Modèles de prix non-gaussiens pour les marchés de l énergie. Marie Bernhart

Dimension: px
Commencer à balayer dès la page:

Download "Modèles de prix non-gaussiens pour les marchés de l énergie. Marie Bernhart"

Transcription

1 Modèles de prix non-gaussiens pour les marchés de l énergie Un modèle de prix par processus de Lévy de type NIG Marie Bernhart EDF R&D, OSIRIS, Gestion des Risques Marchés et Valorisation ENPC, 27 février 2012 Marie Bernhart Cours de l ENPC, 27 février /86

2 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

3 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

4 Prix et produits cotés sur les marchés de l énergie Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

5 Prix et produits cotés sur les marchés de l énergie Deux types de transactions sur les marchés de l énergie : 1 Contrats bilatéraux : contrats échangés de gré-à-gré (OTC : Over The Counter) Produits standardisés ou à la carte (profils, maturité, durée, optionalités, physiques ou financiers) : contrats forward (contrats à terme) et options 2 Marchés centralisés (bourses) Produits standards avec procédure de soumission des offres standardisée : futures et options Marchés "physiques" : J-1 (spot et Day-Ahead), infrajournalier (pour l électricité seulement) Marchés "financiers" : futures, options Mélange des deux (coexistence OTC et d une bourse J-1 facultative) Avec une pratique du "selfdispatch", les plans de production étant déclarés au GRT (à 16h30 le jour J-1) Mécanisme d ajustement obligatoire géré par le GRT pour le "temps réel" Marie Bernhart Cours de l ENPC, 27 février /86

6 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

7 Prix et produits cotés sur les marchés de l énergie Principales bourses européennes Marchés issus du couplage d anciens marchés nationaux (par exemple, EEX et Powernext en 2008) EEX (European Energy Exchange) pour France, Allemagne, Autriche et Suisse Power et gas futures, options EPEX Spot (joint venture EEX et Powernext) pour les 4 mêmes Power intraday et spot APEX-ENDEX pour UK, Belgique et Pays-Bas APEX : power et gas spot, ENDEX : power et gas futures NordPool Spot (Elspot) : Power intraday et spot Nasdaq OMX Commodities pour NordPool* et UK : Power et émissions spot, futures, options N2E spot pour UK depuis 04/2011 (opéré par NordPool Spot et Nasdaq OMX Commodities) *NordPool : Suède, Norvège, Finlande et Danemark (pays nordiques) Marie Bernhart Cours de l ENPC, 27 février /86

8 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

9 Prix et produits cotés sur les marchés de l énergie Différents types de produits quotés sur ces deux différents marchés 1 Marché spot (Day-ahead) Prix spot journaliers pour le gaz, pétrôle Prix horaires pour l électricité Prix DaH pour l électricité : moyenne de certains prix horaires chaque jour En particulier, prix Base et Peak, prix de différents blocs En France : Peak les jours de la semaine de 8h à 20h Ex. sur le marché US : prix Peak, Week-end peak et Off peak 2 Marché futures (à terme) : marché pour les granularités supérieures à 1 jour Produits futures avec différentes maturités et périodes de livraison Week, Month, Quarter, Year (ou Calendar), BoM (Balance of Month), BoY Pour le gaz : Season (Summer = Oct.-March, Winter = April-Sept.) Pour l électricité : Baseload et Peakload futures Marie Bernhart Cours de l ENPC, 27 février /86

10 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité : Fixing la veille (Epex Spot : 12h) par croisement des courbes d offre et demande. Marie Bernhart Cours de l ENPC, 27 février /86

11 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité Le prix de toutes les transactions est égal à ce prix d équilibre. Marie Bernhart Cours de l ENPC, 27 février /86

12 Prix et produits cotés sur les marchés de l énergie Courbe d offre théorique sur le marché électrique Marie Bernhart Cours de l ENPC, 27 février /86

13 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité Cette méthode de fixing est appliquée pour toutes les heures du lendemain. Marie Bernhart Cours de l ENPC, 27 février /86

14 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

15 Charactéristiques des prix de l électricité Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

16 Charactéristiques des prix de l électricité Principales charactéristiques du prix spot de l électrique (S t) t 1 Saisonnalité multi-échelle Annuelle, hebdomadaire, journalière Reliée à la saisonnalité de la demande, des activités socio-économiques et à la météorologie 2 Retour à la moyenne : prix tendant à revenir vers des tendances moyennes Réponse de l offre à la demande Tendance court terme : équilibre offre/demande, couplage des marchés Tendance long terme : investissements, conditions économiques de long-terme 3 Forte volatilité Volatilité inversement dépendante au niveau d offre Prix et volatilités corrélés positivement Marie Bernhart Cours de l ENPC, 27 février /86

17 Charactéristiques des prix de l électricité Principales charactéristiques du prix spot de l électrique (S t) t (cont.) 4 Effets de calendrier : vacances, jours fériés 5 Présence d importants pics de prix Pic : Mouvement à la hausse suivi d un retour rapide au même niveau Caractère non stockable de l électricité Discontinuité des coûts de production 6 Evenements atypiques : prix négatifs ou nuls 7 Correlation aux autres matières premières énergétiques (gaz, pétrôle, charbon) Marie Bernhart Cours de l ENPC, 27 février /86

18 Charactéristiques des prix de l électricité Chronique de prix spot électrique (S t) t Retour à la moyenne : fluctuations autour d un niveau déterminié par les coûts de production et la demande saisonnière Pics Données de prix spot heure par heure EpexSpot, Novembre Juin 2010 Marie Bernhart Cours de l ENPC, 27 février /86

19 Charactéristiques des prix de l électricité Chronique de prix spot électrique (S t) t : zoom sur 2 semaines Saisonnalité hebdomadaire conséquence de la saisonnalité de la demande Pointes : High noon (11h-14h) et rush hour (17h-20h) Données de prix heure par heure EpexSpot et de conso. RTE, W3-W Marie Bernhart Cours de l ENPC, 27 février /86

20 Charactéristiques des prix de l électricité Distribution des prix spot électriques désaisonnalisés Prix spot Désaisonnalisation de la série temporelle Distribution symétrique après une log-transformation Queues épaisses dues aux évènements extrêmes (pics) Marie Bernhart Cours de l ENPC, 27 février /86

21 Charactéristiques des prix de l électricité Prix journaliers base de l électricité en France (Janv Mai 2010, Epex Spot) Saisonnalité annuelle de la volatilité et des pics Pics surtout en hiver (forte demande + disponibilité réduite des centrales) Marie Bernhart Cours de l ENPC, 27 février /86

22 Charactéristiques des prix de l électricité Pic du lundi 19/10/2009 en France (Epex Spot) Hausse de la prévision de conso. (+3000MW entre Vendredi et Dimanche) et forte demande de fin de matinée (9h-12h) Baisse de la prévision d offre (-4100 MW) due à l arrêt de centrales nucléaire et hydraulique d EDF Marie Bernhart Cours de l ENPC, 27 février /86

23 Charactéristiques des prix de l électricité Pic du mercredi 08/02/2012 en France (Epex Spot) Très forte conso. liée à la vague de froid : à 19h, record historique de 101,7 GW (battant celui de la veille de 100,5 GW) Prix DaH 10h-11h à 1938 e Prix moyen sur la journée à 368 e Marie Bernhart Cours de l ENPC, 27 février /86

24 Prix à terme de l électricité Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

25 Prix à terme de l électricité Prix à terme ou prix future de l électricité Prix à terme F (t, T, T + θ) : Prix coté à la date t d une livraison continue d une quantité unitaire d énergie (1 MWh) sur chaque heure de la période [T, T + θ] θ : Longueur de la période de livraison, également appelée granularité Exemple d un produit Power Base Calendar : Volume = 365x24 = 8760 MWh La disponibilité des produits dépend de la date de cotation t. A chaque date t, cotation d un ensemble de produits futures de diverses granularité : [T i, T i + θ i ] Complétude : La granularité et disponibilité des produits dépend du marché. Horizon d un marché : Dernière date de livraison couverte par les produits futures cotés sur ce marché : T = max {T i + θ i } i Marie Bernhart Cours de l ENPC, 27 février /86

26 Prix à terme de l électricité Propriétés des produits futures (F (t, T, T + θ)) t T 1 Granularité : recouvrement des périodes de livraison 2 Disponibilité : les produits apparaissent au fur et à mesure que le temps passe. Ex. marché fictif où les produits disponibles sont 3 MAH, 2 QAH, 1 YAH : Marie Bernhart Cours de l ENPC, 27 février /86

27 Prix à terme de l électricité Futures disponibles sur quelques bourses électriques EEX France : 4 WAH, 4 MAH, 4 QAH, 3 YAH (Base et Peak) ENDEX Netherlands : 1BOM, 6 MAH, 6 QAH, 6 YAH (Base, Peak et 16h-Peak) Marie Bernhart Cours de l ENPC, 27 février /86

28 Prix à terme de l électricité Principale propriété des prix à terme : Absence d Opportunité d Arbitrage entre produits de différentes granularités quand il y a recouvrement des périodes de livraison. Exemple : 92 F (t, Q4) = 31 F (t, Oct.) + 30 F (t, Nov.) + 31 F (t, Dec.) Hypothèse de divisibilité des produits à terme Courbe forward unitaire (F (t, T )) T t Granularité horaire pour l électricité F (t, T ) F (t, T, T + 1heure) Cette courbe/ces produits n existent pas sur les marchés. Lien entre courbe forward unitaire et produits de marchés par AOA : F (t, T, T + θ) = 1 θ 1 F (t, T + i) θ i=0 Lien classique au prix spot donné par hypothèse de convergence : S t = lim T t F (t, T ) Marie Bernhart Cours de l ENPC, 27 février /86

29 Prix à terme de l électricité Principales charactéristiques des prix à terme de l électricité 1 Effet lié à la saisonnalité La saisonnalité dépend de la période de livraison (date T ). Elle est liée aux anticipations du marché des fluctuations cycliques connues (demande, activité socio-économique et conditions météorologiques). 2 Effet lié à la maturité La volatilité d un produit augmente lorsque la date de cotation t se rapproche de la date de livraison T. Du à l effet relatif de l information disponible entre le court et le moyen term et la possibilié d ajuster la production à la demande. Ex. Le produit Juillet-2008 est plus volatil en juin qu en mai. 3 Effet de la structure par terme Un produit court-terme est plus volatile qu un produit long-terme. Toute nouvelle information aura une incidence forte sur le prix d un produit court-terme (Month), alors que son effet sera dilué sur un produit long-terme (Calendar). Marie Bernhart Cours de l ENPC, 27 février /86

30 Prix à terme de l électricité Volatilité de différents produits à terme pour différentes commodités (CRE) Volatilité décroissante avec la granularité des produits Plus forte volatilité que sur les marchés actions Marie Bernhart Cours de l ENPC, 27 février /86

31 Prix à terme de l électricité Volatilité de différents produits à terme électriques (CRE) Volatilité historique glissante (annuelle) de futures électriques (EEX) Marie Bernhart Cours de l ENPC, 27 février /86

32 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

33 Principes des modèles factoriels Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

34 Principes des modèles factoriels Principe des modèles factoriels La dynamique des prix à terme (F (t, T )) T t est obtenue par déformation d une courbe à terme initiale : (F (t 0, T )) T t0 Cette courbe forward initiale représente le prix coté ou reconstruit à la date t 0 t du contrat future qui livre une unité d énergie à la date T. Procédure de reconstruction nécessaire pour obtenir des courbes horaires (électricité) ou journalière (gaz). Le prix à terme est écrit généralement : F (t, T ) = F (t 0, T ) } {{ } Y (t, T ) } {{ } Courbe forward initiale Terme de diffusion stochastique t 0 t T Marie Bernhart Cours de l ENPC, 27 février /86

35 Principes des modèles factoriels Illustration : diffusion de la courbe à terme t 0 : date de diffusion initiale t : date d observation future (date de cotation) T : date de livraison Marie Bernhart Cours de l ENPC, 27 février /86

36 Principes des modèles factoriels Illustration : diffusion de la courbe à terme (cont.) t 0 : date de diffusion initiale t : date d observation future (date de cotation) T [T 1, T 2 ] : date appartenant à la période de livraison La courbe à terme est la courbe C(t) := (F (t, T )) T1 T T 2. Marie Bernhart Cours de l ENPC, 27 février /86

37 Principes des modèles factoriels Marie Bernhart Cours de l ENPC, 27 février /86

38 Principes des modèles factoriels Une méthode de recontruction d une courbe à terme 1 Représentation des données de prix à terme F (t, T, T + θ) pour t fixé Marie Bernhart Cours de l ENPC, 27 février /86

39 Principes des modèles factoriels 2 Suppression des recouvrements par Absence d Opportunité d Arbitrage Marie Bernhart Cours de l ENPC, 27 février /86

40 Principes des modèles factoriels 3 Multiplication des produits par saisonnalisation : coefficients de shaping (ici mensuels) Marie Bernhart Cours de l ENPC, 27 février /86

41 Principes des modèles factoriels Exemple de courbe reconstruite à pas journalier pour le Gaz (NBP, UK) Marie Bernhart Cours de l ENPC, 27 février /86

42 Un modèle à deux facteurs Gaussiens Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

43 Un modèle à deux facteurs Gaussiens Un modèle factoriel pour l électricité Modèle horaire à deux facteurs Gaussiens Le 1er facteur court terme : forte volatilité et retour à la moyenne fonction de volatilité exponentiellement pondérée Le 2nd facteur long terme : plus faible volatilité et pas de retour à la moyenne Modèle à deux facteurs horaire pour l électricité df (t, T ) F (t, T ) = σ S(t)e a(t t) dwt S + σ L (t)dwt L t T W S, W L mouvements Browniens corrélés avec d W S, W L t = ρdt Court terme : volatilité σ S, retour à la moyenne a Long terme : volatilité σ L Marie Bernhart Cours de l ENPC, 27 février /86

44 Un modèle à deux facteurs Gaussiens Un seul facteur à volatilité constante : df (t, T ) F (t, T ) = σdwt ln F (t, T ) = ln F (t 0, T ) 1 2 σ2 (t t 0 ) + σ (W t W t0 ) Marie Bernhart Cours de l ENPC, 27 février /86

45 Un modèle à deux facteurs Gaussiens Un seul facteur à volatilité exponentiellement pondérée : df (t, T ) F (t, T ) = σe a(t t) dw t { ln F (t, T ) = ln F (t0, T ) 1 2 e 2a(T t) var (X t) + e a(t t) X t X t := t t 0 σe a(t s) ( dw s N (0, σ2 2a 1 e 2a(t t 0 ) )) Marie Bernhart Cours de l ENPC, 27 février /86

46 Un modèle à deux facteurs Gaussiens Modèle à deux facteurs horaire pour l électricité L unique solution de l EDS s écrit { F (t, T ) = F (t 0, T ) exp 1 2 V (t 0, t, T ) + e a(t t) Xt S + X L t } t 0 t T Facteur court terme : Xt S := t t 0 σ S (u)e a(t u) dwu S Facteur long terme : Xt L := t t 0 σ L (u)dwu L Terme de dérive : ( ) V (t 0, t, T ) = var e a(t t) Xt S + Xt L t { = σs 2 (u)e 2a(T u) + σl 2 (u) + 2ρσ S(u)σ L (u)e a(t u)} du t 0 Marie Bernhart Cours de l ENPC, 27 février /86

47 Un modèle à deux facteurs Gaussiens Propriétés du modèle à deux facteurs X S et X L sont des processus Gaussiens. X S est un processus d Ornstein-Uhlenbeck tel que : dx S t = ax S t dt + σ S (t)dw S t, X S t 0 = 0 Le prix à terme est martingale : { E [F (t, T )] = F (t 0, T ) var (F (t, T )) = F (t 0, T ) 2 ( e V (t 0,t,T ) 1 ) Modèle de prix spot induit : S t := F (t, t) { S t = F (t 0, t) exp 1 } {{ } 2 V (t 0, t, t) + Xt S Partie déterministe saisonnière + X L t } t t 0. Marie Bernhart Cours de l ENPC, 27 février /86

48 Un modèle à deux facteurs Gaussiens Volatilité équivalente induite par le modèle à deux facteurs : σ eq(t t) = σs 2 e 2a(T t) + σl 2 + 2ρσ Sσ L e a(t t) L impact de la volatilité long terme est constant. La volatilité court terme a un seulement un impact à court terme, et d autant plus que a est grand. Volatilité équivalente dans le modèle à deux facteurs Marie Bernhart Cours de l ENPC, 27 février /86

49 Un modèle à deux facteurs Gaussiens Illustration : Diffusion de la courbe à terme dans le modèle à deux facteurs avec t 0 = 01/12/2010, t = 15/12/2010, livraison en T [01/01/2011, 01/03/2011] Marie Bernhart Cours de l ENPC, 27 février /86

50 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

51 Tour d horizon des modèles non-gaussiens Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

52 Tour d horizon des modèles non-gaussiens Pourquoi utiliser des modèles non-gaussiens? La distribution des résidus extraits de prix électriques (après désaisonnalisation et log-transformation) est non Gaussienne : présence de pics de prix. Si les prix spot désaisonnalisés sont l exponentielle d un processus d OU, on obtient par exemple : La distribution empirique des résidus extraits est fortement leptokurtique : Plus concentrée autour de zero Masse plus faible au niveau des valeurs intermédiaires Queues épaisses Marie Bernhart Cours de l ENPC, 27 février /86

53 Tour d horizon des modèles non-gaussiens Distribution leptokurtique : quelques rappels Kurtosis : coefficient d aplatissement, correspondant à une mesure de l aplatissement ou de la "pointicité", de la distribution d une v.a. réelle. Excès de kurtosis ou Kurtosis normalisé d une v.a. de moyenne μ et d écart type σ : γ 2 = μ4 σ 4 3 avec μ 4 := E [(X μ) 4] Mésokurtique : γ 2 = 0, cas de la loi Normale avec un moment d ordre 4 normalisé égal à 3. Leptokurtique : γ 2 > 0, distribution est plutôt pointue en sa moyenne, queues de distribution plus longues et épaisses, e.g. Cauchy, Student, Laplace, Poisson Platikurtique : γ 2 < 0, faible pointe autour de la moyenne et queues plus fines, e.g. Bernoulli de paramètre 1/2, Uniforme Marie Bernhart Cours de l ENPC, 27 février /86

54 Tour d horizon des modèles non-gaussiens Principales approches non-gaussiennes recensées dans la littérature, cf. [MT04] 1 Modèles structurels ou d équilibre, cf. [Bar02], [ACNT09], [ACL11] Idée : Le prix spot est obtenu par confrontation d un niveau de demande et d une fonction d offre Demande : décrite par un processus stochastique (Gaussien) Fonction d offre : souvent supposée déterministe, les arrêts de centrales sont mieux décrits par des processus aléatoires (e.g. Poisson composé) 2 Modèles markoviens avec sauts, cf. [GR06] Idée : Les fluctuations aléatoires du signal de prix sont dues à des fluctuations standards (Brownien), à des fluctuations exceptionnelles (processus à sauts avec amplitudes et fréquences aléatoires). Typiquement, le log-prix spot désaisonnalisé est modélisé comme la somme de deux processus X et Y tels que : dx t = ax tdt + σ cdwt 1 + dnt, Yt = σ LWt 2 avec N, processus de Poisson composé. Difficulté pour estimer les paramètres de saut (fréquence et amplitude) Les sauts sont bien représentés mais les pics de prix sont mal représentés. Marie Bernhart Cours de l ENPC, 27 février /86

55 Tour d horizon des modèles non-gaussiens 3 Modèles à changement de régime, cf. [Wer05] Idée : La dynamique du signal de prix évolue selon 2 modèles : un modèle standard (régime de base) et un modèle de crise (régime à "pics"). Typiquement, 2 modèles de retour à la moyenne (processus d OU) avec des paramètres de volatilités différents (un faible et un fort). La transition d un régime à l autre (switching) peut être gouvernée par un seuil déterministe sur le niveau de prix, ou par un processus aléatoire (e.g. chaîne de Markov à deux états non-observables). Loi de probabilité de la transition difficile à calibrer 4 Modèles à loi leptokurtique, cf. [BKM06], [Oud03] Idée : Modèles de retour à la moyenne (type OU) dans lequel le mouvement Brownien (distribution Gaussienne) est remplacé par un processus de Lévy mais dont la distribution est leptokurtique. Typiquement, le log-prix spot désaisonnalisé est modélisé comme somme de 2 processus d Ornstein-Uhlenbeck : le premier est Gaussien, le second est dirigé par un processus de Lévy. Nous allons nous intéresser à un modèle factoriel de Lévy de type NIG. Marie Bernhart Cours de l ENPC, 27 février /86

56 Modèle structurel de Barlow (2002) Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

57 Modèle structurel de Barlow (2002) Modèle fondé sur la confrontation de l offre et de la demande : u t(s t) = d t(s t) avec u t : fonction d offre et d t : fonction de demande Marie Bernhart Cours de l ENPC, 27 février /86

58 Modèle structurel de Barlow (2002) La demande D t est supposée inélastique au prix : d t(s t) = D t S t avec D t : modélisée par un Ornstein-Uhlenbeck La fonction d offre est supposée constante : u t(x) = g(x) = a 0 + b 0 x α En inversant D t = g(s t) et en imposant une contrainte de prix maximum ε 1/α 0 ( ) 1/α a0 D t b = (1 + αxt) 1/α pour D t < a 0 ε 0 b 0 0 S t = ε 1/α 0 pour D t a 0 ε 0 b 0 avec X t = OU(a, m, σ) si D t = OU(a, m, σ) S (partie non-capé) : processus d Ornstein-Uhlenbeck non linéaire (NLOU) Paramètre α : si nul, le log-spot est un simple OU ; si négatif, le prix spot est une fonction de X qui croit plus rapidement qu exponentiellement. Marie Bernhart Cours de l ENPC, 27 février /86

59 Modèle structurel de Barlow (2002) Quand α diminue, les "pics" de prix augmentent. Le processus NLOU a tendance à produire trop de sauts, alors que l exponentielle d un OU n en a pas (seul effet volatilité). Simulations après calibration sur les données d Alberta (Barlow) Marie Bernhart Cours de l ENPC, 27 février /86

60 Modèle structurel de Aïd et al. (2009, 2001) Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

61 Modèle structurel de Aïd et al. (2009, 2001) Modèle d équilibre : à chaque date, les producteurs d électricité peuvent choisir entre différents moyens de production : merit order (offre par empilement). Le combustible marginal est le combustible le plus opportun pour produire de l électricité parmi les différents combustibles disponibles. Le prix spot est donné par le coût du combustible marginal. Marie Bernhart Cours de l ENPC, 27 février /86

62 Modèle structurel de Aïd et al. (2009, 2001) Le prix spot est supposé être déterminé par la demande, les différents moyens de productions (prix des combustibles et heat rates) et leurs capacités. On se donne un ensemble de n technologies de production de l électricité. D t, demande (en MW) Combustibles disponibles i = 1,..., n Ct i, capacité disponible pour le combustible i (en MW) St i, prix du combustible i h i, heat rate associé au combustible i (tel que h i St i en e/mwh) On suppose les coûts de production ordonnés parmi les combustibles : Modèle de prix spot : S t = MC t := h 1 S 1 t h 2S 2 t... hnsn t. n i=1 h i St i I{ i 1 k=1 C t k Dt }. ik=1 C t k Marie Bernhart Cours de l ENPC, 27 février /86

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Indicateurs des marchés de gros de l électricité Mars 2011

Indicateurs des marchés de gros de l électricité Mars 2011 Indicateurs des marchés de gros de l électricité Mars 2011 Cahier des indicateurs électricité Evolution des prix de l électricité Développement du négoce en France Indicateurs relatifs aux fondamentaux

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Modélisation des marchés de matières premières

Modélisation des marchés de matières premières Modélisation des marchés de matières premières Louis MARGUERITTE Jean-Baptiste NESSI Institut des Actuaires Auditorium CNP Vendredi 10 Avril 2009 L. MARGUERITTE JB. NESSI Modélisation des marchés de matières

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Indicateurs des marchés de gros de l électricité Juin 2011

Indicateurs des marchés de gros de l électricité Juin 2011 Indicateurs des marchés de gros de l électricité Juin 2011 Cahier des indicateurs électricité Evolution des prix de l électricité Développement du négoce en France Indicateurs relatifs aux fondamentaux

Plus en détail

Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF

Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF 07 juin 2011 Philippe TORRION Directeur Optimisation Amont/Aval et Trading Sommaire

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE. Conférence Centrale Energie, 19 Janvier 2011

LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE. Conférence Centrale Energie, 19 Janvier 2011 LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE Conférence Centrale Energie, 19 Janvier 2011 SOMMAIRE 01. Les enjeux du marché de électricité 02. L ouverture du marché de l électricité en Europe 03. Le

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE Gestionnaire du Réseau de Transport d 'Electricité La prévision de consommation d électricité à RTE 2 PLAN DE LA PRESENTATION RTE, le gestionnaire du réseau d électricité Présentation d une méthodologie

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Indicateurs des marchés de gros de l électricité septembre 2011

Indicateurs des marchés de gros de l électricité septembre 2011 Indicateurs des marchés de gros de l électricité septembre 2011 Cahier des indicateurs électricité Evolution des prix de l électricité Développement du négoce en France Indicateurs relatifs aux fondamentaux

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Prise en compte de la liquidité dans les algorithmes de trading

Prise en compte de la liquidité dans les algorithmes de trading Prise en compte de la liquidité dans les algorithmes de trading clehalle@cheuvreux.com Resp. de la Recherche Quant., Atelier Trading & Micro Structure 10 décembre 2008 Contenu La liquidité en Europe Les

Plus en détail

CHAPITRE 1. Michel LUBRANO using lecture notes by Luc Bauwens. Avril 2011. 1 Introduction 2

CHAPITRE 1. Michel LUBRANO using lecture notes by Luc Bauwens. Avril 2011. 1 Introduction 2 CHAPITRE 1 Volatilité et risques financiers Michel LUBRANO using lecture notes by Luc Bauwens Avril 2011 Contents 1 Introduction 2 2 Rendements et volatilité 2 2.1 Rendements..................................

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Les Codes Réseau Européens Quelles évolutions, Quels impacts?

Les Codes Réseau Européens Quelles évolutions, Quels impacts? Les Codes Réseau Européens Quelles évolutions, Quels impacts? Lucian BALEA Responsable de l accès aux interconnexions Direction des Affaires Européennes - RTE Audrey MAHUET Responsable des Etudes et des

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Couverture dynamique des produits dérivés de crédit dans les modèles à copules

Couverture dynamique des produits dérivés de crédit dans les modèles à copules Couverture dynamique des produits dérivés de crédit dans les modèles à copules David Kurtz, Groupe de Recherche Opérationnelle Workshop Copula in Finance, 14 mai 2004, ENS Cachan Sommaire 1 Le marché des

Plus en détail

Value at Risk - étude de cas

Value at Risk - étude de cas Value at Risk - étude de cas Daniel Herlemont 17 juin 2011 Table des matières 1 Introduction 1 2 La Value at Risk 1 2.1 La VaR historique................................. 2 2.2 La VaR normale..................................

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

Examen Gestion de portefeuille

Examen Gestion de portefeuille ESC Toulouse 2005 D. Herlemont Mastère BIF Examen Gestion de portefeuille Durée : 2 heures Les documents ne sont pas autorisés. Pour les questions à choix multiples, une ou plusieurs réponses peuvent être

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

Estimation ultra haute fréquence de la volatilité et de la co-volatilité

Estimation ultra haute fréquence de la volatilité et de la co-volatilité Estimation ultra haute fréquence de la volatilité et de la co-volatilité Christian Y. Robert 1 et Mathieu Rosenbaum 2 1 CREST-ENSAE Paris Tech, 2 CMAP-École Polytechnique Paris Christian Y. Robert et Mathieu

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

6 èmes rencontres France Hydro Electricité de Grenoble

6 èmes rencontres France Hydro Electricité de Grenoble 6 èmes rencontres France Hydro Electricité de Grenoble 9 avril 213 Grenoble Thierry Morello Directeur Général Adjoint EPEX SPOT Agenda 1. Qu est-ce que la bourse d électricité spot? 2. Comment se forment

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Séminaire de formation Les bourses de l électricité & le marché spot. Alger 4 & 5 mai 2009

Séminaire de formation Les bourses de l électricité & le marché spot. Alger 4 & 5 mai 2009 Séminaire de formation Les bourses de l électricité & le marché spot Alger 4 & 5 mai 2009 Objectif général Objectifs spécifiques Résultats attendus Définir les principes de fonctionnement, le rôle et les

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Problématiques dans trading à haute fréquence

Problématiques dans trading à haute fréquence Extrait de la présentation de Charles-Albert Lehalle, Atelier Trading & Micro-structure, Collège de France, 10 Décembre 2008. mdang@cheuvreux.com Recherche Quantitative, Séminaire de la finance, VNFinance

Plus en détail

Parc de Production. Marchés

Parc de Production. Marchés Long terme Moyen terme Court terme Investissements Pluriannuel Planning d arrêts des tranches nucléaires Annuel Couverture Approvisionnement en combustibles Gestion du risque Valeurs d usage des grands

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2)

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2) Séminaire d enseignement M2 Production de données et échelles temporelles de l évaluation du risque en finance Deuxième partie (séance 2) Séminaire M2 2015-2016 page 1 Plan 1. Les échelles de temps 2.

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité

L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité Jean-François Conil-Lacoste, Président du Directoire Premier Cercle 2013 05 avril 2013, Paris Agenda 1. Fondamentaux

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Méthodes de prévision des ventes

Méthodes de prévision des ventes Méthodes de prévision des ventes Il est important pour toute organisation qui souhaite survivre dans un environnement concurrentiel d adopter des démarches de prévision des ventes pour anticiper et agir

Plus en détail

Les méthodes de contrôle des risques de portefeuilles

Les méthodes de contrôle des risques de portefeuilles Les méthodes de contrôle des risques de portefeuilles LE CERCLE INVESCO 006 Eric Tazé-Bernard Directeur de la Gestion INVESCO Asset Management Section 01 Section 0 Section 03 Les principaux indicateurs

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Bilan du marché organisé du gaz. 8 mars 2012

Bilan du marché organisé du gaz. 8 mars 2012 Bilan du marché organisé du gaz 8 mars 2012 Bilan du marché organisé du gaz Modèle de marché Références de prix Membres Liquidité Panorama européen Service Système Equilibrage Couplage Afgaz 8 mars 2012

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Deux modèles de bruit de microstructure et leur inférence statistique

Deux modèles de bruit de microstructure et leur inférence statistique et leur CMAP-X, Paris 7, ENSAE-CREST et CNRS 17 Septembre, 2009 Plan 1 2 3 4 5 6 Representation du prix d un actif en dimension 1 prix traité = drift + fluctuations + sauts prix = drift + σ BM + PPP Dans

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Le négoce d énergie du point de vue local. Der Energiehandel aus lokaler Sicht

Le négoce d énergie du point de vue local. Der Energiehandel aus lokaler Sicht Le négoce d énergie du point de vue local Der Energiehandel aus lokaler Sicht 1 Thèmes 1 FMV mission/métiers 2 GeCom fonctionnement 4 3 Gestion des risques Moyens pour le négoce 6 5 Défis Optimisation

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 Cours de B. Desgraupes. Simulation Stochastique UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L2 MIASHS Cours de B. Desgraupes Simulation Stochastique Séance 04: Nombres pseudo-aléatoires Table des matières 1

Plus en détail

7 Les marchés européens de l électricité

7 Les marchés européens de l électricité 7 Les marchés européens de l électricité L intégration grandissante des énergies renouvelables sous contrat d achat (financées hors marché par le consommateur ou le contribuable), et la baisse des prix

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Modèles GARCH et à volatilité stochastique

Modèles GARCH et à volatilité stochastique Christian Francq Chapitre 3: GARCH asymétriques Plan 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3 1 Asymétrie des séries financières et inadéquation des GARCH standard 2 3

Plus en détail

Perspectives d évolution du prix de l électricité: vision d un producteurfournisseur

Perspectives d évolution du prix de l électricité: vision d un producteurfournisseur Perspectives d évolution du prix de l électricité: vision d un producteurfournisseur Charleroi, 25 Février 2016 Christophe Baugnet CONTENTS Chapter 1 Rappel des fondamentaux: formation du prix dans un

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail