Le quizz des stats. Xavier Paoletti. Sce de biostatistiques / Inserm U900 Institut Curie

Dimension: px
Commencer à balayer dès la page:

Download "Le quizz des stats. Xavier Paoletti. Sce de biostatistiques / Inserm U900 Institut Curie"

Transcription

1 Le quizz des stats Xavier Paoletti Sce de biostatistiques / Inserm U900 Institut Curie

2 Qques questions pour entamer les hostilités 1. Description de la population Pourquoi parler d'âge médian et non moyen? Quelle mesure centrale préférer (moyenne ou médiane)? Quelle mesure de dispersion préférer (écart type, interquartile, extrêmes)? Retirer les extrêmes dans les calculs descriptifs? si oui, combien? Où? Faut-il tester les différences entre groupes à baseline dans un essai randomisé? 2. Analyse statistique 2.1 Morbimortalité : Quelle morbimortalité est acceptable en chirurgie? Quelles sont les différences entre analyses uni et multivariées? les facteurs de risque de morbimortalité post opératoire peuvent ils être des données postopératoire? 2.2 Efficacité : Que penser des critères composites? Quel placebo autoriser en chirurgie? 2.3 Survie : Que faire des patients perdus de vue dans la réalisation de courbe de Kaplan Meyer? Qui censure-t'on dans la courbe de KM? A partir de quelle taille d'échantillon peut on utiliser la méthode de Kaplan Meyer? Qu est-ce qu'un score de propension? Quelles différences entre score de propension et appariement classique? 3. Logiciel : quel logiciel de stat pour un néophyte? quelles stats peut on faire sous excel?

3 Description de la population Médiane versus moyenne: Médiane valeur qui coupe la population en 2 Donne une vague idée du «milieu» Peu sensible aux observations extrêmes Intervalle de confiance pas aisé Recommandée lorsque Petits effectifs Distribution non symétrique (notamment les durées) Moyenne Avec l écart-type permet de calculer un intervalle de confiance Sensible aux valeurs extrêmes Moyenne=médiane si distribution symétrique

4 Description de la population Les 2 sont possibles En général distribution symétrique Regarder si c est le cas

5 Description de la population Une mesure de dispersion doit tjs être donné Dépend du résumé utilisé Avec la moyenne Écart-type (ou variance) fourni aisément un IC Si écart-type > moyenne, probablement utiliser la médiane. Avec la médiane Interquartile range (ou quartiles ou décile) Min, max (pour indiquer si données aberrantes) plus les valeurs de la population sont resserrées, plus on peut en inclure entre les bornes (déciles plutôt que quartiles) quelle seront les valeurs d intérêt dans l analyse

6 Ne jamais retirer d observations 2 cas A priori car prévu par le protocole: pose le pb de la population d analyse A posteriori: risque de biais Si données «aberrantes», préférer des études de sensibilités

7 Etudes de sensibilités Si je modifie légèrement les données les hypothèses Modifie-t-on les conclusions Données extrêmes, erreurs d inclusion, violations de protocole etc ont-elles un impact? Si oui, c est irrécupérable Si non, les conclusions n en sont que plus généralisables

8

9 En théorie Vérifier la randomisation n a pas de sens si la randomisation a fonctionnée = 2 groupes sont équilibrés pour les facteurs de risque Différences statistiquement significatives! Si 10 caractéristiques, 10 tests ( =5%) proba de rejeter un des 10 tests à tord (proba de trouver un faux positif) = 40% Si tout est équilibré, suspect En pratique, certaines différences ne passent pas

10 Solution Randomisation stratifiée sur les facteurs pronostiques connus les plus forts Pour chaque facteur: autant de bras A que de bras B 2 techniques Stratification: autant de strates que de combinaisons de facteurs prono vite limité par le nb de strates Minimisation: assure équilibre pour chaque facteur (mais pas pour chaque combinaison) A posteriori, seule une analyse multivariée est faisable

11 2. Analyse statistique

12 Analyse et ajustement Analyse univariée (ou parfois appelée bivariée) 1 caractéristique est comparée entre 2 groupes Comparaison de l âge ds les 2 bras (ou plus) (test t) Comparaison de la répartition du stade etc. (test du Chi-2) ou 1 caractéristique est associée à un événement Association du stade avec le risque de décès (test du chi-2, régression logistique) Association d un facteur avec le délai de survie (test du log-rank, modèle de cox univarié) Mais pb des facteurs de confusion

13 Facteurs de confusion Analyse et ajustement Facteurs associés à l événement d intérêt (la survie, l événement indésirable, le taux mesuré etc.) et au traitement (ou intervention) Par ex. Etude épidémiologique: Le tabac sur l association alcool et cancer du poumon Essai clinique: Stades élevés de la maladie plus fréquent ds le groupe contrôle On souhaite prendre en compte cette covariable (tabac, stage etc.) mesurer l effet traitement ajusté sur la covariable

14 Analyse et ajustement Facteurs de confusion 2 stratégies Tests ajustés (ou stratifiés) On teste l effet traitement en tenant compte de la covariable L effet de la covariable n est pas estimé Un nombre faibles de covariable peut être utilisé (pas trop de strates) Modèle multivarié Proba de décès=a*tabac + b*stade + c*age + + i(stade*tabac) On estime les paramètres (a,b,c, ) Ils mesurent l association de la variable avec le décès toutes choses égales par ailleurs. Le choix du modèle nécessite des hypothèses S ils sont nulles (ou pas statistiquement différents de 0), pas d effet de la covariable

15 Analyse et ajustement Limites des modèles multivariés On modélise à peine le passé On explique peu de la variabilité (<20%) On ne sait pas comment choisir les variables Soucis de parcimonie Mais pas de bonne technique de construction de modèle Nombreux choix arbitraires Facile à critiquer Politiquement incorrect dans une publication d un essai randomisé Principalement utilisé pour construire des scores pronostiques Lorsque pas de randomisation.

16 Analyse et ajustement Teloken et al. Adult urogoly 2009 Âge, sex, type d opération, TNM etc sont sûrement ou probablement lié à l histologie et sûrement à la survie facteurs de confusion analyse univariée peu informative Analyse multivariée mais ne prend pas en compte tout les facteurs non mesurés.

17 Analyse et ajustement Teloken et al. Adult urogoly 2009

18 Comment construire son modèle Pas de bonnes méthodes Forward, backward Stepwise Mais qques règles Le faire manuellement Considérer les variables par groupes (démographique, lié à la tumeur, lié aux fonction vitales etc.) Choisir a priori les variables d intérêt Les facteurs d ajustement Les règles de sélection (p-value, AIC etc.)

19 Modèle: quelles variables faire entrer

20 Modèle: quelles variables faire entrer Si ajustement (et taille d échantillon nécessaire): Tous les facteurs de confusion potentiels Toutes celles identifiée a priori, même si NS. Évite les suspicions de présentations partiales Si construction score pronostique Les variables pertinentes cliniquement Montrer qu une dégradation de l OMS est associée avec la survie est-il utile? Variables à baseline Si outil de suivi des patients Variables mesurées au cours du temps (AFP, TP, PSA etc.)

21 Modèle: quelles variables faire entrer Conclusions:

22 Et le score de propension Effectiveness of Radiation Therapy for Elderly Patients with Unresected Stage I and II Non-small Cell Lung Cancer by Juan P. Wisnivesky et al AJRCCM (in press) Scientific Knowledge on the subject: Radiation therapy is considered the standard of care for unresected stage I and II lung cancer patients. Limited data is available regarding its effectiveness. What this study adds to the field: Using several methods to control for selection bias, we showed that RT improves the outcomes of elderly patients with stage I and II lung cancer who did not undergo resection due to comorbidities or preferences against surgery.

23 Et le score de propension Methods: Using the Surveillance, Epidemiology and End Results registry (SEER), - identify 6,065 unresected patients with histologically confirmed stage I and II non-small-cell lung cancer, - Use propensity score methods and instrumental variable analysis to control for the possible effects of known as well as unmeasured confounders.

24 THEORIE DU Score de propension Idée de base Si non randomisé, le choix de l intervention dépend de facteurs pronostiques ce sont donc des facteurs de confusion les cas et les témoins ne sont plus comparables Ajuster sur la probabilité d avoir le trt (ou intervention) Calculer en fonction de toutes les covariables à l inclusion la proba de recevoir le traitement. Comparer l effet trt chez des individus qui ont la même proba de recevoir le trt. Remplacer ces covariables par une variable unique (SP) (condensation de l information) Rosenbaum P, Rubin DB; Biometrika 1983

25 Construction du score de propension Modèle de régression logistique Variable dépendante: trt ou exposition Variables explicatives: caractéristiques avant attribution du trt.

26 CONSTRUCTION DU SP 1ère étape Sélection des variables (caractéristiques de base eavant le début de l intervention) Plusieurs méthodes: Modèle non parsimonieux A priori (choix basé sur études antérieures) Avis d experts Variables maximisant GOF du modèle Différence en analyse univariée Sélection ascendante, descendante ou pas à pas Weitzen S et al. Pharmacoepidemiol Drug Saf 2004

27 CONSTRUCTION DU SP 2 ème étape Validation du modèle Vérification de l équilibre de la distribution des covariables entre les groupes (but du Score de propension, préalable indispensable à toute analyse)

28 Utilisation du SP Ensuite Appariement: les cas et les témoins sont appariés (comparés) par niveau de «risques» de recevoir le traitement (par ex.: 5 classes) Ajustement: Score de propension introduit dans le modèle soit comme variable quantitative soit comme k-1 variable qualitative

29 INTERETS Synthèse de l information contenue dans les covariables en un score unique Equilibre de la distribution des covariables entre les groupes: estimation non biaisée (ou biais minime) de l effet du TTT (situation proche de la randomisation) si toutes les facteurs associés à la probabilité de recevoir le trt sont prises en compte Facilite la stratification et l appariement Corrige pour le biais induit par le déséquilibre des facteurs mesurés

30 LIMITES Ne permet pas de prendre en compte les covariables non observées ( randomisation) Repose sur un modèle (et vaut ce que vaut le modèle) Ne peut remplacer la randomisation

31 2.1 Morbimortalité : Qui peut répondre Le malade Le médecin Le directeur d hôpital La société à travers la santé publique Qui ne peut pas répondre Le statisticien Pose la question du rapport bénéfice-risque

32 2.1 Morbimortalité : Ex de la thrombolyse Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. (NEJM 2006) efficacy and safety of intravenous thrombolysis with alteplase when administered more than 3 hours? Significantly improved clinical outcomes in patients with acute ischemic stroke; alteplase was more frequently associated with symptomatic intracranial hemorrhage. 7 à 10% de décès pour un bénéfice fort.

33 Critères composites Objective: Evaluate the clinical effect of PET CT on preoperative staging of NSCLC Primary endpoint: number of futile thoracotomies: a thoracotomy with the finding of pathologically confirmed mediastinal lymph-node involvement (stage IIIA [N2]), stage IIIB or stage IV or a benign lung lesion; an exploratory thoracotomy; Fisher etal. NEJM 2009 or a thoracotomy in a patient who had recurrent disease or death from any cause within 1 year after randomization.

34 Critères composites Fisher et al. NEJM 2009 Est-ce que le stade correspond à Futile thoracotomies: a thoracotomy with the finding of pathologically confirmed mediastinal lymph-node involvement (stage IIIA [N2]), stage IIIB or stage IV or a benign lung lesion; an exploratory thoracotomy; or a thoracotomy in a patient who had recurrent disease or death from any cause within 1 year after randomization.

35 L exemple du cancer du colon De nombreuses définitions (n=52 études entre 1997 et 2006) Disease-free survival : time to recurrence, 2d primary cancer, or death (n = 13) time to recurrence or death (n =10) and time to recurrence (n = 4) Disease-free interval: Time to recurrence (n = 2) Relapse-free survival time to recurrence (n = 2) time to recurrence or death (n = 1) time to recurrence, 2d primary colon cancer, death due to toxicity, or death due to colon cancer (n = 1)

36 2.3 Survie

37 Kaplan-Meyer Donnée de survie: Temps avant événement durée continue Temps avant: décès, progression, récidive, guérison, négativation, dégradation du PS Evénement Et si le patient ne meure pas? Temps avant événement est «censuré» Il a vécu au moins jusqu à la censure

38 Censures Analyse des données A l analyse des données pdv 4 Début étude Temps Inclusion Temps Inclusion du patient Pdv= Perdu de vue Censure

39 2 types de censure Censures Patient est en vie au moment de l analyse si on retarde l analyse, plus d information sera accumulée sur ce patient «exclus vivant» Patient «perdu de vue»: son état ne peut plus être mis à jour Attendre n apportera rien

40 Lire une courbe de survie Survie de 85% à 30 jours Médiane= 56 jrs

41 Comparaison graphique Patients (%) Rituximab maintenance Years van Oers MH, et al. Blood 2006; 108:

42 Test du Log-rank: Test de comparaison Teste l hypothèse que les 2 bras sont équivalents quelque soit le temps t Permet de comparer temps par temps le risque de décès observé avec le risque attendu si les 2 bras étaient équivalents Prend en compte toute l information Fournit un seuil de signification

43 Comparaison de courbe : test du Log-rank Patients (%) p < Years van Oers MH, et al. Blood 2006; 108:

44 Mesures de comparaison Une différence entre 2 courbes de Kaplan-Meier peut se résumer de plusieurs façons : Quel est le pourcentage de survie au temps t dans chaque groupe? Quelle est la médiane de survie dans chaque groupe? Quel est le Hazard Ratio (HR)?

45 Comparaison graphique: de l inconstance du % à t Patients (%) % 30% 35% Rituximab maintenance 15% Years van Oers MH, et al. Blood 2006; 108:

46 Mesure des différences: des risques de la médiane Patients (%) p < Augmentation de la médiane > 3 years Observation median: 14.9 months Rituximab maintenance median: 51.5 months Years van Oers MH, et al. Blood 2006; 108:

47 Mesure des différences: des risques de la médiane Patients (%) p < Augmentation de la médiane > 3 years Observation median: 14.9 months Rituximab maintenance median: 51.5 months Years

48 Hazard ratio C est le rapport des risques instantanés d événements entre le bras A et le bras B HR = risque de décès dans A risque de décès dans B C est aussi le rapport des incidences ds un essai randomisé, approché par HR = ( nb décès ds A ) suivi total bras A ( nb décès ds B ) bras B suivi total

49 Hazard ratio Si HR > 1 alors le risque sous A est supérieur à celui sous B effet nocif de A Si HR = 1 alors le risque sous A est similaire à celui sous B pas d effet de A Si HR < 1 alors le risque sous A est inférieur à celui sous B effet bénéfique de A Exemple : HR = 0.71 réduction de 29% du risque instantané de décès à tous les temps t (quelque soit le temps t, j ai 29% de risque en moins de décéder) Le Hazard ratio mesure l effet du traitement sur tout le suivi

50 Et du côté pratique

51 Logiciels Q Excel permet de faire bcp de choses Tests Modèles simples (univariés) Survie simple (tests et univariés) Avec l extension SPSS A peu près tout ce qui peut être fait sans manipulation de données Mais limité pour La construction de modèles Les scores de propension, l appariement etc.

52 Logiciels Q Pour les plus courageux Le logiciel «R» est en freeware (téléchargeable) Extrêmement puissant Peu convivial

53 Conclusion Mais surtout, Si les données son mauvaises, les analyses seront inutiles Allez voir votre service de biostat AVANT l obtention des données «Appeler un statisticien après que l expérience est terminée, c est comme lui demander de faire une autopsie; il pourra seulement déterminer la cause de l échec de l expérience» Sir Ronald Fisher

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique Evaluation de nouvelles drogues Critères de jugement clinique Jean-Marie BOHER, PhD, Institut Paoli-Calmettes, Marseille Novembre 2011 Typologie

Plus en détail

Application des courbes ROC à l analyse des facteurs pronostiques binaires

Application des courbes ROC à l analyse des facteurs pronostiques binaires Application des courbes ROC à l analyse des facteurs pronostiques binaires Combescure C (1), Perneger TV (1), Weber DC (2), Daurès J P (3), Foucher Y (4) (1) Service d épidémiologie clinique et Centre

Plus en détail

Analyse de survie : comment gérer les données censurées?

Analyse de survie : comment gérer les données censurées? Mémento biostatistique Analyse de survie : comment gérer les données censurées? Méthode de Kaplan-Meier C. Alberti 1, J.-F. Timsit 2, S. Chevret 3 1 Centre d Epidémiologie Clinique, Hôpital Robert Debré,

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Table Ronde N 7 : Evaluation au remboursement des anticancéreux : méthodologie, relation entre quantité d effet et besoin thérapeutique

Table Ronde N 7 : Evaluation au remboursement des anticancéreux : méthodologie, relation entre quantité d effet et besoin thérapeutique Table Ronde N 7 : Evaluation au remboursement des anticancéreux : méthodologie, relation entre quantité d effet et besoin thérapeutique 1 Qu entend on par évaluation au remboursement? L évaluation est

Plus en détail

Evaluation de critères res de substitution de la survie globale dans les cancers bronchiques localement avancés

Evaluation de critères res de substitution de la survie globale dans les cancers bronchiques localement avancés Evaluation de critères res de substitution de la survie globale dans les cancers bronchiques localement avancés Evaluations de la survie sans progression et du contrôle locoregional comme critère de substitution

Plus en détail

Validation clinique des marqueurs prédictifs le point de vue du méthodologiste. Michel Cucherat UMR CNRS 5558 - Lyon

Validation clinique des marqueurs prédictifs le point de vue du méthodologiste. Michel Cucherat UMR CNRS 5558 - Lyon Validation clinique des marqueurs prédictifs le point de vue du méthodologiste Michel Cucherat UMR CNRS 5558 - Lyon Marqueur prédictif - Définition Un marqueur prédictif est un marqueur qui prédit le bénéfice

Plus en détail

Dépistage du cancer du poumon:

Dépistage du cancer du poumon: Dépistage du cancer du poumon: les enjeux Colloque de l Escalade Genève, 5 décembre 2012 Thierry Rochat, Service de Pneumologie, HUG Le cancer bronchique c est déprimant Lors du diagnostic du ca bronchique

Plus en détail

Essai Inter-groupe : FFCD UNICANCER FRENCH - GERCOR

Essai Inter-groupe : FFCD UNICANCER FRENCH - GERCOR CLIMAT - PRODIGE 30 Etude de phase III randomisée évaluant l Intérêt de la colectomie première chez les patients porteurs d un cancer colique asymptomatique avec métastases hépatiques synchrones non résécables

Plus en détail

CAS CLINIQUE 2. 2013 (juin) : patiente toujours en cours de traitement par Létrozole

CAS CLINIQUE 2. 2013 (juin) : patiente toujours en cours de traitement par Létrozole 2008 (décembre) : Patiente de 60 ans Tumorectomie plus curage CAS CLINIQUE 2 carcinome canalaire infiltrant de 2.5 cm, grade 2 RH+ (RO + 100% +++, Allred 8, RP + 80 % ++ Allred 7) Her2-, KI 67 à 18 %,

Plus en détail

L évaluation médico-économique. Les études microéconomiques. Julien GUIGNET CHU/CH Montmorillon

L évaluation médico-économique. Les études microéconomiques. Julien GUIGNET CHU/CH Montmorillon L évaluation médico-économique Les études microéconomiques Julien GUIGNET CHU/CH Montmorillon Arbitrage et Aide à la décision (1) Ressources limitées du secteur sanitaire Nécessité de faire des choix Développement

Plus en détail

Études épidémiologiques analytiques et biais

Études épidémiologiques analytiques et biais Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Pierre OLIVIER - Médecine Nucléaire

Pierre OLIVIER - Médecine Nucléaire Diplôme Universitaire Corrélations anatomo-physio-pathologiques en imagerie thoracique 25 mai 2011 Imagerie TEP et pathologie tumorale bronchique Pierre OLIVIER - Médecine Nucléaire Détection en coincidence

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Epidémiologie et stratégie de prise en charge des métastases cérébrales. Henri Roché, Institut Claudius Regaud

Epidémiologie et stratégie de prise en charge des métastases cérébrales. Henri Roché, Institut Claudius Regaud Epidémiologie et stratégie de prise en charge des métastases cérébrales Henri Roché, Institut Claudius Regaud Toulouse, 9 février 2012 Histoire naturelle Les cancers en cause Les éléments de stratégie

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Cas clinique 2. Florence JOLY, Caen François IBORRA, Montpellier

Cas clinique 2. Florence JOLY, Caen François IBORRA, Montpellier Cas clinique 2 Florence JOLY, Caen François IBORRA, Montpellier Cas clinique Patient de 60 ans, ATCD: HTA, IDM en 2007, hypercholestérolémie Juin 2008: Toux, dyspnée (sous 02) et anorexie progressive Bilan

Plus en détail

(Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet

(Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet (Introduction à l ) Introduction aux diagrammes causaux (Directed Acyclic Graphs) Loïc Desquilbet Contexte et représentation des diagrammes causaux Contexte Recherche de facteurs de risque d une maladie

Plus en détail

ALK et cancers broncho-pulmonaires. Laurence Bigay-Gamé Unité d oncologie thoracique Hôpital Larrey, Toulouse

ALK et cancers broncho-pulmonaires. Laurence Bigay-Gamé Unité d oncologie thoracique Hôpital Larrey, Toulouse ALK et cancers broncho-pulmonaires Laurence Bigay-Gamé Unité d oncologie thoracique Hôpital Larrey, Toulouse Toulouse, le 19 Février 2013 Adénocarcinomes : Lung Cancer Mutation Consortium Identification

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Essais cliniques de phase 0 : état de la littérature 2006-2009

Essais cliniques de phase 0 : état de la littérature 2006-2009 17 èmes Journées des Statisticiens des Centres de Lutte contre le Cancer 4 ème Conférence Francophone d Epidémiologie Clinique Essais cliniques de phase 0 : état de la littérature 2006-2009 Q Picat, N

Plus en détail

Cancer bronchique primitif: données épidémiologiques récentes

Cancer bronchique primitif: données épidémiologiques récentes Cancer bronchique primitif: données épidémiologiques récentes Pr Jean Trédaniel Service de pneumologie et oncologie thoracique Groupe Hospitalier Paris Saint Joseph Université Paris Descartes Sources Données

Plus en détail

Télécardiologie: développement en France et évolution de la réglementation. Mr Xavier Laroche Biotronik Dr Peyrouse Eric CHU La Timone

Télécardiologie: développement en France et évolution de la réglementation. Mr Xavier Laroche Biotronik Dr Peyrouse Eric CHU La Timone Télécardiologie: développement en France et évolution de la réglementation Mr Xavier Laroche Biotronik Dr Peyrouse Eric CHU La Timone Déclaration de Conflits d intérêt Xavier Laroche: je suis employé de

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Équivalence et Non-infériorité

Équivalence et Non-infériorité Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.

Plus en détail

EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE

EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre

Plus en détail

Cas groupés de médiastinites en chirurgie cardiaque : Enquête cas-témoins

Cas groupés de médiastinites en chirurgie cardiaque : Enquête cas-témoins Cas groupés de médiastinites en chirurgie cardiaque : Enquête castémoi Ludovic Lassel, Marion Olivier, Gilles Antoniotti, Anne Carbonne, Pascal Astagneau. CCLIN Paris Nord Qu est ce qu une médiastinite?

Plus en détail

Évaluations aléatoires : Comment tirer au sort?

Évaluations aléatoires : Comment tirer au sort? Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?

Plus en détail

COMPARAISON DE QUATRE PROTOCOLES DE CHIMIOTHERAPIE POUR DES CANCERS DU POUMON NON A PETITES CELLULES (CBP NAPC) AVANCES

COMPARAISON DE QUATRE PROTOCOLES DE CHIMIOTHERAPIE POUR DES CANCERS DU POUMON NON A PETITES CELLULES (CBP NAPC) AVANCES COMPARAISON DE QUATRE PROTOCOLES DE CHIMIOTHERAPIE POUR DES CANCERS DU POUMON NON A PETITES CELLULES (CBP NAPC) AVANCES Approximativement, un tiers de tous les décès dus au cancer sont en relation avec

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Pemetrexed, pionnier de la chimiothérapie histoguidée. Dr Olivier CASTELNAU Institut Arnault TZANCK ST Laurent du Var

Pemetrexed, pionnier de la chimiothérapie histoguidée. Dr Olivier CASTELNAU Institut Arnault TZANCK ST Laurent du Var Pemetrexed, pionnier de la chimiothérapie histoguidée Dr Olivier CASTELNAU Institut Arnault TZANCK ST Laurent du Var SFPO Octobre 2009 EPIDEMIOLOGIE Incidence : 1.35 M par an dans le monde (12,4%) 28 000

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Sylvie CHABAUD Direction de la Recherche Clinique et de l Innovation : Centre Léon Bérard - Lyon Unité de Biostatistique

Plus en détail

Qui et quand opérer. au cours du traitement de l EI?

Qui et quand opérer. au cours du traitement de l EI? Qui et quand opérer au cours du traitement de l EI? Gilbert Habib Département de Cardiologie - Timone Marseille 7es JNI Bordeaux, 8 juin 2006 Université de la Méditerranée Faculté de Médecine de Marseille

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Evaluation générale de la qualité des données par âge et sexe

Evaluation générale de la qualité des données par âge et sexe Analyse démographique pour la prise des décisions. Tendances, et inégalités de mortalité et de fécondité en Afrique francophone : les outils en ligne de l UNFPA / UIESP pour l'estimation démographique.

Plus en détail

Thierry Folliguet Service de chirurgie cardiovasculaire & transplantation CHU Brabois, Vandoeuvre les Nancy t.folliguet@chu-nancy.

Thierry Folliguet Service de chirurgie cardiovasculaire & transplantation CHU Brabois, Vandoeuvre les Nancy t.folliguet@chu-nancy. Thierry Folliguet Service de chirurgie cardiovasculaire & transplantation CHU Brabois, Vandoeuvre les Nancy t.folliguet@chu-nancy.fr Congrès de Chirurgie Thoracique et Cardio-Vasculaire du 12 au 15 juin

Plus en détail

Test de reconnaissance des faux pas (version adulte)

Test de reconnaissance des faux pas (version adulte) Test de reconnaissance des faux pas (version adulte) Version originale V. Stone et S. Baron-Cohen http://www2.psy.uq.edu.au/~stone/faux_pas_recog_test.pdf Adapté et normalisé en français par X. Delbeuck

Plus en détail

AcaDM 2012 LA RANDOMISATION plus concrètement? Quân TRAN Intergroupe Francophone de Cancérologie Thoracique

AcaDM 2012 LA RANDOMISATION plus concrètement? Quân TRAN Intergroupe Francophone de Cancérologie Thoracique AcaDM 2012 LA RANDOMISATION plus concrètement? Quân TRAN Intergroupe Francophone de Cancérologie Thoracique 12 juin 2012 Bref rappel des différentes méthodes Les moyens disponibles Expériences à l IFCT

Plus en détail

Le RIVAROXABAN (XARELTO ) dans l embolie pulmonaire

Le RIVAROXABAN (XARELTO ) dans l embolie pulmonaire Le RIVAROXABAN (XARELTO ) dans l embolie pulmonaire Dr Florence Parent Service de Pneumologie et Soins Intensifs de Pneumologie Hôpital Bicêtre, AP-HP Inserm U999. Université Paris-Sud Traitement anticoagulant

Plus en détail

La nouvelle classification TNM en pratique

La nouvelle classification TNM en pratique La nouvelle classification TNM en pratique Thierry Berghmans Département des Soins Intensifs et Oncologie Thoracique Institut Jules Bordet Bruxelles, Belgique Bases historiques 1946 : Denoix invente le

Plus en détail

Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008

Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008 Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008 ML Laroche 1, E Demers 2, MC Breton 2, JP Gregoire 2, J Moisan 2 1- EA 6310 HAVAE, Université, Limoges, France

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Analyse des durées de vie avec le logiciel R

Analyse des durées de vie avec le logiciel R Analyse des durées de vie avec le logiciel R Ségolen Geffray Des outils ainsi que des données pour l analyse des durées de vie sont disponibles dans les packages survival MASS Il est nécessaire de charger

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

«Quelle information aux patients en recherche biomédicale? Quels enseignements en retirer pour la pratique quotidienne?»

«Quelle information aux patients en recherche biomédicale? Quels enseignements en retirer pour la pratique quotidienne?» «Quelle information aux patients en recherche biomédicale? Quels enseignements en retirer pour la pratique quotidienne?» Dr Adeline Paris Unité de Pharmacologie Clinique Centre d Investigation Clinique

Plus en détail

Docteur José LABARERE

Docteur José LABARERE UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Le point de vue du certificateur

Le point de vue du certificateur Le point de vue du certificateur Sépia «Certification des tables d expérience» Paris, mardi 23 novembre 2010 Pierre Thérond Actuaire Associé ptherond@galea-associes.eu PROJET / CONFIDENTIEL Sommaire 1.

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Rapport sur les nouveaux médicaments brevetés Iressa

Rapport sur les nouveaux médicaments brevetés Iressa Rapport sur les nouveaux médicaments brevetés Iressa Au titre de son initiative de transparence, le CEPMB publie les résultats des examens des prix des nouveaux médicaments brevetés effectués par les membres

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Aide-mémoire de statistique appliquée à la biologie

Aide-mémoire de statistique appliquée à la biologie Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela

Plus en détail

Revue de la littérature

Revue de la littérature Résultats à long terme des anévrysmes traités Revue de la littérature Cours de DES de neurochirurgie Inter-région Rhône-Alpes / Auvergne Vendredi 22/04/11 Méthode (1): sélection bibliographique en fonction

Plus en détail

clinique d un médicament

clinique d un médicament DU Recherche Clinique Calcul du nombre de sujets nécessaires (accent sur les phases III) S. THEZENAS I.C.M. (Ex CRLC Val d Aurelle) Unité de Biostatistiques Phases du développement clinique d un médicament

Plus en détail

Essai de phase II randomisé mul2centrique: traitement personnalisé des cancers du rectum localement évolués non métasta2ques

Essai de phase II randomisé mul2centrique: traitement personnalisé des cancers du rectum localement évolués non métasta2ques GRECCAR 4 Groupe de REcherche Chirurgical sur le CAncer du Rectum Essai de phase II randomisé mul2centrique: traitement personnalisé des cancers du rectum localement évolués non métasta2ques N EudraCT

Plus en détail

Decherney et al., 1981 ). La décroissance du taux d HCG après traitement cœlioscopique

Decherney et al., 1981 ). La décroissance du taux d HCG après traitement cœlioscopique La décroissance du taux d HCG après traitement cœlioscopique conservateur de la grossesse extra-utérine J. L. POULY, G. MAGE, H. MANHES, Françoise GACHON Ginette GAIL- LARD M. A. BRUHAT Service de Gynécologie-Obstétrique,

Plus en détail

Essais de recherche de dose: la cancérologie face au reste du monde? Xavier Paoletti Institut Curie, Sce de Biostatistique / Inserm U900

Essais de recherche de dose: la cancérologie face au reste du monde? Xavier Paoletti Institut Curie, Sce de Biostatistique / Inserm U900 Essais de recherche de dose: la cancérologie face au reste du monde? Xavier Paoletti Institut Curie, Sce de Biostatistique / Inserm U900 Des cytotoxiques vers les agents ciblés: un saut méthodologique?

Plus en détail

Transplantation pulmonaire et mucoviscidose. Optimiser la prise en charge médicale

Transplantation pulmonaire et mucoviscidose. Optimiser la prise en charge médicale Transplantation pulmonaire et mucoviscidose Optimiser la prise en charge médicale Dr Isabelle Danner-Boucher CRCM adulte de Nantes Unité de Transplantation Thoracique 11èmes Journées Scientifiques de la

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Faut-il encore traiter les cancers prostatiques?

Faut-il encore traiter les cancers prostatiques? Faut-il encore traiter les cancers prostatiques? Pr Arnauld Villers Université Lille2 -France AFCOR 2013 Quelles données? Notion de lésions indolentes ou à risque Etudes observationnelles de patients traités

Plus en détail

PROGRAMME (Susceptible de modifications)

PROGRAMME (Susceptible de modifications) Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des

Plus en détail

QUEL AVENIR POUR LA PHARMACIE HOSPITALIERE EN SUISSE?

QUEL AVENIR POUR LA PHARMACIE HOSPITALIERE EN SUISSE? QUEL AVENIR POUR LA PHARMACIE HOSPITALIERE EN SUISSE? Regard critique sur nos filières de formation Symposium GSASA, Berne, 12 mai 2009 André Pannatier 1 PLAN 1. Les filières de formation de base et postdiplôme

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

On peut estimer que l étude

On peut estimer que l étude Etude AIM HIGH : faut-il augmenter un HDL bas et diminuer des triglycérides élevés? Résumé : L étude AIM HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides : Impact

Plus en détail

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france

Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Le niveau de revenus des ménages est associé à la couverture vaccinale par le vaccin pneumocoque conjugué chez les enfants d'ile-de-france Jean-Paul Guthmann, Pierre Chauvin, Yann Le Strat, Marion Soler,

Plus en détail

Des doses de pazopanib allant jusqu à 2000 mg ont été évaluées dans les études cliniques sans toxicité dose limitante.

Des doses de pazopanib allant jusqu à 2000 mg ont été évaluées dans les études cliniques sans toxicité dose limitante. 4.9 Surdosage Des doses de pazopanib allant jusqu à 2000 mg ont été évaluées dans les études cliniques sans toxicité dose limitante. Il n existe pas d antidote spécifique à un surdosage par pazopanib,

Plus en détail

RGO: CAFÉ OU DÉCAFÉINÉ

RGO: CAFÉ OU DÉCAFÉINÉ RGO: CAFÉ OU DÉCAFÉINÉ QUESTION : Est-ce que le café décaféiné est une alternative au café chez les patients qui souffrent d un RGO? AUTEUR : Alexis Du Cap (JUILLET 2009) SUPERVISEUR : Guylène Thériault

Plus en détail

Dr Bertrand Michy Département de Pneumologie CHU de Nancy 25 octobre 2013

Dr Bertrand Michy Département de Pneumologie CHU de Nancy 25 octobre 2013 Dr Bertrand Michy Département de Pneumologie CHU de Nancy 25 octobre 2013 Conflits d intérêts Aucun Introduction Constat : CB = Moins de motivation des pneumologues à obtenir le sevrage tabagique (versus

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014 TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014 Epidémiologie Mme Fabbro-Peray Séance préparée par les tuteurs du TSN QCM n 1 : Choisir la ou les proposition(s) exacte(s). A. Parmi

Plus en détail

Peut-on ne pas reprendre des marges «insuffisantes» en cas de Carcinome canalaire infiltrant

Peut-on ne pas reprendre des marges «insuffisantes» en cas de Carcinome canalaire infiltrant Peut-on ne pas reprendre des marges «insuffisantes» en cas de Carcinome canalaire infiltrant Institut Cancérologie de l Ouest CHIRURGIE Dr. Isabelle Jaffré CAS CLINIQUE 1 36 ans 90B sans CI radiothérapie

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

Statistiques Canadiennes sur le Cancer, et HMR sur le poumon

Statistiques Canadiennes sur le Cancer, et HMR sur le poumon Statistiques Canadiennes sur le Cancer, et HMR sur le poumon Bernard Fortin Mars 2014 Source: Comité consultatif de la Société canadienne du cancer : Statistiques canadiennes sur le cancer 2013. Toronto

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

Dyslipidémies et accidents ischémiques cérébraux. Epidémiologie

Dyslipidémies et accidents ischémiques cérébraux. Epidémiologie Dyslipidémies et accidents ischémiques cérébraux Epidémiologie Cholestérol et accidents ischémiques cérébraux: plan I Lipides et atteintes des grosses artères cérébrales: 4 Epidémiologie lipides et risque

Plus en détail

ESSAIS ADAPTATIFS. Raphaël Porcher. Université Paris Diderot, UMR-S717, Hôpital Saint-Louis Paris

ESSAIS ADAPTATIFS. Raphaël Porcher. Université Paris Diderot, UMR-S717, Hôpital Saint-Louis Paris ESSAIS ADAPTATIFS Point de vue «académique» Raphaël Porcher Université Paris Diderot, UMR-S717, Hôpital Saint-Louis Paris 18 èmes Journées des Statisticiens des CLCC Lille, 16 juin 2011 Définition* Méthode

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

CANCER de l ESTOMAC. Dr Kanor, Dr Mineur, Dr Houtin 7 ème Journée Carpentrassienne Vendredi 4 Décembre 2011

CANCER de l ESTOMAC. Dr Kanor, Dr Mineur, Dr Houtin 7 ème Journée Carpentrassienne Vendredi 4 Décembre 2011 CANCER de l ESTOMAC Dr Kanor, Dr Mineur, Dr Houtin 7 ème Journée Carpentrassienne Vendredi 4 Décembre 2011 On aurait pu dire 4 ème rang mondial : poumon,sein,colon 2 ème rang des cancers digestifs France

Plus en détail

Peut-on réduire l incidence de la gastroentérite et ses conséquences dans les écoles primaires à l aide de solution hydro-alcoolique?

Peut-on réduire l incidence de la gastroentérite et ses conséquences dans les écoles primaires à l aide de solution hydro-alcoolique? Peut-on réduire l incidence de la gastroentérite et ses conséquences dans les écoles primaires à l aide de solution hydro-alcoolique? Service des Maladies Infectieuses; CHR Orléans Unité Inserm U-707,

Plus en détail

Valeur ajoutée relative basée sur les comparaisons indirectes Giens 2008, TR 5

Valeur ajoutée relative basée sur les comparaisons indirectes Giens 2008, TR 5 Valeur ajoutée relative basée sur les comparaisons indirectes Giens 2008, TR 5 Claire Le Jeunne Bertrand Xerri Cécile Rey-Coquais Jean-Michel Joubert Jean Delonca Martine Pigeon Michel Lièvre Patricia

Plus en détail

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé

Plus en détail

ACCIDENT AUX NOUVEAUX ANTI-COAGULANTS

ACCIDENT AUX NOUVEAUX ANTI-COAGULANTS ACCIDENT AUX NOUVEAUX ANTI-COAGULANTS Btissame Betari Symposium 8 Avril 2014 1 Cas clinique Mr V. 86 ans ATCD : HTA, ACFA traitée par Xarelto Mode de vie : Vit avec sa femme en pavillon Autonome, marche

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Avancées récentes Les méta-analyses multi-traitements

Avancées récentes Les méta-analyses multi-traitements Tirer parti de toute l information en économie de la santé : Introduction aux outils statistiques bayésiens. Avancées récentes Les méta-analyses multi-traitements Séminaire JEM SFES : Paris, 26 janvier

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement

Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement DIU HTA François Gueyffier Service de pharmacologie clinique UMR CNRS 5558 CIC 201, LYON francois.gueyffier@chu-lyon.fr

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

L analyse discriminante

L analyse discriminante L analyse discriminante À Propos de ce document... Introduction... La démarche à suivre sous SPSS... 2. Statistics... 2 2. Classify... 2 Analyse des résultats... 3. Vérification de l existence de différences

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Associations Dossiers pratiques

Associations Dossiers pratiques Associations Dossiers pratiques Le tableau de bord, outil de pilotage de l association (Dossier réalisé par Laurent Simo, In Extenso Rhône-Alpes) Difficile d imaginer la conduite d un bateau sans boussole

Plus en détail

Objectifs pédagogiques. quizz 06/04/2012. Connaître la définition et les étapes de la gestion des risques associés aux soins

Objectifs pédagogiques. quizz 06/04/2012. Connaître la définition et les étapes de la gestion des risques associés aux soins La gestion des risques associés aux soins Théorie et pratique de l analyse approfondie des causes Staff santé publique 4 avril 2012 Virginie Migeot Objectifs pédagogiques Connaître la définition et les

Plus en détail

Cancer colo-rectal : situation belge

Cancer colo-rectal : situation belge Cancer colo-rectal : situation belge J.-L. Van Laethem, MD, PhD Unité d'oncologie digestive Département médico-chirurgical de Gastro-entérologie Pas de conflit d intérêt déclaré Cancer du colon 7000 nouveaux

Plus en détail

NAVELBINE voie orale

NAVELBINE voie orale DENOMINATION DU MEDICAMENT & FORME PHARMACEUTIQUE NAVELBINE voie orale CARACTERISTIQUES Dénomination commune : vinorelbine Composition qualitative et quantitative : Statut : A.M.M. A.T.U. Classe ATC :

Plus en détail