EXERCICES SUR LE THÉORÈME DE PYTHAGORE
|
|
|
- Gabin Bureau
- il y a 9 ans
- Total affichages :
Transcription
1 EXERIES SUR LE THÉORÈME DE PYTHGORE Exercice 1 alculer la longueur ZG : Z 5,4 cm?? 6,3 cm G Le t ia gle )G est e ta gle e ), do d ap s le th o e de Pythagore : G² = Z² + ZG² 6,3² = 5,4² + ZG² 39,69 = 29,16 + ZG² ZG² = 39,69 29,16 = 10,53 ZG = 10,53 ZG 3,24 cm. Exercice 2 alculer la longueur D : Le t ia gle est e ta gle e, do d ap s le th o e de Pythago e : D ² = ² + ² ² = 1² + 1² ² = = 2 = 2 cm o a pas esoi de la valeu app o h e ) 1 cm Le triangle D est rectangle en, do d ap s le th o e de Pythago e : D² = ² + D² D² = ( 2 ) ² + ( 2 ) ² D² = = 4 D = 4 D = 2 cm. Exercice 3 Le triangle FOU est-il rectangle? O 5 m 12 m Il s agit de teste l galit de Pythago e : FU² = FO² + OU². D u e pa t, FU² = ² = 9. D aut e pa t, FO² + OU² = ² + ² = + = 9. F 13 m U O o state ue l galit de Pythago e est v ifi e, do d ap s le th o ème de Pythagore, le triangle FOU est rectangle en O. 1
2 Exercice 4 Le triangle R est-il rectangle? T Il faut d a o d al ule les lo gueu s, R et R e fait, leu s a s suffise t. Pour cela, on place un point T deux carreaux au-dessus de, un point S trois carreaux en-dessous de et un point Z tout en bas à droite, de sorte que les triangles T, SR et RZ soient rectangles (grâce au quadrillage). On peut alors appliquer le théorème de Pythagore (1 ère interprétation) dans chaque triangle afin de trouver : = 40 ; R = 10 et R = 50. Il s agit alors de teste l galit de Pythago e : R² = R² + ². S R Z D u e pa t, R² = ( 50 ) ² = 50. D aut e pa t, R² + ² = ( 10 ) ² + ( 40 ) ² = = 50. O o state ue l galité de Pythagore est vérifiée, donc d ap s le th o e de Pythago e, le t ia gle R est rectangle en. Exercice 5 Le triangle suivant est-il rectangle? 4,3 cm 2,5 cm 3,5 cm Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 4,3² = 18,49. D aut e pa t, ² + ² = 2,5² + 3,5² = 6, ,25 = 18,50. donc d ap s le th o e de Pythago e, le t ia gle est pas rectangle en. Exercice 6 La droite (H) est-elle une hauteur du triangle? 5 cm 6 cm 4 cm H 3 cm utrement dit, la droite (H) est-elle perpendiculaire à ()? On doit donc utiliser la 2 ème ou 3 ème interprétation du théorème de Pythagore, nécessitant de connaître les trois longueu s d u t ia gle. On se place donc dans le triangle H. Il s agit de teste l galit de Pythago e : ² = H² + H². D u e pa t, ² = 6² = 36. D aut e pa t, H² + H² = 5² + 3² = = 34. do d ap s le th o e de Pythago e, le t ia gle H est pas rectangle en H. Finalement, la d oite H est pas u e hauteur du triangle H. 2
3 Exercice 7 L tag e est-elle perpendiculaire au mur? 60 cm 1,34 m 1,2 m Il faut commencer par trouver le triangle dans lequel se placer : les trois longueurs données nous aident. Notons-le. Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 1,34² = 1,7956. D aut e pa t, ² + ² = 0,6² + 1,2² = 0,36 + 1,44 = 1,8 (attention, il faut convertir 60 cm en m pour avoir la même unité partout!). do d ap s le th o e de Pythagore, le triangle est pas e ta gle e. Fi ale e t, l tag e est pas perpendiculaire au mur. Exercice 8 ols place une échelle de 3,50 m contre un mur. Sa hauteur sur le u est de, et l helle est éloignée du mur sur le sol de 1,7 m. Le mur est-il perpendiculaire au sol? Il faut commencer par faire une figure illustrant la situation : 3,5 m 3 m mur sol 1,7 m Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 3,5² = 12,25. D aut e pa t, ² + ² = 3² + 1,7² = 9 + 2,89 = 11,89. O o state ue l galit de Pythago e est pas v ifi e, do d ap s le théorème de Pythagore, le triangle est pas e ta gle e. Finalement, le mur est pas pe pe di ulai e au sol. 3
4 EXERIES SUR LE THÉORÈME DE PYTHGORE Exercice 1 alculer la longueur ZG : Z 5,4 cm?? 6,3 cm G Le t ia gle )G est e ta gle e ), do d ap s le th o e de Pythagore : G² = Z² + ZG² 6,3² = 5,4² + ZG² 39,69 = 29,16 + ZG² ZG² = 39,69 29,16 = 10,53 ZG = 10,53 ZG 3,24 cm. Exercice 2 alculer la longueur D : Le t ia gle est e ta gle e, do d ap s le th o e de Pythago e : D ² = ² + ² ² = 1² + 1² ² = = 2 = 2 cm o a pas esoi de la valeu app o h e ) 1 cm Le triangle D est rectangle en, do d ap s le th o e de Pythago e : D² = ² + D² D² = ( 2 ) ² + ( 2 ) ² D² = = 4 D = 4 D = 2 cm. Exercice 3 Le triangle FOU est-il rectangle? O 5 m 12 m Il s agit de teste l galit de Pythago e : FU² = FO² + OU². D u e pa t, FU² = ² = 9. D aut e pa t, FO² + OU² = ² + ² = + = 9. F 13 m U O o state ue l galit de Pythago e est v ifi e, do d ap s le th o ème de Pythagore, le triangle FOU est rectangle en O. 4
5 Exercice 4 Le triangle R est-il rectangle? T Il faut d a o d al ule les lo gueu s, R et R e fait, leu s a s suffise t. Pour cela, on place un point T deux carreaux au-dessus de, un point S trois carreaux en-dessous de et un point Z tout en bas à droite, de sorte que les triangles T, SR et RZ soient rectangles (grâce au quadrillage). On peut alors appliquer le théorème de Pythagore (1 ère interprétation) dans chaque triangle afin de trouver : = 40 ; R = 10 et R = 50. Il s agit alors de teste l galit de Pythago e : R² = R² + ². S R Z D u e pa t, R² = ( 50 ) ² = 50. D aut e pa t, R² + ² = ( 10 ) ² + ( 40 ) ² = = 50. O o state ue l galité de Pythagore est vérifiée, donc d ap s le th o e de Pythago e, le t ia gle R est rectangle en. Exercice 5 Le triangle suivant est-il rectangle? 4,3 cm 2,5 cm 3,5 cm Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 4,3² = 18,49. D aut e pa t, ² + ² = 2,5² + 3,5² = 6, ,25 = 18,50. donc d ap s le th o e de Pythago e, le t ia gle est pas rectangle en. Exercice 6 La droite (H) est-elle une hauteur du triangle? 5 cm 6 cm 4 cm H 3 cm utrement dit, la droite (H) est-elle perpendiculaire à ()? On doit donc utiliser la 2 ème ou 3 ème interprétation du théorème de Pythagore, nécessitant de connaître les trois longueu s d u t ia gle. On se place donc dans le triangle H. Il s agit de teste l galit de Pythago e : ² = H² + H². D u e pa t, ² = 6² = 36. D aut e pa t, H² + H² = 5² + 3² = = 34. do d ap s le th o e de Pythago e, le t ia gle H est pas rectangle en H. Finalement, la d oite H est pas u e hauteur du triangle H. 5
6 Exercice 7 L tag e est-elle perpendiculaire au mur? 60 cm 1,34 m 1,2 m Il faut commencer par trouver le triangle dans lequel se placer : les trois longueurs données nous aident. Notons-le. Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 1,34² = 1,7956. D aut e pa t, ² + ² = 0,6² + 1,2² = 0,36 + 1,44 = 1,8 (attention, il faut convertir 60 cm en m pour avoir la même unité partout!). do d ap s le th o e de Pythagore, le triangle est pas e ta gle e. Fi ale e t, l tag e est pas perpendiculaire au mur. Exercice 8 ols place une échelle de 3,50 m contre un mur. Sa hauteur sur le u est de, et l helle est éloignée du mur sur le sol de 1,7 m. Le mur est-il perpendiculaire au sol? Il faut commencer par faire une figure illustrant la situation : 3,5 m 3 m mur sol 1,7 m Il s agit de teste l galit de Pythago e : ² = ² + ². D u e pa t, ² = 3,5² = 12,25. D aut e pa t, ² + ² = 3² + 1,7² = 9 + 2,89 = 11,89. O o state ue l galit de Pythago e est pas v ifi e, do d ap s le théorème de Pythagore, le triangle est pas e ta gle e. Finalement, le mur est pas pe pe di ulai e au sol. 6
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette
Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Compression Compression par dictionnaires
Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.
Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.
LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Année Universitaire 2013-2014. 1 ère année de Master Droit Mention Droit Privé 1 er semestre. 1 er SEMESTRE 8 matières CM TD COEFF ECTS.
Année Universitaire 201-2014 1 ère année de Master Droit Mention Droit Privé 1 er semestre 1 er SEMESTRE 8 matières CM TD COEFF ECTS Unité 1 1 TD obligatoire Droit civil (les Sûretés) Unité 2-1 TD au choix
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Les problèmes de la finale du 21éme RMT
21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Chapitre 3: TESTS DE SPECIFICATION
Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
4G2. Triangles et parallèles
4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
À travers deux grandes premières mondiales
Les éco-i ovatio s, le ouvel a e st at gi ue d ABG À travers deux grandes premières mondiales - éco-mfp, premier système d impression à encre effaçable - e-docstation, premier système d archivage intégré
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
SELLE Masse d'eau AR51
SELLE Masse d'eau AR51 Présentation Générale : Superficie : 720 m² exutoire : Somme canalisée à Amiens longueur des cours d'eaux principaux : 63,27 km Population du bassin Versant 2006 : 28 211 hab Évolution
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Université de Lorraine Faculté de Droit
" $ Université de Lorraine Faculté de Droit " $$ % &() * "+,.", "/ / * 45 / * 67 89 / *: & ( ;;6 La Faculté à Epinal Facultédroit Epinal : ;;6 + / * < $ " = / * & ( > $? / * 6 / * 6 ;;9 :, " Nous joindre,
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Circulaire 2008/31 Rapport de groupe groupes d assureurs. Rapport de groupe pour les groupes d assurance et les conglomérats d assurance
Circulaire 2008/31 Rapport de groupe groupes d assureurs Rapport de groupe pour les groupes d assurance et les conglomérats d assurance Référence : Circ.-FINMA 08/31 «Rapport de groupe groupes d assureurs»
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
L assurance des travaux d installation d une
L assurance des travau d installation d une centrale photovoltaïque Etes-vous bien assurés? Quel est l enjeu du photovoltaïque pour le promoteur?. Toute l attention se porte sur les conditions de rachat
L i c e n c e. www.univ-paris13.fr. Mention «Économie et de gestion» Diplôme Bac + 3. Parcours. Contacts. contact :
Diplôme Bac + 3 Parcours - - Contacts UFR des Sciences Economiques et de Gestion contact : Contact formation continue (Adultes en reprise d'études, Financement / VAE): tél.:01 49 40 37 64 [email protected]
Les centres techniques industriels : spécificités et impacts sur l audit des comptes
Les centres techniques industriels : spécificités et impacts sur l audit des comptes Faustine Suco To cite this version: Faustine Suco. Les centres techniques industriels : spécificités et impacts sur
Fonction quadratique et trajectoire
Fonction quadratique et trajectoire saé La sécurité routière On peut établir que la vitesse maimale permise sur une chaussée mouillée doit être inférieure à celle permise sur une chaussée sèche La vitesse
Un exemple d étude de cas
Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui
La spirale de Théodore bis, et la suite «somme=produit».
Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de
ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16
ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro
BRÉSIL. Frais techniques: e 140,- par couleur/position. techniques: 350,- Frais. 27x12cm EGALEMENT POSSIBLE. 21x10cm
BRÉSIL 27x12cm EGALEMENT POSSIBL E Frais techniques: e 140,- par couleur/position o 21x10cm EGALEMENT POSSIBLE Frais techniques: 350,- BRÉSIL Tous les visuels et textes sont protégés par copyright. Le
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
Si la vie vous intéresse
Si la ie ous intéresse paroles: J Pauze musique: J Pauze / M A Lépine ã 160 c c öguiõt aõcous fr ÛÛ ÛÛÛÛÛ ÛÛÛ ÛÛ ÛÛÛÛÛ ÛÛÛ öõbõasse G 3fr fr fr Û Û ÛÛÛ Û Û Û ( ) 3 ~~ ÿ % % J'ais dans ouer un la monde
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Rochecorbon : l église Saint-Georges et sa charpente romane
ATLAS ARCHÉOLOGIQUE DE TOURAINE IV LES LIEUX Rochecorbon : l église Saint-Georges et sa charpente romane Frédéric Epaud 2013 L ancienne église paroissiale Saint-Georges de Rochecorbon est située à 3 km
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
Mémoire de fin d études d orthophonie CENTRE DE FORMATION DE STRASBOURG
Mémoire de fin d études d orthophonie CENTRE DE FORMATION DE STRASBOURG Objectifs : Au cours de la dern ière ann ée d études, les cand idats ayant v alidé la to talité de s enseignements théoriques et
Le son [v] Découpe et colle les images dans la bonne colonne. Prénom : Date : J entends [vi] J entends [va] J entends [vo]
Le son [v] Découpe et colle les images dans la bonne colonne. J entends [va] J entends [vo] J entends [vi] J entends [vu] J entends [von] Je n entends pas [v] Le son [v] Ecris O (oui) si tu entends le
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Sommaire. Le marché du cloud avec un focus sur la France. Les conséquences de l adoption du cloud
Le Cloud computing Sommaire Qu est ce que le cloud? Les avantages/ Les inconvénients Le marché du cloud avec un focus sur la France Les conséquences de l adoption du cloud Page 2 Définition Définition
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
La perspective conique
La perspective conique Définitions et principes. Deux cas de la perspective conique : la perspective conique oblique et la perspective conique centrale. Principe de la perspective conique : . La perspective
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
«Participer, dans la région PACA, à la mise en œuvre d une politique d accueil et d insertion par l habitat et par l économique, des jeunes, des
«Participer, dans la région PACA, à la mise en œuvre d une politique d accueil et d insertion par l habitat et par l économique, des jeunes, des familles et personnes en difficulté ou exclues» RAPPORT
Ecrire Savoir rédiger une réponse claire à une question
Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans
Édition 2014-2015 ADHERENT VOUS AUSSI, REJOIGNEZ CEUX QUI ONT LA PASSION DE CONSTRUIRE! FEDERATION DU BTP PUY-DE-DOME FEDERATION FRANÇAISE DU BATIMENT
Édition 2014-2015 FEDERATION FRANÇAISE DU BATIMENT ADHERENT FEDERATION DU BTP PUY-DE-DOME VOUS AUSSI, REJOIGNEZ CEUX QUI ONT LA PASSION DE CONSTRUIRE! NOTRE FAMILLE : LE BTP DOLLMEDIA BTP créée en 2010
Rappel sur les bases de données
Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-
VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r
Barre Supplémentaire 85x85 Barre Supplémentaire 85x30
Système de Pergola de Base Fixé au Sol Système de Pergola de Base Fixé au Sol Module Additionnel Système de Pergola de Base Amoviblé, avec Plaque de Pose Système de Pergola de Base Amoviblé, avec Plaque
Dérivées et différentielles des fonctions de plusieurs variables
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 6 : Dérivées et différentielles des fonctions de plusieurs variables Christelle MELODELIMA Année
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
09 nov. 2012 Retour d'expérience sur l'implémentation d'une plateforme Drupal / Drupal Commerce
09 nov. 2012 Retour d'expérience sur l'implémentation d'une plateforme Drupal / Drupal Commerce Jean-Philippe Mouton Linagora [email protected] / Agenda Introduction : Présentation de Drupal commerce,
1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D
SolidWorks Logiciel de DAO (Dessin Assisté par Ordinateur) Palonnier Servomoteur SOMMAIRE : 1 Création d une pièce 1-1 Réglage des barres d outils 1-2 Exemples de réalisation de pièces à l aide d un modeleur
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Caisson bas. Notice de montage. Pour caissons de taille : Structure du caisson. 1 personne 4. Retrouvez toutes les informations sur www.oskab.
Caisson bas Notice de montage Retrouvez toutes les informations sur www.oskab.com Pour caissons de taille : Hauteur x Largeur x Profondeur N N H4 x L60 x P56 cm H57 x L60 x P56 cm Structure du caisson
Paré pour e-mobility. Des solutions intelligentes pour toutes les infrastructures
Paré pour e-mobility Des solutions intelligentes pour toutes les infrastructures Bornes de recharge (HCD) 2 Accessoires pour bornes de recharge 12 Bornes de recharge murale 3 Mode d emploi de l app Smartphone
Bien concevoir son projet de SALLE DE BAINS
Bien concevoir son projet de SALLE DE BAINS Une salle de bains bien pensée...... Lapeyre vous aide à la réaliser Un projet bien préparé, c est la clé de la réussite. Avant de rencontrer un conseiller LAPEYRE,
FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA
FORMULES DE CALCUL Le prix : Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA Ex : PV TTC = 250 x 1,196 = 299. TVA = 250 x 19,6 % = 49. PV HT = 299 = 250.
