Le déterminant dans le plan

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le déterminant dans le plan"

Transcription

1 Le déterminant dans le plan Leçon (supprimée en 1993): Définition et propriétés du déterminant de deux vecteurs du plan. Expression dans une base orthonormée. Applications géométriques. Je propose: I: Définition du déterminant Théorème: Soit ( i, j une base orthonormée directe du plan orienté. Soit U (x,y) et V (x',y') deux vecteurs non nuls de ce plan. Alors xy' yx' = U V sin (U, V) En effet si ( i,u = α, et (U, V = ω, alors ( i, V = α+ω. Et nous avons (x,y) = ( U cos α, U sin α) (x',y') = ( V cos (α+ω), V sin (α+ω)) Il en résulte que xy' yx' = U V [cos α sin (α+ω) cos (α+ω) sin α] = U V sin ω. Définition: On appelle déterminant des 2 vecteurs U et V du plan orienté, la quantité * dét (U, V = U V sin (U, V si U et V sont tous deux non nuls * dét (U, V = 0 si l'un au moins des deux vecteurs est nul. Il résulte du théorème que dans tous les cas si (x,y) et (x',y') sont les coordonnées de U et de V dans une base orthonormée directe, alors dét (U, V = xy' yx'. II: Propriétés du déterminant A) Antisymétrie: Quels que soient U et V, dét (U, V = dét ( V,U, et dét (U,U = 0. C'est évident sur la formule xy' yx'. Mais ceci résulte aussi de la formule U V sin (U, V, si l'on remarque que les angles (U, V et ( V,U sont opposés, donc ont des sinus opposés. B) Bilinéarité: Evident sur la formule xy' x'y. C) Dét (U, V = 0 équivaut à {soit U =0 soit V =0 soit U et V sont non nuls et de même direction C'est clair sur la définition. Lorsque dét (U, V = 0, on dit que U et V sont colinéaires. D) dét (U, V) = l'aire du parallélogramme construit sur les deux vecteurs. Si on regarde la formule U V sin (U, V ), ceci résulte de la formule élémentaire classique de l'aire d'un parallélogramme. Mais ceci résulte aussi de la formule xy' yx', si on se place dans une base orthonormée directe ( i, j ), telle que i et U soient colinéaires.

2 III: Applications: Au CAPES, on peut (et on doit?) les illustrer numériquement 2 A) En repère orthonormé direct, soit à déterminer une équation de la droite AB. On écrit que cette droite est l'ensemble des points M, tels que AM et AB soient colinéaires, c'est à dire tels que dét (AM,AB = 0. ax +by =w B) Soit à résoudre le système linéaire { a'x+b'y=w'. Considérons dans un plan orienté muni d'une base orthonormée ( i, j, les vecteurs A (a,a'), B (b,b') et W (w,w'). Le système donné est équivalent à l'équation vectorielle x A + y B = W. Si dét ( A, B 0, les vecteurs A et B ne sont pas colinéaires; par conséquent tout vecteur W du plan s'écrit de façon unique sous la forme x A +y B. Et nous avons dét ( A,W = dét ( A,x A +y B = y dét ( A, B dét (W, B = dét (x A +y B, B = x dét ( A, B Soit aw' a'w = y (ab' a'b) et wb' w'b = y (ab' b'a). Si dét ( A, B = 0, et si si A 0, il existe λ tel que λ A = B ; pour qu'il y ait des solutions il est nécessaire que W soit colinéaire à A, c'est à dire que dét ( A,W = 0. Et s'il y a une solution, elle n'est pas unique. C) Les vecteurs V (x,y) et W (x',y') étant donnés dans un plan muni d'une base orthonormée directe, déterminer l'angle ( V,W. Le produit scalaire donne xx' + yy' = U V cos (U, V), ce qui permet de déterminer ±(U, V). Tandis que le déterminant nous donne xy' yx' = U V sin (U, V, ce qui permet de déterminer (U, V ou 1plat (U, V. D) Une démonstration du théorème de l'arc capable: On donne dans un plan muni d'un repère orthonormé, les points A( 1;0) et B(1;0), et un angle de vecteurs ω. Trouver le lieu Λ des points M tels que (MA = ω modulo un plat. Trouver le lieu λ des points M tels que (MA = ω. Donc On a pour tout M distinct de A et B dét (MA = MA MB sin (MA MA = MA MB cos (MA cos ω dét (MA sin ω MA = MA MB sin [(MA ω] Le lieu Λ est donc l'ensemble des points M (distincts de A et B) tels que cos ω dét (MA sin ω MA = 0. Si M a pour coordonnées (x,y) ceci se traduit par 2y cos ω (x 2 +y 2 1) sin ω = 0. Si sin ω 0 (c'est à dire ω 0 et un plat), le lieu est un cercle passant par A et B. Si M appartient à λ, c'est qu'il appartient à Λ et que sin ω et sin (MA ont même signe. c'est à dire si sin ω et dét (MA = 2y ont même signe. Ceci nous montre que λ est l'un des deux arcs d'extrémités A et B. E) La formule de l'aire de l'étang: Soit ABCD un quadrilatère plan, associons à tout point M la quantité

3 β M = dét (MA + dét (MB,MC + dét (MC,MD + dét (MD,MA Cette quantité ne dépend pas de M (vérifier que β M β N est la somme de 8 termes qui se détruisent 2 à 2). Elle est donc égale à β A = dét (AB,AC + dét (AC,AD. La valeur absolue de dét (AB,AC est le double de l'aire du triangle ABC, celle de dét (AC,AD est le double de l'aire du triangle ACD. Dès lors il y a deux cas de figure: Si B et D sont de part et d'autre de la droite AC, l'aire du quadrilatère est la somme des aires des deux triangles, et les deux déterminants sont de même signe (donc la valeur absolue de la somme est la somme des valeurs absolues) Donc β = 2 fois l'aire de ABCD. Si B et D sont du même côté de la droite AC, l'aire du quadrilatère est la différence des aires des deux triangles, et les deux déterminants sont de signe contraire (donc la valeur absolue de la somme est la diférence des valeurs absolues). Donc β = 2 fois l'aire de ABCD. Dans tous les cas on β = 2 fois l'aire de ABCD. Un calcul simple montre que 2β = α = 4 fois l'aire ABCD, où α = dét (AB,BC + dét (BC,CD + dét (CD,DA + dét (DA,AB Cette dernière formule se généralise à un polygone à n cotés. Elle est connue sous le nom de "Formule de l'aire de l'étang". 3 Remarque sur la notion de déterminant: La notion initiale est celle de déterminant d'un tableau carré de nombres. On en déduit celle de "déterminant de n vecteurs V 1,,V n dans un espace E n muni d'une base {ε 1,,ε n }"; c'est le déterminant du tableau de leurs coordonnées dans la base {ε i }. Il dépend des V i mais aussi de la base. Si {e 1,,e n } est une autre base, on a dét {εi } (V 1,,V n ) = dét {ei } (V 1,,V n ) dét {εi } (e 1,,e n ) Il n'est donc pas possible de parler du déterminant des vecteurs V 1,,V n sans préciser dans quelle base on travaille. Mais Si l'espace E n est euclidien, et si les deux bases sont orthonormées dét {εi } (e 1,,e n ) = ±1. Donc en choisissant de ne travailler qu'en base orthonormée, le déterminant des V i est, au signe près, indépendant de la base. Sa valeur absolue est le volume n-dimensionnel du n-pavé défini par ces vecteurs. Si de plus l'espace E n est orienté, et si les bases {e i } et {ε i } sont orthonormées et directes, alors dét {εi } (e 1,,e n ) = 1. Donc en choisissant de ne travailler qu'en base orthonormée directe, le déterminant des vecteurs {V 1, V n } (pris dans cet ordre) est un nombre bien déterminé. C'est ce que nous avons fait ici, en dimension 2. C'est ce qu'on fait lorsque l'on définit le produit mixte dans l'espace. Toutefois l'usage du mot "déterminant" dans un tel contexte est fort mal commode. Il est dommage de ne pas le réserver à la notion initiale.

4 4

5 5 Exemples de lignes de niveau étudiées au moyen du produit scalaire et du déterminant dans le plan. (Leçon d'exemples) Autour de MA 2 MB 2. Enoncé 1: a) Soit A B deux points du plan. Soit k un nombre, montrer que l'ensemnble des points M du plan tels que MA 2 MB 2 = k, est une droite perpendiculaire à AB. b) Montrer que les trois hauteurs d'un triangle sont concourrantes. Solution: MA 2 MB 2 = MA 2 MB 2 = MA 2 (MA + A B) 2 = 2 MA.AB AB 2. Donc l'égalité MA 2 MB 2 = k équivaut à l'égalité AM.AB = 1 2 (k+ab 2). Si on note H la projection orthogonale de M sur AB, ceci équivaut encore à AH = k+ab2 2AB. Il existe un unique point H de AB qui vérifie cette relation, et M est dans le lieu cherché si et seulement si la projection de M est ce point H. Donc le lieu cherché est la perpendiculaire à AB en ce point. Soit ABC un triangle. Posons k AB =CA 2 CB 2. Le lieu des points M tels que MA 2 MB 2 =k AB est une perpendiculaire à AB. Celle ci passe évidemment par C, c'est donc la hauteur isue de C. De même la hauteur issue de A est l'ensemble des points M tels que MB 2 MC 2 =k BC =AB 2 AC 2. Ces deux hauteurs onr un point commun P (puisque BC et AB ne sont pas parallèles), ce point vérifie PC 2 PA 2 = (PC 2 PB 2 ) + (PB 2 PA 2 ) = k BC k AB = CB 2 AB 2. Il est donc sur la hauteur issue du sommet B. Autour de MA/MB. Enoncé 2: On donne deux points A B du plan et un nombre k strictement positif. Déterminer le lieu des points M tels que MA = k MB. Solution 1: L'égalité MA = k MB équivaut à MA 2 k 2 MB 2 = 0; ce qui s'écrit encore (MA k MB.(MA + k MB = 0 Si k = 1, ceci se réduit à 2 BA.MI = 0, où I est le milieu de AB. Le lieu cherché est donc la perpendiculaire à AB en I. Si k 1, soit G 1 le barycentre de (A(1) et B( k), et G 2 le barycentre de A(1) et B(k). Alors la relation ci-dessus se réduit à (1 k) MG 1.(1+k) MG2 = 0, c'est à dire MG1.MG2 = 0. Ce qui signifie que M est dans le lieu cherché si et seulement si il appartient au cercle de diamètre G 1 G 2. Ce cercle est centré sur AB. Solution 2: Si k = 1, MA 2 MB 2 = (MA MB.(MA + MB = BA.(MA + MB = 2BA.MI (où l'on note I le milieu de AB). Par conséquent M est dans le lieu si et seulement s'il est sur la perpendiculaire à AB en son milieu. S k 1, notons G le barycentre de A(1) et B( k 2 ). Alors MA 2 k 2 MB 2 = (GA 2 k 2 GB 2 ) + (1 k 2 ) MG 2 Par conséquent M est dans le lieu si et seulement si MG 2 = GA 2 k 2 GB 2 k 2 1

6 6 Remarquons que le lieu cherché a deux points sur la droite AB, ce sont le barycentre M 1 de A(1) et B(k), et le barycentre M 2 de A(1) et B( k). Il n'est donc, ni vide, ni réduit à un point (autrement dit la quantité GA 2 k 2 GB 2 k 2 est strictement positive). La relation ci-dessus montre que ce lieu est 1 un cercle de centre G. Ce cercle admet M 1 M 2 pour diamètre. Autour de l'arc capable. Enoncé 3: Dans un plan muni d'un repère orthonormé, on se donne les points A( a,0) et B(a,0), et un angle de vecteurs ω. a) Trouver le lieu des points M tels que (MA,MB) = ω modulo un plat. b) Trouver le lieu des points M tels que (MA,MB) = ω. Solution: Pour tout M distinct de A et de B, on a dét (MA = MA MB sin (MA MA = MA MB cos (MA D'où cos ω dét (MA sin ω MA = MA MB sin ((MA ω). Le lieu cherché à la question a est donc l'ensemble des points M(x,y) distincts de A et B et tels que cos ω dét (MA = sin ω MA C'est à dire cos ω ( 2ay) = sin ω (x 2 +y 2 a 2 ). Si ω = 0 mod π, c'est la droite y = 0, c'est à dire la droite AB (privée de A et de B). Sinon c'est un cercle qui passe par A et B (privé de A et B). Pour résoudre la deuxième question on remarque d'abord que si ω = π, le lieu est (évidemment) l'intervalle ouvert AB, si ω = 0, le lieu est (évidemment) la droite AB privée du segment AB. Si ω n'est égal ni à 0 ni à π (modulo 2π), on utilise l'équivalence (MA { ) = ω (MA = ω mod π sin (MA et sin ω ont même signe Il en résulte que le lieu des points M tels que (MA = ω, est l'un des arcs d'extrémités A et B du cercle trouvé précédemment.

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u.

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u. Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique point M tel que OM= u. On écrit u (x; y) pour

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications.

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Chantal Menini 18 mai 2009 Avant de vous lancer dans cet exposé assurez-vous

Plus en détail

Géométrie dans l' espace

Géométrie dans l' espace Exercice 1 Le repère ( A, AB, AD,AF ) formé sur le cube ABCDEFGH est orthonormé direct Calculer les produits vectoriels suivants AB AD, AB AC, AC BD et AC FH Dans tous les exercices qui suivent, l espace

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

PRODUIT SCALAIRE. , noté u.

PRODUIT SCALAIRE. , noté u. 1 PRODUIT SCLIRE I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u et deux points et B tels que u B. La norme du vecteur u, notée u, est la distance B. ) Définition du produit

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Chapitre 2 Géométrie plane

Chapitre 2 Géométrie plane Chapitre 2 Géométrie plane I. Colinéarité de deux vecteurs 1) Vecteurs colinéaires Définition : Soit u et v deux vecteurs non nuls. Les vecteurs u et v sont colinéaires si l'un est le produit de l'autre

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Produit scalaire de l'espace. Applications.

Produit scalaire de l'espace. Applications. 1.... p2 2. Équations cartésienne d'un plan... p4 3. Perpendiculaire commune à deux droites non coplanaires... p9 Copyright meilleurenmaths.com. Tous droits réservés 1. Produit scalaire de l'espace 1.1.

Plus en détail

Géométrie de l'espace

Géométrie de l'espace [http://mp.cpgedupuydelome.fr] édité le 3 novembre 07 Enoncés Géométrie de l'espace Notions communes Exercice 7 [ 0878 ] [Correction] Soient D et D deux droites distinctes sécantes de l'espace. Montrer

Plus en détail

Cours de Géométrie Pour BCPST 1

Cours de Géométrie Pour BCPST 1 Cours de Géométrie Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Géométrie 2 1.1 Repère. Changement de repère......................... 2 1.1.1 Bases et repères..............................

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Livre : Chapitre 12 p. 319

Livre : Chapitre 12 p. 319 TABLE DES MATIÈRES Produit scalaire dans l espace D. Péron 14 Livre : Chapitre 12 p. 319 Table des matières 1 Diérentes expressions du produit scalaire.................................. 2 2 Orthogonalité

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

Chapitre 11 Produit scalaire dans l'espace

Chapitre 11 Produit scalaire dans l'espace I. Produit scalaire Chapitre 11 Produit scalaire dans l'espace 1) Produit scalaire dans l'espace Définition : Soient u et v deux vecteurs de l'espace et A, B, C trois points tels que u= AB et v= AC. Les

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Sur le produit vectoriel

Sur le produit vectoriel Sur le produit vectoriel Daniel PERRIN Introduction On étudie les deux approches usuelles du produit vectoriel : la version élémentaire décrite en terme d orthogonalité et de sinus et celle qui prend comme

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices Géométrie du plan 1 Questions de cours 1 Énoncer et démontrer l inégalité de Schwarz Énoncer et démontrer l inégalité triangulaire pour la norme euclidienne 3 Soit u un vecteur unitaire du plan Combien

Plus en détail

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace»

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace» Chapitre 9 truc Géométrie dans l espace Complément au chapitre «géométrie élémentaire du plan et de l espace» Prérequis On suppose ici connue toute la géométrie de collège et de lycée, en particulier les

Plus en détail

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako

Produit Scalaire. Site MathsTICE de Adama Traoré Lycée Technique Bamako Produit Scalaire Site MathsTICE de dama Traoré Lycée Technique amako I- Norme d un vecteur 1 ) Définition : u étant un vecteur de représentant le bipoint (;), on appelle norme de u le nombre réel positif

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Orthogonalité de droites et de plans

Orthogonalité de droites et de plans Orthogonalité de droites et de plans Par Mathtous Ce mini cours s'adresse en priorité aux élèves de première. Il a pour objectif de rappeler les propriétés essentielles des droites orthogonales et des

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

Géométrie vectorielle

Géométrie vectorielle Géométrie vectorielle L1 SPC, semestre 2 Année 2012 1 Généralités L objectif de ce chapitre est de faire un rapide survol des éléments essentiels de géométrie vectorielle (et un peu affine). Il s agit

Plus en détail

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications.

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications. LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. pplications. Pré-requis : Généralités sur les espaces euclidiens affines

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Cours Terminale S 1 Produit scalaire de deux vecteurs 1) Définition Définition 1 : Le produit scalaire dans l espace se définit de la même façon que dans le plan Les trois

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

Mathématiques Terminale C Calcul Vectoriel Résumé de cours

Mathématiques Terminale C Calcul Vectoriel Résumé de cours . arycentre I- arycentre de deux points pondérés I. 1. Définition 1: Soit (, ) et (, ) deux points pondérés tels que + 0, Il existe un point unique G tel que G G 0 ; le point G est appelé barycentre des

Plus en détail

Géométrie dans l espace

Géométrie dans l espace L-P-Bourguiba detunis Chapitre 6 Fiche6 Résumé du cours Produit scalaire Définition : l espace E est orienté dans le sens direct Prof :Ben jedidia chokri Classe :4 Math Géométrie dans l espace * Soit A,

Plus en détail

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme.

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme. Prof : Boufares Amor Cours de géométrie dans l espace 3 ème Maths et 3 ème sciences exp. I) d un vecteur de l espace Soit A et B deux points distincts de l espace. On appelle vecteur de représentant (A,

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE I. Calculs d'angles et de longueurs 1) Calculs d'angles Méthode : Déterminer un angle à l'aide du produit scalaire Vidéo https://youtu.be/ca_pw79ik9a. " Calculer la mesure

Plus en détail

Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan).

Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan). DOCUMENT 19 Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan). Dans ce document on va montrer que toute ellipse

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

Barycentre. Table des matières

Barycentre. Table des matières 1 Barycentre Table des matières 1 Rappels sue les vecteurs 2 1.1 Définition................................. 2 1.2 Opérations sur les vecteurs....................... 2 1.2.1 Somme de deux vecteurs....................

Plus en détail

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u.

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u. PRODUIT SLIRE Exercice de motivation : est un triangle tel que = 4, = 3 et (, ) = 70. Problème : calculer. On ne peut pas utiliser le théorème de Pythagore car le triangle n'est pas rectangle. On 3 70

Plus en détail

1. Produit scalaire dans le plan

1. Produit scalaire dans le plan Produit scalaire 1. Produit scalaire dans le plan 1.1 Définition Soit u et v deux vecteurs non nuls du plan. Ce n est pas une multiplication Le produit scalaire de u par v noté u. v est le nombre défini

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme Géométrie métrique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions de longueurs, angles

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

GEOMETRIE ELEMENTAIRE DANS LE PLAN

GEOMETRIE ELEMENTAIRE DANS LE PLAN GEOETRE ELEENTRE DNS LE PLN. SES DE GEOETRE PLNE 1. Théorème de Thalès 1 1 1 1 1 3 D 3 3 D D D vec 1, et 3 parallèles : 1 1 1 1 vec 1, parallèles : 1 1 1 3 1 3 Les triangles 1 1 et sont homothétiques,

Plus en détail

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications 16 Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications E est un espace euclidien voir le chapitre 15 pour des rappels). 16.1 Orientation d un espace euclidien

Plus en détail

Cours de Terminale S /Produit scalaire et orthogonalité. E. Dostal

Cours de Terminale S /Produit scalaire et orthogonalité. E. Dostal Cours de Terminale S /Produit scalaire et orthogonalité E. Dostal Mars 2015 Table des matières 10 Produit scalaire et orthogonalité 2 10.1 Produit scalaire.......................................... 2 10.2

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

Lycée Denis-de-Rougemont Neuchâtel et Fleurier. Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE

Lycée Denis-de-Rougemont Neuchâtel et Fleurier. Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE Lycée Denis-de-Rougemont Neuchâtel et Fleurier Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE 2002 Exercice 1 On donne une sphère s par son équation (x 1) 2 + (y + 1) 2 + z 2 = 9 et les points

Plus en détail

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère I Les vecteurs du plan, de l'espace Dans le plan P Soit O un point du plan, i et j deux vecteurs non colinéaires. On dit que : i, j est une base du plan vectoriel P O, i, j est un repère de P Bases et

Plus en détail

i, j, k ) un repère orthonormal direct de l'espace.

i, j, k ) un repère orthonormal direct de l'espace. EXERCICES DE CLCUL VECTORIEL DNS LE PLN ET L'ESPCE EUCLIDIEN Exercice 1 On considère, dans l'espace, les points (0 ; 1 ; 1), B(6 ; 1 ; 9) et C(1 ; 0 ; 0) 1. Déterminer une équation cartésienne du plan

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

Inversion complexe et cocyclicité

Inversion complexe et cocyclicité Inversion complexe et cocyclicité Jean-Marie Lion Université de Rennes Brève introduction aux nombres complexes L addition et la multiplication dans C sont définies de la façon suivante : si z = x + iy

Plus en détail

LEÇON N 36 : Produit vectoriel, produit mixte.

LEÇON N 36 : Produit vectoriel, produit mixte. LEÇON N 36 :. Pré-requis : Généralités sur les espaces euclidiens affines et vectoriels de dimension inférieure ou égale à trois ; Orientation de l espace (base orthonormée directe, indirecte) : règle

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Géométrie du plan. Barycentre. Notions communes. Mesures algébriques. Produits scalaires et mixtes

Géométrie du plan. Barycentre. Notions communes. Mesures algébriques. Produits scalaires et mixtes [http://mp.cpgedupuydelome.fr] édité le 4 septembre 016 Enoncés 1 Géométrie du plan Notions communes Exercice 1 [ 01903 ] [Correction] Montrer que deux droites parallèles sont disjointes ou confondues.

Plus en détail

Classe de Terminale S

Classe de Terminale S Pˆr o dˆuˆiˆt Œs c a l aˆiˆr e d e l e sœp a c e Classe de Terminale S I. GÉNÉRALISATION DU PRODUIT SCALAIRE À L ESPACE. Exercice 1 ABCDEFGH est un cube d arête 1, O est le centre de la face EFGH. 1. a)

Plus en détail

Chapitre 4 Trigonométrie

Chapitre 4 Trigonométrie Chapitre 4 Trigonométrie I. Radian cercle trigonométrique 1) Le radian On appelle radian (symbole : rad) la mesure d'un angle qui intercepte un arc dont la longueur est égale à son rayon R. Cte définition

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur PRODUIT SCALAIRE Cours Première S Hermann Grassmann (1809 1877) Au XIX e siècle, le mathématicien allemand Grassmann étudiant le phénomène des marées, développe le calcul vectoriel et définit le produit

Plus en détail

III. Géométrie du plan

III. Géométrie du plan 1 Repérage dans le plan 11 Repérage cartésien Définition 1 On appelle base du plan un couple ( i, avec i et deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

Agrégation interne de Mathématiques. Session Première épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session Première épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAERPA) Session 2001 Première épreuve écrite Partie I : Une identité remarquable Dans cette partie, k désigne un corps commutatif. On note k l ensemble des éléments

Plus en détail

MESURES ALGÉBRIQUES ET BARYCENTRES. I Mesures algébriques 2. 1 Définition 2. 2 Propriétés 2. II Barycentres 3

MESURES ALGÉBRIQUES ET BARYCENTRES. I Mesures algébriques 2. 1 Définition 2. 2 Propriétés 2. II Barycentres 3 MESURES ALGÉBRIQUES ET BARYCENTRES Table des matières I Mesures algébriques 2 1 Définition 2 2 Propriétés 2 II Barycentres 3 1 Barycentre d un système de deux points pondérés 3 1.1 Définitions.......................................................

Plus en détail

Géométrie vectorielle.

Géométrie vectorielle. . Ensemble des vecteurs de l'espace... p 6. Calcul vectoriel... p5. Vecteurs colinéaires... p 7. Géométrie analytique... p8. Vecteurs coplanaires... p 4. Plan défini par point et vecteurs directeurs...

Plus en détail

AB, AC. k.u = I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple. 1) Définition: On retiendra:

AB, AC. k.u = I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple. 1) Définition: On retiendra: PRODUIT SCALAIRE DANS E YOUSSEFBOULILA I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple 1) Définition: On appelle produit scalaire des deux vecteurs AB le réel noté:

Plus en détail

TRIGONOMETRIE - Cours

TRIGONOMETRIE - Cours CHAPITRE N Cours de Mathématique 1S TRIGONOMETRIE - Cours Partie : Géométrie I - Radian et cercle trigonométrique 1) Le radian Définition : Soit un cercle C de centre O. On appelle radian, noté rad, la

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

5. Géométrie analytique de l'espace

5. Géométrie analytique de l'espace 43 5. Géométrie analytique de l'espace 5.1. Droites Équations paramétriques Il n'existe pas d'équation cartésienne d'une droite dans l'espace.. Le point A est appelé le point d'ancrage. N'importe quel

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 07 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 007 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

Lemmes utiles en géométrie

Lemmes utiles en géométrie Lemmes utiles en géométrie Thomas Budzinski Avant-propos La géométrie est un domaine où une bonne culture peut s avérer très utile pour résoudre des exercices. Ce document est une liste (non exhaustive!)

Plus en détail

Première S Exercices : vecteurs et variations des fonctions associées

Première S Exercices : vecteurs et variations des fonctions associées Exercice 1 : vecteurs et alignement de points ABC est un triangle. Le plan est muni du repère (A; AB, AC) et on considère les points R(-1;0) et Q(0;a) où a est un nombre réel différent de -1. 1) a) Prouver

Plus en détail

TRIGONOMETRIE. I. Radian et cercle trigonométrique

TRIGONOMETRIE. I. Radian et cercle trigonométrique TRIGONOMETRIE I Radian et cercle trigonométrique ) Le radian Soit un cercle C de centre O et de rayon On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur du cercle

Plus en détail