. parallélogramme

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

LA CONSTRUCTION DE FRESNEL

LA CONSTRUCTION DE FRESNEL LA CNSTRCTIN DE FRESNEL I / Le vecteur de Fresnel associé à une grandeur sinusoïdale : a/ Questions préliminaires : j i y M (t) Le point M se déplace à vitesse angulaire constante ω sur le cercle de centre.

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ].

Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ]. I. La symétrie axiale : Transformations du plan ( isométries ) A et A sont symétriques par rapport à la droite d si et seulement si d est la médiatrice de [AA ]. Par conséquent, d est perpendiculaire à

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Initiation à l algorithmique... et à la programmation

Initiation à l algorithmique... et à la programmation IREM Clermont-Ferrand Année 2009-2010 Journée d information Malika More sur les nouveaux programmes de Seconde Initiation à l algorithmique... et à la programmation Contenu de l atelier Des algorithmes

Plus en détail

I. Se repérer sur le cercle trigonométrique (2 nde )

I. Se repérer sur le cercle trigonométrique (2 nde ) ère S FCHE n Trigonométrie. Se repérer sur le cercle trigonométrique ( nde ) L idée + d n enroule la droite d autour d un cercle de centre et de rayon comme ci-dessus. A chaque point d abscisse sur la

Plus en détail