LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone."

Transcription

1 LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non vide et majorée de R admet une borne supérieure ; Théorème des gendrames ; Définition de la bijection (au sens injection et surjection). Soit I un intervalle de R non réduit à un point, et f une fonction à valeurs réelles définie sur I. 6. Image d un intervalle par une fonction continue 6.. Théorème des valeurs intermédiaires Théorème (T.V.I.) : Soient a, b I tels que a < b, et λ un réel compris entre f(a) et f(b). Alors il existe c [a, b] tel que f(c) = λ. démonstration : Avant de commencer, nous allons énoncer et démontrer deux lemmes qui seront utiles : Lemme (propriété de la borne supérieure) : Soit X une partie non vide et majorée de R. Soit c sa borne supérieure. Alors il existe une suite (x n ) d éléments de X qui converge vers c. démonstration : Comme c est la borne supérieure de X, il est le plus petit des majorants de X : ε >, x X c ε < x c. En particulier, n N, x n X c n < x n c. On en déduit (théorème des gendarmes) que la suite (x n ) converge vers c. Lemme : Soient X une partie non vide de R, (x n ) une suite d éléments de X qui converge vers un réel l X, et f une fonction continue en l et à valeurs dans R. Alors la suite ( f(x n ) ) converge vers f(l). démonstration : Soit ε >. Puisque f est continue en l, on a que η > x l < η f(x) f(l) < ε. Cependant, la suite (x n ) converge vers l, ce qui veut dire que pour ce réel η ci-dessus, N N n N x n l < η.

2 Image d un intervalle par une fonction continue Par transitivité des implications, on trouve alors que n N f(x n ) f(l) < ε, ce qui prouve que ( f(x n ) ) converge bien vers f(l). Nous allons donc pouvoir commencer la démonstration du T.V.I. Déjà, si f(a) = f(b), alors on a nécessairement λ = f(a) = f(b), et il suffit de choisir par exemple c = a pour conclure. On peut donc supposer dans la suite que f(a) < f(b) (quitte à choisir g = f si jamais f(a) > f(b)). Notons X = {x [a, b] f(x) λ}. Cet ensemble X est non vide : en effet, d après notre petite hypothèse, f(a) λ, donc a X. Cet ensemble X est majoré par b : c est clair, puisque X est inclus dans [a, b]. Cet ensemble X admet donc une borne supérieure c [a, b]. Montrons que f(c) λ : Comme c = supx, il existe une suite x n d éléments de X qui converge vers c. Mais puisque les x n sont dans X, ils vérifient l inégalité f(x n ) λ. Et enfin, puisque f est continue en c, le passage à la limite dans cette inégalité donne le résultat recherché : f(c) λ. Montrons que f(c) λ : Notons déjà que si c = b, alors f(c) = f(b) λ, et la démonstration s achève. Supposons alors que c < b. Puisque c = supx, on a x ]c, b], x X (c est-à-dire f(x) > λ). Soit alors (y n ) une suite d éléments de ]c, b] qui converge vers c (existe d après le lemme qu on peut très facilement adapter à la borne inférieure). On a donc f(y n ) > λ. Comme précédemment, la continuité de f au point c nous permet de passer cette inégalité à la limite afin d obtenir f(c) λ. Conclusion : On arrive donc à f(c) = λ, ce qui achève cette démonstration. Corollaire : Si f : I R est une fonction continue, alors f(i) est un intervalle. démonstration : Soient y et y dans f(i) tels que y y. Il s agit de montrer que tout élément λ de [y, y ] est élément de f(i) (par définition d un intervalle). Comme y, y f(i), il existe a et b tels que f(a) = y et f(b) = y. Puisque I est un intervalle, on a [a, b] I. Il s en suit que f continue sur [a, b] (en effet, [a, b] I et f est continue par hypothèse sur I) implique que λ [y, y ], c [a, b] f(c) = λ, en utilisant le T.V.I. On en déduit directement que λ f(i), d où le résultat. Remarques :. L hypothèse «f est une fonction continue» est suffisante, mais pas nécessaire : 4 } pas d antécédent! Condition suffisante......mais pas nécessaire!

3 Image d un intervalle par une fonction continue Dans le premier cas, la fonction f définie sur [, 7] n est pas continue, et on voit clairement que f(i) n est pas un intervalle. Dans le second cas, la fonction g est définie par : g : [, ] { [, ] x si x < x si x Cette fonction n est pas continue mais f([, ]) = [, ] est bien un intervalle.. Ce théorème ne fonctionne pas non plus si I n est pas un intervalle. En effet, la fonction f définie sur [, ] [, ] par f(x) = x est bien continue, mais f(i) = [, ] [, ] n est pas un intervalle.. Si I est un intervalle d un ensemble autre que R, le théorème ne fonctionnera pas : si f est le fonction définie sur I = [, ] Q par f(x) = x, alors f est bien continue sur I, mais f(i) n est pas un intervalle car (qui vérifie bien f() < < f()) n admet pas d antécédent par cette fonction. 4. Le T.V.I. donne un antécédent de λ, mais il n est pas fornément unique. En effet, si f est la fonction définie sur [, ] par f(x) = x, alors on sait que a deux antécédents : et. Voici les graphiques correspondant aux exemple des points, et 4 : I doit être un intervalle! n a pas d antécédent Deux antécédents Exercices :. Montrer que si f : [a,b] [a,b] avec a < b est une fonction continue, alors elle admet au moins un point fixe.. Montrer que tout polynôme à coefficients réels et de degré impair admet au moins une racine. Solution :. Définissons sur [a, b] la fonction g par g(x) = f(x) x, de sorte que g(a) = f(a) a > (car f(a) [a, b]) et g(b) = f(b) b < (car f(b) [a, b]). Puisque [g(b), g(a)], le T.V.I. nous assue l existence d un nombre c [a, b] tel que g(c) =, c est-à-dire f(c) = c.. Notons P un tel polynôme. Puisqu il est de degré impair, et quitte à considérer le polynôme Q = P, on peut supposer que lim P(x) = et lim P(x) =. x x Il existe donc deux réels a et b tels que a < b, P(a) < et P(b) >. Comme précédemment, puisque [P(a), P(b)], le T.V.I. nous donne une valeur c [a, b] tel que P(c) =.

4 4 Image d un intervalle par une fonction continue 6.. Image d un segment Proposition : Toute application continue f : [a, b] R est bornée et atteint ses bornes. démonstration : Montrons d abord que f est bornée : Supposons le contraire. Alors n N, u n [a, b] f(u n ) n. Mais on peut extraire (grâce au théorème de Bolzano-Weierstrass) une sous-suite (u ϕ(n) ) qui converge vers un réel λ [a, b]. Par le lemme, on aurait aussi que limf(u ϕ(n) ) = f(λ), ce qui est une contradiction : en effet, puisque ϕ est par définition strictement croissante, on a que qui tend, lui, vers +. f(u ϕ(n) ) ϕ(n) n, Montrons ensuite que f atteint ses bornes : Soit M = supf([a, b]). Alors, d après le lemme (page ), n N, x n [a, b] lim n x n = M. Cependant, on peut extraire de (x n ) une sous-suite (x ϕ(n) ) qui converge vers un réel λ [a, b] (car [a, b] est fermé). Toujours par le lemme, la limite de f(x ϕ(n) ) est f(λ). On en déduit que f(λ) = M, où l [a, b], et la borne supérieure est atteinte. Un raisonnement analogue permet de montrer que la borne inférieure est aussi atteinte. Définition : Un segment de R est un intervalle fermé et borné de R. Théorème : L image d un segment par une application continue est un segment. démonstration : f(i) est un intervalle d après le corollaire, et cet intervalle est borné et fermé d après la proposition. Remarques :. Une fonction non continue sur un intervalle n est pas forcément bornée. Considérer la fonction f : [, ] R { si x > x sinon.. Si l intervalle considéré dans le théorème n est pas un segment, alors on ne pourra pas conclure : soit parce que la fonction n atteindra pas ses bornes, soit plus simplement parce qu elle n est pas majorée.. Comme dans la remarque précédente, la continuité n est qu une condition suffisante dans la proposition et le théorème. On peut se contenter du même exemple déjà donné (reparque, point )...

5 Image d un intervalle par une fonction continue 5 6. Fonctions continues strictement monotones Proposition : Si f est monotone sur I et si f(i) est un intervalle, alors f est continue sur I. démonstration : Supposons pour cette démonstration que f est croissante. Nous allons raisonner par l absurde en supposant de plus que f n est pas continue en un certain point x. Dans ce cas, on aura nécessairement lim f(x) < f(x ) ( ) ou lim f(x) > f(x ) x x x x ( ). On ne va étudier que ce premier cas ( ), l autre se démontrant de manière analogue. Soit y un nombre de l intervalle ] lim x x f(x), f(x )[. Puisque I n est pas réduit à un point, il existe un réel u I ], x [ qui vérifie f(u) lim x x f(x) puisque f est croissante. f(i) étant un intervalle (par hypothèse), il devrait contenir le réel y. On devrait donc avoir ]f(u), f(x )[ I. Cependant, pour tout réel x < x, on a que f(x) lim x x f(x) et pour tout réel x x, on a f(x) f(x ), ce qui prouve que y ] lim x x f(x), f(x )[, ce qui est en contradiction avec ce qui est écrit légèrement plus haut. Théorème : Soit f : I R une fonction strictement monotone sur I. Alors : (i) f réalise une bijection de I sur f(i). (ii) La fonction réciproque f est continue (même strictement monotone) sur f(i) et de même sens de variations que f. (iii) Si f est dérivable en un point x I et si f (x ), alors f est dérivable en f(x ), et démonstration : (f ) ( f(x ) ) = f (x ). (i) Supposons f non injective. Il existe donc α et β dans I avec α β tels que f(α) = f(β). Ceci contredit le fait que f soit strictement monotone. f réalise donc bien une bijection de I sur f(i), car f : I f(i) est clairement surjective. (ii) Soient a, b f(i) tels que a < b. On suppose f strictement croissante. Il existe donc α et β dans I, avec α < β, tels que f(α) = a, f(β) = b. On en déduit que α = f (a) et β = f (b), donc que f (a) < f (b). Cec isignifie que f est strictement croissante (et a donc le même sens de variations que f). La proposition précédente s occupe de conclure que f est continue sur f(i) : en effet, f ( f(i) ) = I est bien un intervalle, et les hypothèses de la proposition sont bien remplies. (iii) Pour simplifier les notations, on pose X = f(x ) et X = f(x). Alors f (X) f (X ) = f ( ) f(x) f ( f(x ) ) x x = X X f(x) f(x ) f(x) f(x ) =. f(x) f(x ) x x Puisque X X f (X) x, le théorème de composition des limites permet de conclure d où le résultat. f (X) f (X ) lim = lim X X X X x x f(x) f(x ) = f (x ), x x

6 6 Image d un intervalle par une fonction continue Remarque :. Si f est dérivable en f(x ), alors il suffit de dériver la fonction f f = Id I en x pour obtenir (f ) ( f(x ) ) f (x ) =, d où f (x ) et la formule donnée en (iii). Avec les hypothèses du théorème, la condition f (x ) est donc équivalente à dire que f est dérivable en f(x ).. Si f est dérivable sur tout I et e s annule jamais sur I, alors f aussi, et de plus (f ) = f f. 6. Applications 6.. Racines Le T.V.I. nous donne en particulier que si f est une fonction continue de [a,b] R avec f(a) f(b) <, alors f admet au moins une racine dans l intervalle ]a,b[ (bords exclus, car la condition f(a) f(b) < implique f(a) et f(b), c est-à-dire que les racines de f ne peuvent être a ou b). Par exemple, la fonction f : [ ], π R x sin x est continue (voir courbe ci-dessous) sur son intervalle de définition, et l on vérifie aisément que f() = / > et f(π/) <. On en déduit qu il existe au moins une racine de f dans l intervalle ], π/[ : π π π 6.. Réciproques de fonctions Les quatre fonctions f : R + R + x n, sin : [ π/, π/] [, ] sin x cos : [,π] [, ] cos x et tan : ] π/,π/[ [, ] tan x sont toutes continues, et strictement monotones (respectivement croissante, décroissante, croissante et croissante). Elles définissent donc chacun une fonction réciproque qui respecteront le sens de variations. Cellesci se notent : n : R+ R + n x, arccos : [, ] [,π] arccos x, arcsin : [, ] [ π/, π/] arcsin x et arctan : [, ], ] π/,π/[ arctan x Cela dit, il existe des fonctions pour lesquelles l expression de la réciproque n est pas aisée à trouver. Mais une fonction f et sa réciproque vérifient toutes les deux une propriété géométrique due au fait que

7 Image d un intervalle par une fonction continue 7 «f f = f f = Id» : leurs courbes représentatives dans un repère orthonormé sont symétriques par rapport à la première bissectrice (droite d équation y = x). Traçons les quatre précédentes courbes et leurs réciproques respectives pour s en convaincre (en rouge chaque fonction, en bleu sa réciproque) : Fonction carré Fonction cos Fonction sin 4 Fonction tan 6.. Dérivation De manière évidente, la théorème nous donne des formules très intéressantes pour la dérivée des réciproques des fonctions cos et sin. En effet, remarquons déjà que comme cos (resp. sin) est positif sur l intervalle [ π/,π/] (resp. [,π]), on a cos(x) = sin x cos(arcsin x) = x et On en déduit alors que : arccos ( cos(x) ) = cos (x) = sin x De la même manière, on montre que sin(x) = cos x sin(arccos x) = x. arcsin (x) = arccos (x) = sin(arccos x) =. x x. Pour finir, puisque on a que tan x = ( ) sin x = sin x cos x sin x cos x cos x cos x arctan (tanx) = tan x = + tan x = cos x + sin x cos x = + tan x, arctan (x) = + x. c par Martial LENZEN. Aucune reproduction, même partielle, autres que celles prévues à l article L. -5 du code de la propriété intellectuelle, ne peut être faite sans l autorisation expresse de l auteur.

remarque : le TVI est plus souvent écrit sous la forme suivante (avec les mêmes hypothèses) : γ [ f (a), f (b) ], c Itq. f (c)=γ

remarque : le TVI est plus souvent écrit sous la forme suivante (avec les mêmes hypothèses) : γ [ f (a), f (b) ], c Itq. f (c)=γ Exposé 64 : Image d un intervalle par une fonction continue, image d un segment. Continuité de la fonction réciproque d une fonction continue strictement monotone sur un intervalle. Prérequis : -Propriété

Plus en détail

LEÇON N 75 : 75.1 Extremums. Pré-requis : Notions de continuité et de dérivabilité ; Formule de Taylor-Young ; f continue m,m f([a,b]) [m,m].

LEÇON N 75 : 75.1 Extremums. Pré-requis : Notions de continuité et de dérivabilité ; Formule de Taylor-Young ; f continue m,m f([a,b]) [m,m]. LEÇON N 75 : Applications de la dérivation à l étude d extrémums éventuels d une fonction numérique d une variable réelle. Exemples. L exposé pourra être illustré par un ou des exemples faisant appel à

Plus en détail

Les fonctions réciproques

Les fonctions réciproques DOCUMENT 28 Les fonctions réciproques 1. Introduction et définition Pour tout ensemble E, il existe une loi de composition naturelle sur l ensemble des applications de E dans E qui est la composition des

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

LEÇON N 66 : Théorème de Rolle. Applications.

LEÇON N 66 : Théorème de Rolle. Applications. LEÇON N 66 : Théorème de Rolle. Applications. Pré-requis : Notions de limite, continuité, dérivabilité ; Théorème des valeurs intermédiaires ; L image d un segment par une application continue est un segment.

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Bcpst 1 27 février 2017 Notations du chapitre Dans tout ce chapitre, et sauf mention contraire : I est un intervalle de non vide et non réduite à un point ; est un domaine

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Corrigé du TD n o 11

Corrigé du TD n o 11 CPP 03/04 Fonctions réelles J. Gillibert Corrigé du TD n o Exercice Soient f et g deux fonctions continues R R. On suose que : x Q, f(x = g(x Montrer que f = g. Réonse : Raelons d abord le résultat suivant

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

Limites et Continuité

Limites et Continuité Voisinages, Points adhèrents Limites Fonctions continues Les grands théorèmes sur les fonctions continues Département de Mathématiques, Faculté des Sciences de Fès. Octobre 2013 Voisinages, Points adhèrents

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Plan du chapitre Fonctions continues sur un intervalle...... page. Définitions...... page. Fonctions continues et opérations.......page Les grands théorèmes... page 3. Le théorème

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Limites et continuité des fonctions

Limites et continuité des fonctions (*) WWW.SEGBM.NET Portail des étudiants d'économie Limites et continuité des fonctions numériques 1 Généralités sur les fonctions numériques 1.1 Quelques définitions 1.1.1 fonction numérique Une fonction

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des exercices

Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des exercices Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des eercices Tatiana Labopin-Richard 28 janvier 205 Problèmes de limites Eercice : Trouver les limites suivantes

Plus en détail

ENSEMBLES ET APPLICATIONS

ENSEMBLES ET APPLICATIONS ENSEMBLES ET APPLICATIONS 1 Applications : définitions ensemblistes Définition 1.1 Application Soient E et F deux ensembles. On appelle application de E dans F un objet { mathématique f qui à tout élément

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Corrigé des Exercices d approfondissement du chapitre 0.

Corrigé des Exercices d approfondissement du chapitre 0. Corrigé des Exercices d approfondissement du chapitre 0. Exercice 0.17. Supposons que g f soit surjective et montrons que g est surjective. Soit z G. Comme g f est surjective, il existe x E tel que g f(x)

Plus en détail

Dérivabilité d une fonction numérique.

Dérivabilité d une fonction numérique. 34 Chapitre 6 Dérivabilité d une fonction numérique. 6.1 Taux d accroissement Définition : Soient f une fonction numérique et I D f un intervalle ouvert. Soit c I, on appelle taux d accroissement de f

Plus en détail

Fonctions Numériques :

Fonctions Numériques : Fonctions Numériques : Limites et continuité. 1. Notion de limites Dénitions, opérations et Exemples. 2. Fonctions monotones. (a) Dénitions. (b) Limites des fonctions monotones. 3. Fonctions continues.

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

Exercices du chapitre 4 avec corrigé succinct

Exercices du chapitre 4 avec corrigé succinct Exercices du chapitre 4 avec corrigé succinct Exercice IV.1 Ch4-Exercice1 Montrer que l intersection d un nombre fini de voisinages de a est un voisinage de a. Soient (V k=1,...,p ) p voisinages de a.

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

LEÇON N 51 : Fonctions polynômes du second degré.

LEÇON N 51 : Fonctions polynômes du second degré. LEÇON N 51 : Pré-requis : Dérivabilité, continuité des fonctions numériques ; Notions d espaces vectoriels, de sous-espaces vectoriels ; Formule du binôme de Newton On se place dans un corps K, généralement

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

et f(x) = Interprétation graphique : Une fonction est continue sur un intervalle, si on peut la dessiner d un seul trait sans lever le crayon.

et f(x) = Interprétation graphique : Une fonction est continue sur un intervalle, si on peut la dessiner d un seul trait sans lever le crayon. Continuité 1 Généralités 1.1 Continuité en un point Soit f une fonction d une variale réelle définie sur un intervalle I et x 0 I. En particulier, f est définie en x 0. Définition (Rappel) 1. Onditquef

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Limites de fonctions

Limites de fonctions Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Chapitre 8 : Fonctions continues

Chapitre 8 : Fonctions continues Ce document est mis à disposition selon les termes de la licence Creative Commons «Attribution - Partage dans les mêmes conditions 4.0 International». https://melusine.eu.org/syracuse/immae/ Chapitre 8

Plus en détail

Suites récurrentes du type u n+1 = f(u n )

Suites récurrentes du type u n+1 = f(u n ) Suites récurrentes du type u n+ = f(u n ) Exemple : Soit la suite définie par la relation de récurrence : n N u n+ = u n u 2 n. En posant f la fonction définie sur R par x x x 2, on obtient que pour tout

Plus en détail

Corrigés d exercices pour les TD 1 et 2

Corrigés d exercices pour les TD 1 et 2 Corrigés d exercices pour les TD et 2 Soit E = C 0 ([0, ]; R) et A = {f E; f(x) 0 pour tout x [0, ]}.. Montrer que les applications qui à tout élément (f, g) E 2 associent respectivement d (f, g) = définissent

Plus en détail

Formule de Taylor-Lagrange

Formule de Taylor-Lagrange Formule de Taylor-Lagrange Exercice. Soit x un réel strictement positif et f une fonction sur [0, x].. Quelles sont les hypothèses qui permettent d écrire la formule de Taylor-Lagrange pour f sur [0, x]

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Math I Analyse Feuille 4 : Fonctions, fonctions continues

Math I Analyse Feuille 4 : Fonctions, fonctions continues Math I Analyse Feuille 4 : Fonctions, fonctions continues 1 Quelques calculs élémentaires 11 Limites On rappelle les limites suivantes : lim ep = + et lim ep = 0 lim ln = + et lim ln = 0 Eercice 1 Soit

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Devoir maison sur les suites - Exemples d application

Devoir maison sur les suites - Exemples d application 9- HKBL suites récurrentes u n+ = f(u n ) / 9 Devoir maison sur les suites - Eemples d application Voici la liste des eercices corrigés : Eercice : (niveau ) Étudier la suite (u n ) définie par u R et

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Formules de Taylor. Applications.

Formules de Taylor. Applications. CAPES 27 Décembre 27 Oral Analyse Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis. Continuité, dérivabilité, inégalité des accroissements finis,

Plus en détail

Exercices d Analyse 1

Exercices d Analyse 1 Exercices d Analyse 1 Année 2016-2017 François Simenhaus Bureau B 640 simenhaus@ceremade.dauphine.fr 2 3 Feuille d exercices n 1 : Nombres réels Exercice 1. 1. Parmi les assertions suivantes, lesquelles

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Exercices : Fonctions continues

Exercices : Fonctions continues Eercices : Fonctions continues Eercice 1 Sur quels ensembles les fonctions suivantes sont elles continues? sin() si 0 1) f : 2) f : E() 2 si = 0 3) f : sin(π)e() 4) f : sin() sin( 1 ) si 0 0 si = 0 Eercice

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

Chapitre 5 Espaces métriques connexes

Chapitre 5 Espaces métriques connexes Chapitre 5 Espaces métriques connexes Semaine 1 : Etude du paragraphe 1 et des sous-paragraphes 2.1 et 2.2. Faire les exercices d apprentissage 5.1 5.11 et les exercices d approfondissement 5.18 5.20.

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Dérivabilité des fonctions réelles

Dérivabilité des fonctions réelles Chapitre 3 Dérivabilité des fonctions réelles La notion de dérivée est une notion fondamentale en analyse. Elle permet d étudier les variations d une fonction, de construire des tangentes à une courbe

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Chapitre 10 : Continuité

Chapitre 10 : Continuité Chapitre 0 : Continuité PTSI B Lycée Eiffel 23 janvier 204 Un prof de maths explique à une blonde comment montrer que lim x 8 =. La blonde assure avoir parfaitement compris. Pour vérifier, le prof lui

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

Continuité sur un intervalle.

Continuité sur un intervalle. 1. Continuité d'une fonction... p2 2. Le théorème des valeurs intermédiaires... p5 Copyright meilleurenmaths.com. Tous droits réservés 1. Continuité d'une fonction 1.1. Continuité en un point Définition

Plus en détail

Suites récurrentes et méthode de Newton approche progressive

Suites récurrentes et méthode de Newton approche progressive Suites récurrentes et méthode de Newton approche progressive Ce document vient en complément du chapitre 6 du livre Informatique, programmation et calcul scientifique en Python et Scilab, publié chez ellipses.

Plus en détail

Un complément à la leçon sur l équation fonctionnelle de la fonction exponentielle

Un complément à la leçon sur l équation fonctionnelle de la fonction exponentielle Préparation au CAPES Strasbourg, octobre 2008 Un complément à la leçon sur l équation fonctionnelle de la fonction eponentielle Il est naturel de construire la leçon Caractérisation des fonctions eponentielles

Plus en détail

Fiche méthodologique Suites récurrentes réelles u n+1 = f(u n )

Fiche méthodologique Suites récurrentes réelles u n+1 = f(u n ) Fiche méthodologique Suites récurrentes réelles u n+1 = f(u n ) BCPST Lycée Hoche $\ CC BY: = Pelletier Sylvain Tous les résultats donnés sur cette fiche sont à redémontrer au cas par cas. Le programme

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

Limites et continuité

Limites et continuité Chapitre 5 Limites et continuité Les buts de ce chapitre sont : connaître les définitions des ites et de la continuité d une fonction en un point, savoir démontrer qu une fonction admet une ite comme on

Plus en détail

Convexité. Plan du chapitre

Convexité. Plan du chapitre Convexité Plan du chapitre I - Parties convexes d un espace vectoriel...page Barycentres...... page Convexes.......page 3 -a Segments...... page 3 -b Parties convexes d un espace vectoriel....page 3 -c

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 4 : Limites et continuité Équipe de Mathématiques Appliquées UTC avril 2011 suivant Chapitre IV Limites et continuité IV.1 Limites..................................

Plus en détail

Résolution d équations non linéaires. 1. Méthode de dichotomie

Résolution d équations non linéaires. 1. Méthode de dichotomie Agrégation interne UFR MATHÉMATIQUES Résolution d équations non linéaires On considère une fonction réelle f définie sur un intervalle [a, b], avec a < b, et continue sur cet intervalle et on suppose que

Plus en détail

Chapitre 5. Applications

Chapitre 5. Applications Chapitre 5 Applications 1. Définitions et exemples Définition 5.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Etude de suites définies par différents types de récurrence

Etude de suites définies par différents types de récurrence Etude de suites définies par différents types de récurrence F.Gaudon 22 juillet 2005 Table des matières 1 Suites arithmétiques 2 2 Suites géométriques 2 3 Suites arithmético-géométriques 3 4 Suites récurrentes

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

CHAPITRE 19 Dérivation des fonctions d une variable réelle

CHAPITRE 19 Dérivation des fonctions d une variable réelle CHAPITRE 19 Dérivation des fonctions d une variable réelle Sommaire 19.1 Nombre dérivé et fonction dérivée........................... 2 19.1.1 Définitions......................................... 2 19.1.2

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

1 Généralités sur les fonctions réelles

1 Généralités sur les fonctions réelles Arnaud de Saint Julien - MPSI Lycée La Merci 016-017 1 Synthèse de cours sur l analyse réelle Dans tout le chapitre, I désigne un intervalle non réduit à un point. On note I l intervalle I auquel on a

Plus en détail

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc.

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc. 1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière SMIA : Exercices avec Corrigés Analyse 1 : Par BENAZZOUZ HANA Série1

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

Bijections et continuité

Bijections et continuité CHAPITRE 7 Bijections et continuité 7.1 Images et antécédants 7.1.1 Images directes et images réciproques Dénition 1 Soit x E. Alors l'élément f(x) est appelé l'image de x par f. Soit y F. Si z est un

Plus en détail