Second degré. Second degré. Classe de première S et ES/L.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Second degré. Second degré. Classe de première S et ES/L."

Transcription

1 Second degré Classe de première S et ES/L. Second degré Introduction... Séquence I. Fonction polynôme de degré...3 II. Forme canonique d'une fonction polynôme de degré...3 III. Variations et représentation graphique...5 1) Si a > ) Si a < Séquence...7 I. Résolution d'une équation du second degré...7 II. Factorisation d'un trinôme...8 III. Signe d'un trinôme...10 IV. Algorithme Algobox résolution équation du second degré...1 Livre 1 (L1) A. Gniady Second degré page 1 / 13

2 Le second degré est présent partout ou presque... Introduction On trouve cette forme parabolique en architecture ou en balistique comme le montrent les exemples suivants : Saint-Louis Abbey, aux formes paraboliques se trouve à Crève- Coeur dans le Missouri. On trouve aussi la présence du second degré dans le lancer des projectiles dans un champ de gravitation tel que celui de la Terre. Le ballon, lancé en l'air et sans effet suit une trajectoire parabolique parfaite. Il en est de même pour le boulet de canon. Les paraboles1 utilisées pour recevoir la télévision par satellite ne sont pas nommées ainsi par hasard. La forme parabolique (on parle de paraboloïde) permet de concentrer le signal sur le récepteur situé au foyer. C'est une caractéristique géométrique de cette courbe. Nous allons maintenant nous diriger vers l'étude théorique des paraboles et des expressions du second degré qui leur sont associées. A. Gniady Second degré page / 13

3 Séquence 1 I. Fonction polynôme de degré L1 L1 :: activité 1p48 1p48 Définition : On appelle fonction polynôme de degré toute fonction f définie sur R par une expression de la forme : = a x² + b x + c où les coefficients a, b et c sont des réels donnés avec a 0. Remarque : Une fonction polynôme de degré s'appelle également fonction trinôme du second degré ou par abus de langage "trinôme". Exemples et contre-exemples : = 3 x² 7 x + 3 g( x) = 3 x² + x + 5 h( x) = 4 x² k ( x) = ( x 4)(x + 3) sont des fonctions polynômes de degré. m(x) = 5 x 3 est une fonction polynôme de degré 1 (fonction affine). n(x) = x 4 3 x 3 + x 5 x + 3 est une fonction polynôme de degré 4. II. Forme canonique d'une fonction polynôme de degré Théorème 1 : Toute fonction f polynôme de degré définie sur R par = a x² + b x + c peut s'écrire sous la forme : = a( x α) + β, où α et β sont deux nombres réels. On a α = b et β = f (α) a Cette dernière écriture s'appelle la forme canonique de f. Démonstration : Puisque a 0, = a ( x² + b a x ) ( x + b a ). En effet : ( x + b a ) = x + b a x+ ( b a ). On en déduit que x + b a x = ( x + b a ) b Il en résulte que = a[( x + b a ) = a ( x + b a ) + c. Entre parenthèses, on reconnaît le début du développement de. 4a 4a ] + c b b 4ac 4a En posant α = b a et β = b 4ac, on obtient = a( x α) + β. 4a A. Gniady Second degré page 3 / 13

4 Exemples : = 3(x + 1) + 7 a = 3 ; α = 1 ; β = 7 g( x) = ( x + 5) 4 a = ; α = 5 ; β = 4 h( x) = 3 (x 3) a = 3 ; α = 3 ; β = 7 3 Méthode : Démontrer qu une expression est la forme canonique d'une fonction polynôme de degré. Soit la fonction f définie sur R par : = x² 0 x ) Démontrer que f ( x) = ( x 5) 40 est la forme canonique de f. Méthode 1 : Méthode : = x² 0 x + 10 = (x² 10 x) + 10 = (x 5)² = (x 5)² 40 (x 5) 40 = (x² 10 x + 5) 40 = x² 0 x = x² 0 x + 10 = A. Gniady Second degré page 4 / 13

5 III. Variations et représentation graphique Exemple : Soit la fonction f donnée sous sa forme canonique par : = (x 1) + 3 Alors : 3 car ( x 1) est positif. Or f (1) = 3 donc pour tout x, f (1). f admet donc un minimum en 1. Ce minimum est égal à 3. Propriété : Soit f une fonction polynôme de degré définie par = a( x α) + β, avec a 0. - Si a > 0, f admet un minimum pour x = α. Ce minimum est égal à β. - Si a < 0, f admet un maximum pour x = α. Ce maximum est égal à β. 1) Si a > 0 x α + β ) Si a < 0 x α + β A. Gniady Second degré page 5 / 13

6 Dans un repère orthogonal (O, i, j ), la représentation graphique d'une fonction polynôme de degré est une parabole. M est le sommet de la parabole. Il correspond au maximum ou au minimum de la fonction f. La parabole possède un axe de symétrie. Il s'agit de la droite (verticale) d'équation x = α. Méthode : Représenter graphiquement une fonction polynôme de degré Soit la fonction f définie sur R par : = x² + 4 x. 1) Démontrer que f ( x) = ( x ) + 4 est la forme canonique de f. ) Représenter graphiquement la fonction f. 1) ( x ) + 4 = ( x² 4 x + 4) + 4 = x² + 4 x = ) On a donc = (x ) + 4. f admet donc une maximum pour x =. Ce maximum est égal à égal à 4 : f () = ( ) + 4 = 4 Les variations de f sont donc données par le tableau suivant : x + 4 A. Gniady Second degré page 6 / 13

7 Séquence I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme a x² + b x + c = 0 où a, b et c sont des réels avec a 0.. Une solution de cette équation s'appelle une racine du trinôme a x² + b x + c. Exemple : L'équation x² + 3 x 1 = 0 est une équation du second degré. Définition : On appelle discriminant du trinôme a x² + b x + c, le nombre réel, noté Δ, égal à b 4ac. Exemple : Le discriminant de l équation x² + 3 x 1 = 0 est 17 : = 3² 4 x x (-1) = = 17 (a =, b = 3 et c = -1). Théorème : Soit Δ le discriminant du trinôme a x² + b x + c. Si Δ < 0 : l'équation a x² + b x + c = 0 n'a pas de solution réelle. Si Δ = 0 : l'équation a x² + b x + c = 0 a une unique solution x 0 = b a. Si Δ > 0 : l'équation a x² + b x + c = 0 a deux solutions distinctes : x 1 = b Δ a et x = b + Δ a Démonstration : Reprenons la forme canonique de la démonstration du théorème 1 : = a ( x + b a ) b 4ac 4a f (x ) = a[( x + b a ) Δ 4a ] Si Δ < 0, alors Δ est strictement positif. Il en est de même pour l'expression entre crochets. 4a Est le produit de deux facteurs non nuls. L'équation =0 n'a donc pas de solution. Si Δ = 0, alors = a ( x + b a ). Ainsi puisque a 0, =0 équivaut à ( x + b a ) = 0. L'équation a donc une unique solution : x 0 = b a. Si Δ > 0, alors Δ = Δ et = a[( x + b L'équation a donc deux solutions : x 1 = a ) b Δ a ( Δ a ) et x = ] = a[( x + b Δ a b + Δ. a )( x + b+ Δ a )]. A. Gniady Second degré page 7 / 13

8 En posant α = b a et β = b 4ac, on obtient = a( x α) + β. 4a Méthode : Résoudre une équation du second degré. Résoudre les équations suivantes : 1) x² x 6 = 0 ) x² 3x + 9 = 0 3) x² + 3 x + 10 = 0 8 1) Calculons le discriminant de l'équation x² x 6 = 0 : Δ = b 4ac = ( 1) 4 ( 6) = = 49 Comme Δ > 0, l'équation possède deux solutions distinctes : b Δ ( 1) 49 x 1 = = = 3 x a 1 = Donc les solutions de cette équation sont : S = { 3 ; } b + Δ a = ( 1) + 49 = ) Calculons le discriminant de l'équation x² 3x = 0 : Δ = b 4ac = ( 3) 4 ( 9 8 ) = 9 9 = 0 Comme Δ = 0, l'équation possède une solution : x 0 = b a = ( 3) = 3 4 S = { 3 4 } 3) Calculons le discriminant de l'équation x² + 3 x + 10 = 0 : Δ = b 4ac = = 31 Comme Δ < 0, l'équation ne possède pas de solution réelle. S = II. Factorisation d'un trinôme Propriété : Soit f une fonction polynôme de degré définie sur R par = a x² + b x + c. Si Δ = 0 : pour tout réel x on a = a( x x 0 ) Si Δ > 0 : pour tout réel x on a = a( x x 1 )(x x ) - propriété admise - Remarque : Si Δ < 0, on n'a pas de forme factorisée de f. A. Gniady Second degré page 8 / 13

9 Méthode : Factoriser un trinôme Factoriser les trinômes suivants : 1) f ( x) = 4 x² + 19 x 5 ) g ( x) = 9 x² 6 x + 1 1) On cherche les racines du trinôme = 4 x² + 19 x 5 Calcul du discriminant : Δ = 19² 4 x 4 x (-5) = Les racines sont : x 1 = = 5 x 4 = On a donc : = 4 x² + 19 x 5 = 4 ( x ( 5)) ( x 1 4) = ( x+5 ) (4 x 1) = 1 4 Une vérification à l'aide de la calculatrice n'est jamais inutile! On peut lire une valeur approchée des racines sur l'axe des abscisses. ) On cherche les racines du trinôme g ( x) = 9 x² 6 x + 1 Calcul du discriminant : Δ = (-6)² 4 x 9 x 1 = 0 La racine (double) est : x 0 = ( 6) 9 = 1 3 On a donc : g( x) = 9 x² 6 x + 1 = 9 ( x 1 3) = (3x 1) A. Gniady Second degré page 9 / 13

10 III. Signe d'un trinôme Remarque préliminaire : Pour une fonction polynôme de degré définie par = a x² + b x + c : si a > 0, sa représentation graphique est une parabole tournée vers le haut : si a < 0, sa représentation graphique est une parabole tournée vers le bas : Théorème 3 : Soit f une fonction polynôme de degré définie sur R par = a x² + b x + c. Si Δ < 0 : a > 0 a < 0 x + Signe de a L équation f(x)=0 n a pas de solution donc la courbe de f ne traverse pas l axe des abscisses. Si Δ = 0 : x x 0 + Signe de a 0 Signe de a L'équation f(x)=0 a une solution unique donc la courbe de f a son extremum sur l axe des abscisses. Si Δ > 0 : x x 1 x + Signe a 0 Signe -a 0 Signe a L équation f(x)=0 a deux solutions donc la courbe de f traverse l axe des abscisses en deux points. Démonstration : On démontre facilement ce théorème en utilisant la forme = a[( x + b a ) Δ 4a ] et la forme = a( x x 1 )(x x ) pour Δ > 0. pour Δ<0 et Δ=0 A. Gniady Second degré page 10 / 13

11 Méthode : Résoudre une inéquation Résoudre l inéquation suivante : x² + 3 x 5 < x + On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier le signe du trinôme. x² + 3 x 5 < x + Équivaut à x² + 4 x 7 < 0 Le discriminant de x² + 4 x 7 est Δ = 4² 4 x 1 x (-7) = 44 et ses racines sont : 4 x 1 = = 11 x 1 1 = 44 = On obtient le tableau de signes : x L'ensemble des solutions de l'inéquation x² + 3 x 5 < x + est donc : S = [ 11; + 11] Vérification : On peut lire une valeur approchée des racines sur l'axe des abscisses. Un logiciel de calcul formel permet également de contrôler le résultat : A. Gniady Second degré page 11 / 13

12 IV. "Exercices types" second degré Équations bicarrées... Avec des taux d'évolution... Coûts, recettes et bénéfices Positions relatives... A. Gniady Second degré page 1 / 13

13 V. Algorithme Algobox résolution équation du second degré 1 VARIABLES a EST_DU_TYPE NOMBRE 3 b EST_DU_TYPE NOMBRE 4 c EST_DU_TYPE NOMBRE 5 delta EST_DU_TYPE NOMBRE 6 x0 EST_DU_TYPE NOMBRE 7 x1 EST_DU_TYPE NOMBRE 8 x EST_DU_TYPE NOMBRE 9 DEBUT_ALGORITHME 10 AFFICHER "Resolution d'une equation du second degre" 11 AFFICHER "entrez les coefficients du trinome du second degre" 1 LIRE a 13 LIRE b 14 LIRE c 15 SI (a==0) ALORS 16 DEBUT_SI 17 AFFICHER "Ceci n'est pas un trinome du second degre" 18 FIN_SI 19 SINON 0 DEBUT_SINON 1 delta PREND_LA_VALEUR pow(b,)-4*a*c AFFICHER "delta=" 3 AFFICHER delta 4 SI (delta<0) ALORS 5 DEBUT_SI 6 AFFICHER "L'equation n'admet pas de solution" 7 FIN_SI 8 SINON 9 DEBUT_SINON 30 SI (delta==0) ALORS 31 DEBUT_SI 3 AFFICHER "L'equation admet une solution" 33 x0 PREND_LA_VALEUR -b/(*a) 34 AFFICHER "x0=" 35 AFFICHER x0 36 FIN_SI 37 SINON 38 DEBUT_SINON 39 AFFICHER "l'equation admet deux solutions" 40 x1 PREND_LA_VALEUR (-b-sqrt(delta))/(*a) 41 x PREND_LA_VALEUR (-b+sqrt(delta))/(*a) 4 AFFICHER "x1=" 43 AFFICHER x1 44 AFFICHER "x=" 45 AFFICHER x 46 FIN_SINON 47 FIN_SINON 48 FIN_SINON FIN_ALGORITHME 51 5 Fonction numérique utilisée : 53 F1(x)=a*x^+b*x+c Liste d'exercices : Inéquations : 75, 76 p 49 Bénéfices : 95 p 53 ; 107 p 59 Architect : 104 p 57 Pos. Relative : 90 p 5 A. Gniady Second degré page 13 / 13

Second degré Forme canonique d un trinôme Exercices corrigés

Second degré Forme canonique d un trinôme Exercices corrigés Second degré Forme canonique d un trinôme Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : reconnaître une forme canonique Exercice 2 :

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Introduction aux algorithmes avec Algobox Gestion d entrée et sortie

Introduction aux algorithmes avec Algobox Gestion d entrée et sortie Introduction aux algorithmes avec Algobox Gestion d entrée et sortie 1 prise en main Le but de l algorithme de prise en main est de faire calculer (par la machine) le milieu de deux nombres a et b donnés

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Notes de cours de Mathématiques en première ES/L

Notes de cours de Mathématiques en première ES/L Notes de cours de Mathématiques en première ES/L O. Lader 1 Table des matières 1 Pourcentages, taux d évolution (4S) 3 1.1 Évolution........................................... 3 2 Fonctions du second degré

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

Séance de travaux pratiques n 1 Quelques éléments de correction

Séance de travaux pratiques n 1 Quelques éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Séance de travaux pratiques n 1 Quelques éléments

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème :

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème : Chapitre 1 Ce que dit le programme Le second degré CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Second degré Forme canonique d une fonction polynôme de degré deux. Équation du second degré, discriminant.

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

Devoir à la maison en algorithmique (2 nde )

Devoir à la maison en algorithmique (2 nde ) Devoir à la maison en algorithmique (2 nde ) Introduction Quel constat : Les devoirs à la maison permettent de soutenir les apprentissages des élèves et prennent en compte la diversité des aptitudes des

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

COURS DE PREMIERE STI2D

COURS DE PREMIERE STI2D COURS DE PREMIERE STID Table des matières ALGORITHMIQUE...5 I GENERALITES...5 II AVEC UNE CALCULATRICE....5 III L instruction conditionnelle....6 IV La boucle itérative....7 V La boucle conditionnelle....7

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200 Suite arithmétique ENONCE : Une société de téléphonie mobile propose un nouveau forfait à partir du mois de janvier 2009. En janvier 2009, elle a enregistré 2000 abonnements souscrits pour ce forfait.

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Table des matières LES FONCTIONS POLYNOMIALES

Table des matières LES FONCTIONS POLYNOMIALES Table des matières LES FONCTIONS POLYNOMIALES 1 Différents types de fonctions polynomiales Étude des différentes fonctions polynomiales.1 Les fonctions constantes.1.1 La fonction constante de base.1. La

Plus en détail

La fonction racine carrée. Document B. Table des matières

La fonction racine carrée. Document B. Table des matières 1 La fonction racine carrée Document B Table des matières - Résolution algébriques d équations avec racine carrée, p.2 à 8; - Règles sous la forme canonique avec b 1 et b = 1, p.9-10; - Équation axe de

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Première S Exercices d'applications sur la dérivation 2010-2011. Déterminer l'ensemble de définition de f puis étudier ses variations.

Première S Exercices d'applications sur la dérivation 2010-2011. Déterminer l'ensemble de définition de f puis étudier ses variations. Première S Eercices d'applications sur la dérivation 22 Eercice Déterminer l'ensemble de définition de f puis étudier ses variations. ) f() = 2 2 3 2) f() = 2² 8 2 ² 2 3) f() = 2 3 Eercice 2 : équation

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Mathématiques Secondes

Mathématiques Secondes Mathématiques Secondes 2 Table des matières 0 Algorithmique 5 1 Repérage 9 2 Équations et Inéquations du premier degré 13 3 Géométrie dans l espace 17 4 Généralités sur les fonctions 19 5 Statistiques

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

66 exercices de mathématiques pour Terminale ES

66 exercices de mathématiques pour Terminale ES 3 novembre 205 66 exercices de mathématiques pour Terminale ES Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 3 novembre 205 I Suites........................................ I. Suite

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Cours de mathématiques Première ES/L

Cours de mathématiques Première ES/L Cours de mathématiques Première ES/L Chapitre 1 Pourcentages...3 I Proportions...3 II Taux d'évolution...3 a) Détermination d'un taux d'évolution...3 b) Appliquer un taux d'évolution...4 III Taux réciproque...4

Plus en détail

LES TABLETTES DE CHOCOLAT

LES TABLETTES DE CHOCOLAT LES TABLETTES DE CHOCOLAT PARIS Nicolas et PENGAM Matthieu, 1 ère S Cité Scolaire Môquet-Lenoir Résolution de cas simples Durant nos quelques mois de travail, nous nous sommes d'abord orientés vers la

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polycopié conforme au programme 01, regroupe des documents distribués aux élèves en cours d année. CERTAINS CHAPITRES DU PROGRAMME NE SONT PAS TRAITÉS Année 013-014

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Algorithmique en classe de terminale avec AlgoBox. (programme obligatoire)

Algorithmique en classe de terminale avec AlgoBox. (programme obligatoire) Algorithmique en classe de terminale avec AlgoBox (programme obligatoire) Version 1.0 - Mai 2013 Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Pas d utilisation

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

Séquence 5. La fonction logarithme népérien

Séquence 5. La fonction logarithme népérien Séquence 5 La fonction logarithme népérien Sommaire. Pré-requis. Définition et propriétés algébriques de la fonction logarithme népérien 3. Étude de la fonction logarithme népérien 4. Compléments 5. Synthèse

Plus en détail

Chapitre 5 : Fonctions de Référence

Chapitre 5 : Fonctions de Référence Cours de de Chapitre 5 : Fonctions de Référence Dans ce chapitre nous allons étudier types de fonctions : les fonctions affines (déjà vu en ème), les fonctions polynôme de degré (dont la fonction carré)

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Bases d algorithmique

Bases d algorithmique Bases d algorithmique Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Un peu de vocabulaire 2 1.1 Qu est-ce qu un algorithme?....................................... 2 1.2 Variable, affectation...........................................

Plus en détail

Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion

Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion L enseignement des mathématiques au collège et au lycée

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail