Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité"

Transcription

1 Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand tout intervalle ouvert contenant l contient toutes les valeurs de f() pour assez grand. On note : f() = l. On dit que f() tend vers + lorsque tend vers + quand tout intervalle du type [A ; + [ (avec A nombre réel) contient toutes les valeurs de f() pour assez grand. On note : f() = +. On définit de la même manière (ii) Applications : ites de référence f() = l lorsque l = ± où l réel. Soit n N. On a : = = n = +. On a, aussi : = = = 0. n (iii) Limites en a (a R) On dit que f() tend vers l (l = ± où l réel) lorsque tend vers a signifie que tout intervalle ouvert contenant l contient toutes les valeurs de f() pour assez voisin de a. On note f() = l. (iv) Applications : ites de référence Avec a 0, n = a n ; = a ; cos = cos a ; sin = sin a. sin tan Et aussi : = =. 0 0 (v) Interprétations graphiques des ites * Si f() = l, alors on dit que la droite d équation y = l est asymptote horizontale en + à la courbe représentative C de f. On définit de même l asymptote horizontale en. * Si f() = +, alors on dit que la droite d équation = a est asymptote verticale en a à la courbe représentative C de f.

2 . Propriétés Dans ce qui suit, a = ± ou R, (l, l ) R. (i) Théorèmes de comparaisons * Si pour assez voisin de a, f() l g() avec g() = 0, alors f() = l. * Théorème des gendarmes Si pour assez voisin de a, g() f() h() avec : g() = h() = l, alors f() = l. * Si pour assez voisin de a, f() g() et g() = +, alors f() = +. * Si pour assez voisin de a, f() g() et (ii) Limites de sommes, produits, quotients et composées * Limite de la somme : (f + g)() g() f() g() =, alors f() =. l + l l + l forme indéterminée Forme indéterminée * Limite du produit : (fg)() f() g() l, l > 0 l, l < l, l > 0 ll ll 0 + l, l < 0 ll ll forme indéterminée + + forme indéterminée + * Limite du quotient ( f g ) () g() f() l + l l, l 0 ± ± l + 0 forme indéterminée forme indéterminée 0 forme indéterminée forme indéterminée * Limite d une fonction composée Soit a, b, c R {± }. f() = b Si on a : { alors g f() = c. g() = c b

3 3. Continuité (i) Définition Soit f une fonction définie sur un intervalle I contenant le réel a. * On dit que f est continue en a si f() = f(a). * On dit que f est continue sur I si f est continue en tout point a de I. (ii) Propriétés * Une fonction dérivable en un réel a est continue en a. * Une fonction dérivable sur un intervalle est continue sur cette intervalle. * Les fonctions usuelles (carré, racine carrée, valeur absolue, inverse), fonctions polynômes et les fonctions rationnelles sont continues sur tout intervalle de leur ensemble de définition. (iii) Théorème des valeurs intermédiaires * Soit f une fonction continue sur un intervalle I. Soit (a, b) I tels que a < b. Pour tout réel k compris entre f(a) et f(b), il eiste (au moins) un réel c compris entre a et b tel que f(c) = k. Une conséquence importante est le corollaire qui suit : * Soit f une fonction continue et strictement monotone sur [a ; b]. Pour tout réel k compris entre f(a) et f(b), il eiste un unique réel c de l intervalle [a ; b] tel que f(c) = k. 4. Compléments sur les dérivées Fonction u() (u()) n, n Z f(a + b) Dérivée u () u() nu n ()u () af (a + b) 5. Fonctions trigonométriques La fonction cosinus ( cos ) et la fonction sinus ( sin ) sont définies sur R. Elles sont toutes les deu périodiques de période π. On a cos () = sin et sin () = cos. Voici les tableau de variation de ces deu fonctions sur l intervalle [0 ; π] : 0 π cos() 0 sin() π 0 0 π 3

4 II. Pour s échauffer : vrai ou fau? Pour chaque question, indiquer si les propositions sont vraies ou fausses en justifiant la réponse... Soit f() = On note C la courbe représentative de f. (a) C a une tangente en son point d abscisse et son équation réduite est : y =,5,5. (b) C a une tangente en son point d abscisse 0... D après concours Sciences-Po 04 Soit b un nombre réel et soit f la fonction définie pour tout nombre réel par : f() = + b + 4. (a) Le minimum de la fonction f est inférieur ou égal à Un classique librement inspiré du BAC 0, métropole Le plan est muni d un repère orthonormé (O; i, j ). On considère une fonction f sur l intervalle [ 3 ; ]. Soit C la courbe représentative de la fonction f. On dispose des informations suivantes : f(0) = ; la dérivée f de la fonction f admet la courbe représentative C ci-dessous. (a) Pour tout réel de l intervalle [ 3 ; ], f () 0. (b) La fonction f est croissante sur l intervalle [ ; ]. (c) Pour tout réel de l intervalle [ 3 ; ], f(). (d) La tangente à la courbe C au point d abscisse 0 passe par le point de coordonnées ( ; 0). 4

5 .4. D après concours ESIEE 007 Soit f la fonction définie sur ] ; ] [3 ; + [ par f() = 3. On note C la courbe représentative de f dans un repère orthonormé. Alors : (a) f est décroissante sur ] ; ]. f() (b) =. (c) [f() + ] =. (d) La droite d équation y = + est asymptote à C en..5. D après concours ESIEE 006 sin (a) =. (b) sin =. sin 3 (c) =. (d) π cos π =..6. D après concours ESIEE 006 Soit f la fonction définie et dérivable sur R { } par () = +6. f() (a) =. (b) [f() ] = 3. (c) Il eiste c ]0 ; + [ tel que pour tout R { }, f() = 3 + (d) Il eiste a ] ; + [, f (a) = Un autre classique d après concours ESIEE 006 Soit f la fonction définie sur R par f() = c. + (a) L équation f() = 0 admet une unique solution dans R. (b) L équation f() = admet eactement deu solutions distinctes dans [ ; + [. (c) Si [ ; ] alors f() 4. (d) Pour tout R, si f() 4 alors [ ; ]..8. Librement inspiré du BAC 05, Asie On considère l algorithme suivant : 5

6 VARIABLES a, b SONT DEUX NOMBRES REELS TELS QUE a < b 3 EST UN NOMBRE REEL 4 f EST UNE FONCTION DEFINIE SUR L INTERVALLE [a ; b] 5 DEBUT ALGORITHME 6 LIRE a et b 7 DEBUT TANT QUE 8 TANT QUE (b a > 0,3) 9 PREND LA VALEUR a+b 0 DEBUT SI Si f()f(a) > 0, ALORS a PREND LA VALEUR SINON b PREND LA VALEUR 3 FIN SI 4 FIN TANT QUE 5 AFFICHER a+b 6 FIN ALGORITHME (a) Si l on entre a =, b = et f() = 3, alors l algorithme affiche en sortie le nombre, D après concours FESIC 00 Soit f la fonction définie sur R par : f() = + sin (π) et C sa courbe représentative. (a) Pour tout réel, on a : f () = + cos (π). (b) On a : [ f() 0 ] = + π. ( c) La courbe C coupe la première bissectrice en chaque point d abscisse = k +, où k est un entier relatif. (d) La courbe C admet la première bissectrice comme droite asymptote en +. III. Des QCM. A vous de choisir! Pour chaque question, indiquer la (ou les) bonne(s) réponse(s). 3. Un peu de logique Le contraire de «il eiste une unique solution réelle à l équation f() = 0» est : (a) «L équation f() = 0 n admet pas de solution réelle». (b) «L équation f() = 0 admet un nombre fini de solutions réelles». (c) «L équation f() = 0 admet une infinité de solutions réelles». (d) Aucune des 3 propositions précédentes. 6

7 3.. Encore un peu de logique... Le contraire de «f est une fonction non dérivable en a» est : (a) f() f(a) a (b) f() f(a) a (c) f() f(a) a est réelle». est infinie». n eiste pas.» (d) Aucune des 3 propositions précédentes D après concours Avenir cos = (a). (b) 0. (c) N eiste pas. (d) Aucune des 3 propositions précédentes D après concours Avenir 00 = 0 sin ( ) (a). (b). (c) N eiste pas. (d) Aucune des 3 propositions précédentes D après concours Avenir 04 Ci-dessous, la courbe C représente la fonction f définie sur R {3}. 7

8 f() = 3 (a). (b) +. (c) Un réel. (d) Aucune des 3 propositions précédentes D après concours Avenir 04 D après la figure précédente, le nombre de solution de l équation f () = est : (a) 0. (b). (c). (d) f continue en signifie que : f( ) f( ) (a) est un réel. 0 (b) f() est un réel. (c) f( ) est un réel. 0 (d) Aucune des 3 propositions précédentes D après concours Santé des Armées 04 Soit la fonction f définie pour tout réel par f() = cos. La dérivée f de f est définie pour tout réel par : 8

9 (a) f () = sin. (b) f () = cos. (c) f () = cos + sin. (d) f () = cos sin Soit la fonction f définie par f() = 4. (a) f est définie et dérivable sur [0 ; + [. (b) f () est du signe de sur son ensemble de définition. (c) f est croissante sur [ ; + [. (d) L équation f() = 0 admet eactement deu solutions distinctes sur [0 ; + [ D après BAC 007, Polynésie On désigne par (E) l ensemble des fonctions f continues sur l intervalle [0 ; ] et vérifiant les conditions (P ), (P ) et (P 3 ) suivantes : (P ) f est strictement croissante sur l intervalle [0 ; ]. (P ) f(0) = 0 et f() =. (P 3 ) pour tout réel de l intervalle [0 ; ], f(). La courbe représentative de f dans un repère orthonormal (O ; i, j ) est : (a) 9

10 (b) (c) 0

11 IV. Corrigés.. (a) Proposition vraie. En effet, f () = et f () = + = 5. De plus, f() =. Donc l équation de la tangente au point d abscisse est : y = f ()( ) + f() = 5 ( ) + = 5 3. Soit y =,5,5. (b) Proposition fausse. En effet, f () n est pas définie en 0 (valeur interdite)... (a) Proposition vraie. On a : f () = + b et f () = 0 + b = 0 = b. On en déduit le tableau de variation de la fonction f : b f () f f( b ) Par ailleurs, pour tout réel b, f ( b ) = ( b ) b + 4 = b 4 b = b (a) Proposition vraie. Sur l intervalle [ 3 ; ], tous les points de la courbe ont une ordonnée négative. C est-à-dire que f () 0. (b) Proposition vraie. Sur l intervalle ] ; [, on lit que f () > 0, donc que f est croissante sur cet intervalle. (c) Proposition fausse. En effet, on a f () > 0 sur ] ; 0[ donc f croissante sur ] ; 0[ et de plus f(0) =. (d) Proposition vraie. On a graphiquement que f (0) = et de plus f(0) =. L équation de la tangente en 0 est : y = f (0)( 0) + f(0) =. Le point ( ; 0) appartient bien à cette tangente..4. (a) Proposition vraie. Car : f () = (b) Proposition fausse. En effet : f() = 3 = ( 3 ) = 3 3 = 3 < 0 sur l intervalle ] ; ]. = 3 car < 0 ( ). Et, comme : = 0, la ite est égale à -. (c) Proposition vraie. On a, par l utilisation de la forme conjuguée :

12 f() + = 3 + = ( 3+)( 3 3+ (+ 3 ) = ( ( 3 )+) Et : { + 3 ( 3 )+ car < 0 ( ). + = f() + = =. = 3 = ( 3 )+ ( 3 ) + = (d) Proposition fausse. C est une conséquence de la question précédente puisque [f() + ] = [f() ( )] = 0, on en déduit que : la droite d équation y = est asymptote à C en. sin.5. (a) Proposition fausse. D après le cours, =. 0 (b) Proposition vraie. En faisant le changement variable suivant, X =, on obtient : sin = sin X sin X = =. X 0 X X 0 X (c) Proposition fausse. Si +, alors 3 + et on fait le lien avec la réponse de la question (a). (d) Proposition vraie. En faisant le changement de variable suivant, X = π, on obtient : π cos π = X 0 cos( π X) X sin X = = (d après la ite de référence). X 0 X.6. (a) Proposition vraie. En factorisant par, on obtient : f() = ( + 6 ) (+ = + 6 ) + = (car + 6 = (b) Proposition vraie. En factorisant par, on obtient : [f() ] = ( 3+ 6 ) (+ ) [ +6 + ] = = = 3 (car 6 +6 = + = 0). 3+6 = = + = 0). (c) Proposition vraie. C est un classique! En effet, en mettant en mettant au même dénominateur l epression avec l inconnue c et en identifiant les coefficients de f() avec l epression obtenue, on conclut que c = 9. (d) Proposition vraie. La dérivée de f() est f () = + 8. Le numérateur s annule (+) en 4 et donc il eiste bien un réel dans l intervalle ] ; + [ tel que f (a) = 0 : c est le réel a =..7. (a) Proposition vraie. est solution évidente de l équation f() = 0. (b) Proposition vraie. En effet, en posant g() = f(), on obtient en dérivant g () = = 6 ( 3 ). Le tableau de variation de la fonction g donne :

13 0 + g () g g est continue et strictement décroissante sur [ ; ]. De plus, 0 [g() ; g( )]. On en déduit d après le théorème des valeurs intermédiaires qu il eiste une unique solution c [ ; ] tel que g(c) = 0 f(c) = 0 f(c) = ; g est continue et strictement croissante sur [ ; + [. De plus, 0 [g() ; g() [. On en déduit d après le théorème des valeurs intermédiaires qu il eiste une unique solution c [ ; + ] tel que g(c ) = 0 f(c ) = 0 f(c ) =. Il eiste eactement deu solutions c et c dans l intervalle [ ; + [ de l équation f() =. (c) Proposition vraie. On a f () = = 6 ( 3 ). Le tableau de variation de la fonction f donne : 0 + f () f 0 On a f( ) = 4 et f() = 0. D après le tableau de variation ci-dessus, la proposition est bien vraie. (d) Proposition fausse. Un contre-eemple suffit ici : f(,) 0,53 <..8. (a) Proposition fausse. On va faire fonctionner l algorithme pour a =, b = et f() = 3. Comme b a = > 0,3, on entre dans la boucle. a+b =,5. D où : f() =,5 3 = 0,75, et on a : f(a) = 3 =. Comme f() f(a) > 0, a =,5. Fin de la boucle tant que. Comme b a = 0,5 > 0,3 ; on entre dans la boucle. a+b =,75. D où : f() =,75 3 = 0,065 ; et on a : f(a) =,5 3 = 0,75. Comme f() f(a) < 0, b =,75. Fin du tant que. Comme b a = 0,5 < 0,3 ; on entre pas dans la boucle. L algorithme affiche la valeur a+b =,5+,75 =, (a) Proposition fausse. Puisque l on a f () = + πsin (π). 3

14 (b) Proposition vraie. Tout d abord, f() f() 0 = sin h + π h 0 h sin h = + π ; car =. h 0 h (c) Proposition fausse. On doit résoudre l équation suivante : f() =, soit + sin(π) =, soit sin(π) = 0. π = kπ D où, { π = π kπ donc { = k, où k Z. = k = + sin(π). Et, en posant h = π, on a : En définitive, la courbe C coupe la première bissectrice (droite d équation y = ) en chaque point d abscisse = k et = k où k Z. (d) Proposition fausse. On a : f() = sin (π) et cette dernière ite n eiste pas. 3.. L unique bonne réponse est la (a). 3.. La bonne réponse est la (a). Puisque le contraire de la proposition énoncée est «la fonction f est une fonction dérivable en a» La seule bonne réponse est la (a). En effet, en factorisant par on obtient : cos = ( 4 cos ) =. 4 cos Car, comme 4 4 (car cos ) et = 0 par le théorème de comparaison on a : 4 cos = La seule bonne réponse est la (a). En effet, en faisant le changement de variable suivant, X =, on obtient : = X = 0 sin ( ) X 0 sin (X) sin(x) = = (d après la ite de référence). X 0 X 3.5. La seule bonne réponse est la (d) puisque graphiquement, on constate qu il y a une asymptote verticale en = La seule bonne réponse est la (d) puisque sur les trois intervalles où la fonction f est croissante (f () 0), le coefficient directeur des tangentes en trois abscisses particuliers de ces trois intervalles est égal à Il y a deu bonnes réponses : la (b) car c est la définition même de la continuité en de f et pour la (c) le changement de variable suivant : X = nous ramène à la (b) La seule réponse, ici, est la (d). Car : f () = cos + ( sin ) = cos sin. 4

15 3.9. Il y a deu bonnes réponses : la (c) et la (d). En effet, en calculant f (), on obtient : f () = ( ) (le signe de f () dépend donc de et f est définie sur l intervalle ]0; + [ ). Le tableau de variation de f est donc le suivant : 0 + f () 0 + f Par ailleurs, on en déduit : f est continue et strictement décroissante sur [0 ; ]. De plus, 0 [f() ; f(0)]. On en déduit d après le théorème des valeurs intermédiaires qu il eiste une unique solution c [0; ] tel que f(c) = 0 ; f est continue et strictement croissante sur [ ; + [. De plus, 0 [f() ; f() [.On en déduit d après le théorème des valeurs intermédiaires qu il eiste une unique solution c [ ; + [ tel que f(c ) = 0). Il eiste eactement deu solutions c et c dans l intervalle [0 ; + [ de l équation f() = La seule bonne réponse est la (a). Puisque : la fonction représentée est bien croissante ; on a bien f(0) = 0 et f() = ; Cette courbe est bien située en dessous de la droite d équation y =. Alors que pour la courbe de la réponse (b), cette dernière est située au-dessus de la droite d équation y = et pour la courbe de la réponse (c), elle la coupe. 5

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Développements limités

Développements limités Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail