Modèles de prix non-gaussiens pour les marchés de l énergie. Marie Bernhart

Dimension: px
Commencer à balayer dès la page:

Download "Modèles de prix non-gaussiens pour les marchés de l énergie. Marie Bernhart"

Transcription

1 Modèles de prix non-gaussiens pour les marchés de l énergie Un modèle de prix par processus de Lévy de type NIG Marie Bernhart EDF R&D, OSIRIS, Gestion des Risques Marchés et Valorisation ENPC, 27 février 2012 Marie Bernhart Cours de l ENPC, 27 février /86

2 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

3 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

4 Prix et produits cotés sur les marchés de l énergie Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

5 Prix et produits cotés sur les marchés de l énergie Deux types de transactions sur les marchés de l énergie : 1 Contrats bilatéraux : contrats échangés de gré-à-gré (OTC : Over The Counter) Produits standardisés ou à la carte (profils, maturité, durée, optionalités, physiques ou financiers) : contrats forward (contrats à terme) et options 2 Marchés centralisés (bourses) Produits standards avec procédure de soumission des offres standardisée : futures et options Marchés "physiques" : J-1 (spot et Day-Ahead), infrajournalier (pour l électricité seulement) Marchés "financiers" : futures, options Mélange des deux (coexistence OTC et d une bourse J-1 facultative) Avec une pratique du "selfdispatch", les plans de production étant déclarés au GRT (à 16h30 le jour J-1) Mécanisme d ajustement obligatoire géré par le GRT pour le "temps réel" Marie Bernhart Cours de l ENPC, 27 février /86

6 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

7 Prix et produits cotés sur les marchés de l énergie Principales bourses européennes Marchés issus du couplage d anciens marchés nationaux (par exemple, EEX et Powernext en 2008) EEX (European Energy Exchange) pour France, Allemagne, Autriche et Suisse Power et gas futures, options EPEX Spot (joint venture EEX et Powernext) pour les 4 mêmes Power intraday et spot APEX-ENDEX pour UK, Belgique et Pays-Bas APEX : power et gas spot, ENDEX : power et gas futures NordPool Spot (Elspot) : Power intraday et spot Nasdaq OMX Commodities pour NordPool* et UK : Power et émissions spot, futures, options N2E spot pour UK depuis 04/2011 (opéré par NordPool Spot et Nasdaq OMX Commodities) *NordPool : Suède, Norvège, Finlande et Danemark (pays nordiques) Marie Bernhart Cours de l ENPC, 27 février /86

8 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

9 Prix et produits cotés sur les marchés de l énergie Différents types de produits quotés sur ces deux différents marchés 1 Marché spot (Day-ahead) Prix spot journaliers pour le gaz, pétrôle Prix horaires pour l électricité Prix DaH pour l électricité : moyenne de certains prix horaires chaque jour En particulier, prix Base et Peak, prix de différents blocs En France : Peak les jours de la semaine de 8h à 20h Ex. sur le marché US : prix Peak, Week-end peak et Off peak 2 Marché futures (à terme) : marché pour les granularités supérieures à 1 jour Produits futures avec différentes maturités et périodes de livraison Week, Month, Quarter, Year (ou Calendar), BoM (Balance of Month), BoY Pour le gaz : Season (Summer = Oct.-March, Winter = April-Sept.) Pour l électricité : Baseload et Peakload futures Marie Bernhart Cours de l ENPC, 27 février /86

10 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité : Fixing la veille (Epex Spot : 12h) par croisement des courbes d offre et demande. Marie Bernhart Cours de l ENPC, 27 février /86

11 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité Le prix de toutes les transactions est égal à ce prix d équilibre. Marie Bernhart Cours de l ENPC, 27 février /86

12 Prix et produits cotés sur les marchés de l énergie Courbe d offre théorique sur le marché électrique Marie Bernhart Cours de l ENPC, 27 février /86

13 Prix et produits cotés sur les marchés de l énergie Prix horaires de l électricité Cette méthode de fixing est appliquée pour toutes les heures du lendemain. Marie Bernhart Cours de l ENPC, 27 février /86

14 Prix et produits cotés sur les marchés de l énergie Marie Bernhart Cours de l ENPC, 27 février /86

15 Charactéristiques des prix de l électricité Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

16 Charactéristiques des prix de l électricité Principales charactéristiques du prix spot de l électrique (S t) t 1 Saisonnalité multi-échelle Annuelle, hebdomadaire, journalière Reliée à la saisonnalité de la demande, des activités socio-économiques et à la météorologie 2 Retour à la moyenne : prix tendant à revenir vers des tendances moyennes Réponse de l offre à la demande Tendance court terme : équilibre offre/demande, couplage des marchés Tendance long terme : investissements, conditions économiques de long-terme 3 Forte volatilité Volatilité inversement dépendante au niveau d offre Prix et volatilités corrélés positivement Marie Bernhart Cours de l ENPC, 27 février /86

17 Charactéristiques des prix de l électricité Principales charactéristiques du prix spot de l électrique (S t) t (cont.) 4 Effets de calendrier : vacances, jours fériés 5 Présence d importants pics de prix Pic : Mouvement à la hausse suivi d un retour rapide au même niveau Caractère non stockable de l électricité Discontinuité des coûts de production 6 Evenements atypiques : prix négatifs ou nuls 7 Correlation aux autres matières premières énergétiques (gaz, pétrôle, charbon) Marie Bernhart Cours de l ENPC, 27 février /86

18 Charactéristiques des prix de l électricité Chronique de prix spot électrique (S t) t Retour à la moyenne : fluctuations autour d un niveau déterminié par les coûts de production et la demande saisonnière Pics Données de prix spot heure par heure EpexSpot, Novembre Juin 2010 Marie Bernhart Cours de l ENPC, 27 février /86

19 Charactéristiques des prix de l électricité Chronique de prix spot électrique (S t) t : zoom sur 2 semaines Saisonnalité hebdomadaire conséquence de la saisonnalité de la demande Pointes : High noon (11h-14h) et rush hour (17h-20h) Données de prix heure par heure EpexSpot et de conso. RTE, W3-W Marie Bernhart Cours de l ENPC, 27 février /86

20 Charactéristiques des prix de l électricité Distribution des prix spot électriques désaisonnalisés Prix spot Désaisonnalisation de la série temporelle Distribution symétrique après une log-transformation Queues épaisses dues aux évènements extrêmes (pics) Marie Bernhart Cours de l ENPC, 27 février /86

21 Charactéristiques des prix de l électricité Prix journaliers base de l électricité en France (Janv Mai 2010, Epex Spot) Saisonnalité annuelle de la volatilité et des pics Pics surtout en hiver (forte demande + disponibilité réduite des centrales) Marie Bernhart Cours de l ENPC, 27 février /86

22 Charactéristiques des prix de l électricité Pic du lundi 19/10/2009 en France (Epex Spot) Hausse de la prévision de conso. (+3000MW entre Vendredi et Dimanche) et forte demande de fin de matinée (9h-12h) Baisse de la prévision d offre (-4100 MW) due à l arrêt de centrales nucléaire et hydraulique d EDF Marie Bernhart Cours de l ENPC, 27 février /86

23 Charactéristiques des prix de l électricité Pic du mercredi 08/02/2012 en France (Epex Spot) Très forte conso. liée à la vague de froid : à 19h, record historique de 101,7 GW (battant celui de la veille de 100,5 GW) Prix DaH 10h-11h à 1938 e Prix moyen sur la journée à 368 e Marie Bernhart Cours de l ENPC, 27 février /86

24 Prix à terme de l électricité Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

25 Prix à terme de l électricité Prix à terme ou prix future de l électricité Prix à terme F (t, T, T + θ) : Prix coté à la date t d une livraison continue d une quantité unitaire d énergie (1 MWh) sur chaque heure de la période [T, T + θ] θ : Longueur de la période de livraison, également appelée granularité Exemple d un produit Power Base Calendar : Volume = 365x24 = 8760 MWh La disponibilité des produits dépend de la date de cotation t. A chaque date t, cotation d un ensemble de produits futures de diverses granularité : [T i, T i + θ i ] Complétude : La granularité et disponibilité des produits dépend du marché. Horizon d un marché : Dernière date de livraison couverte par les produits futures cotés sur ce marché : T = max {T i + θ i } i Marie Bernhart Cours de l ENPC, 27 février /86

26 Prix à terme de l électricité Propriétés des produits futures (F (t, T, T + θ)) t T 1 Granularité : recouvrement des périodes de livraison 2 Disponibilité : les produits apparaissent au fur et à mesure que le temps passe. Ex. marché fictif où les produits disponibles sont 3 MAH, 2 QAH, 1 YAH : Marie Bernhart Cours de l ENPC, 27 février /86

27 Prix à terme de l électricité Futures disponibles sur quelques bourses électriques EEX France : 4 WAH, 4 MAH, 4 QAH, 3 YAH (Base et Peak) ENDEX Netherlands : 1BOM, 6 MAH, 6 QAH, 6 YAH (Base, Peak et 16h-Peak) Marie Bernhart Cours de l ENPC, 27 février /86

28 Prix à terme de l électricité Principale propriété des prix à terme : Absence d Opportunité d Arbitrage entre produits de différentes granularités quand il y a recouvrement des périodes de livraison. Exemple : 92 F (t, Q4) = 31 F (t, Oct.) + 30 F (t, Nov.) + 31 F (t, Dec.) Hypothèse de divisibilité des produits à terme Courbe forward unitaire (F (t, T )) T t Granularité horaire pour l électricité F (t, T ) F (t, T, T + 1heure) Cette courbe/ces produits n existent pas sur les marchés. Lien entre courbe forward unitaire et produits de marchés par AOA : F (t, T, T + θ) = 1 θ 1 F (t, T + i) θ i=0 Lien classique au prix spot donné par hypothèse de convergence : S t = lim T t F (t, T ) Marie Bernhart Cours de l ENPC, 27 février /86

29 Prix à terme de l électricité Principales charactéristiques des prix à terme de l électricité 1 Effet lié à la saisonnalité La saisonnalité dépend de la période de livraison (date T ). Elle est liée aux anticipations du marché des fluctuations cycliques connues (demande, activité socio-économique et conditions météorologiques). 2 Effet lié à la maturité La volatilité d un produit augmente lorsque la date de cotation t se rapproche de la date de livraison T. Du à l effet relatif de l information disponible entre le court et le moyen term et la possibilié d ajuster la production à la demande. Ex. Le produit Juillet-2008 est plus volatil en juin qu en mai. 3 Effet de la structure par terme Un produit court-terme est plus volatile qu un produit long-terme. Toute nouvelle information aura une incidence forte sur le prix d un produit court-terme (Month), alors que son effet sera dilué sur un produit long-terme (Calendar). Marie Bernhart Cours de l ENPC, 27 février /86

30 Prix à terme de l électricité Volatilité de différents produits à terme pour différentes commodités (CRE) Volatilité décroissante avec la granularité des produits Plus forte volatilité que sur les marchés actions Marie Bernhart Cours de l ENPC, 27 février /86

31 Prix à terme de l électricité Volatilité de différents produits à terme électriques (CRE) Volatilité historique glissante (annuelle) de futures électriques (EEX) Marie Bernhart Cours de l ENPC, 27 février /86

32 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

33 Principes des modèles factoriels Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

34 Principes des modèles factoriels Principe des modèles factoriels La dynamique des prix à terme (F (t, T )) T t est obtenue par déformation d une courbe à terme initiale : (F (t 0, T )) T t0 Cette courbe forward initiale représente le prix coté ou reconstruit à la date t 0 t du contrat future qui livre une unité d énergie à la date T. Procédure de reconstruction nécessaire pour obtenir des courbes horaires (électricité) ou journalière (gaz). Le prix à terme est écrit généralement : F (t, T ) = F (t 0, T ) } {{ } Y (t, T ) } {{ } Courbe forward initiale Terme de diffusion stochastique t 0 t T Marie Bernhart Cours de l ENPC, 27 février /86

35 Principes des modèles factoriels Illustration : diffusion de la courbe à terme t 0 : date de diffusion initiale t : date d observation future (date de cotation) T : date de livraison Marie Bernhart Cours de l ENPC, 27 février /86

36 Principes des modèles factoriels Illustration : diffusion de la courbe à terme (cont.) t 0 : date de diffusion initiale t : date d observation future (date de cotation) T [T 1, T 2 ] : date appartenant à la période de livraison La courbe à terme est la courbe C(t) := (F (t, T )) T1 T T 2. Marie Bernhart Cours de l ENPC, 27 février /86

37 Principes des modèles factoriels Marie Bernhart Cours de l ENPC, 27 février /86

38 Principes des modèles factoriels Une méthode de recontruction d une courbe à terme 1 Représentation des données de prix à terme F (t, T, T + θ) pour t fixé Marie Bernhart Cours de l ENPC, 27 février /86

39 Principes des modèles factoriels 2 Suppression des recouvrements par Absence d Opportunité d Arbitrage Marie Bernhart Cours de l ENPC, 27 février /86

40 Principes des modèles factoriels 3 Multiplication des produits par saisonnalisation : coefficients de shaping (ici mensuels) Marie Bernhart Cours de l ENPC, 27 février /86

41 Principes des modèles factoriels Exemple de courbe reconstruite à pas journalier pour le Gaz (NBP, UK) Marie Bernhart Cours de l ENPC, 27 février /86

42 Un modèle à deux facteurs Gaussiens Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

43 Un modèle à deux facteurs Gaussiens Un modèle factoriel pour l électricité Modèle horaire à deux facteurs Gaussiens Le 1er facteur court terme : forte volatilité et retour à la moyenne fonction de volatilité exponentiellement pondérée Le 2nd facteur long terme : plus faible volatilité et pas de retour à la moyenne Modèle à deux facteurs horaire pour l électricité df (t, T ) F (t, T ) = σ S(t)e a(t t) dwt S + σ L (t)dwt L t T W S, W L mouvements Browniens corrélés avec d W S, W L t = ρdt Court terme : volatilité σ S, retour à la moyenne a Long terme : volatilité σ L Marie Bernhart Cours de l ENPC, 27 février /86

44 Un modèle à deux facteurs Gaussiens Un seul facteur à volatilité constante : df (t, T ) F (t, T ) = σdwt ln F (t, T ) = ln F (t 0, T ) 1 2 σ2 (t t 0 ) + σ (W t W t0 ) Marie Bernhart Cours de l ENPC, 27 février /86

45 Un modèle à deux facteurs Gaussiens Un seul facteur à volatilité exponentiellement pondérée : df (t, T ) F (t, T ) = σe a(t t) dw t { ln F (t, T ) = ln F (t0, T ) 1 2 e 2a(T t) var (X t) + e a(t t) X t X t := t t 0 σe a(t s) ( dw s N (0, σ2 2a 1 e 2a(t t 0 ) )) Marie Bernhart Cours de l ENPC, 27 février /86

46 Un modèle à deux facteurs Gaussiens Modèle à deux facteurs horaire pour l électricité L unique solution de l EDS s écrit { F (t, T ) = F (t 0, T ) exp 1 2 V (t 0, t, T ) + e a(t t) Xt S + X L t } t 0 t T Facteur court terme : Xt S := t t 0 σ S (u)e a(t u) dwu S Facteur long terme : Xt L := t t 0 σ L (u)dwu L Terme de dérive : ( ) V (t 0, t, T ) = var e a(t t) Xt S + Xt L t { = σs 2 (u)e 2a(T u) + σl 2 (u) + 2ρσ S(u)σ L (u)e a(t u)} du t 0 Marie Bernhart Cours de l ENPC, 27 février /86

47 Un modèle à deux facteurs Gaussiens Propriétés du modèle à deux facteurs X S et X L sont des processus Gaussiens. X S est un processus d Ornstein-Uhlenbeck tel que : dx S t = ax S t dt + σ S (t)dw S t, X S t 0 = 0 Le prix à terme est martingale : { E [F (t, T )] = F (t 0, T ) var (F (t, T )) = F (t 0, T ) 2 ( e V (t 0,t,T ) 1 ) Modèle de prix spot induit : S t := F (t, t) { S t = F (t 0, t) exp 1 } {{ } 2 V (t 0, t, t) + Xt S Partie déterministe saisonnière + X L t } t t 0. Marie Bernhart Cours de l ENPC, 27 février /86

48 Un modèle à deux facteurs Gaussiens Volatilité équivalente induite par le modèle à deux facteurs : σ eq(t t) = σs 2 e 2a(T t) + σl 2 + 2ρσ Sσ L e a(t t) L impact de la volatilité long terme est constant. La volatilité court terme a un seulement un impact à court terme, et d autant plus que a est grand. Volatilité équivalente dans le modèle à deux facteurs Marie Bernhart Cours de l ENPC, 27 février /86

49 Un modèle à deux facteurs Gaussiens Illustration : Diffusion de la courbe à terme dans le modèle à deux facteurs avec t 0 = 01/12/2010, t = 15/12/2010, livraison en T [01/01/2011, 01/03/2011] Marie Bernhart Cours de l ENPC, 27 février /86

50 Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

51 Tour d horizon des modèles non-gaussiens Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

52 Tour d horizon des modèles non-gaussiens Pourquoi utiliser des modèles non-gaussiens? La distribution des résidus extraits de prix électriques (après désaisonnalisation et log-transformation) est non Gaussienne : présence de pics de prix. Si les prix spot désaisonnalisés sont l exponentielle d un processus d OU, on obtient par exemple : La distribution empirique des résidus extraits est fortement leptokurtique : Plus concentrée autour de zero Masse plus faible au niveau des valeurs intermédiaires Queues épaisses Marie Bernhart Cours de l ENPC, 27 février /86

53 Tour d horizon des modèles non-gaussiens Distribution leptokurtique : quelques rappels Kurtosis : coefficient d aplatissement, correspondant à une mesure de l aplatissement ou de la "pointicité", de la distribution d une v.a. réelle. Excès de kurtosis ou Kurtosis normalisé d une v.a. de moyenne μ et d écart type σ : γ 2 = μ4 σ 4 3 avec μ 4 := E [(X μ) 4] Mésokurtique : γ 2 = 0, cas de la loi Normale avec un moment d ordre 4 normalisé égal à 3. Leptokurtique : γ 2 > 0, distribution est plutôt pointue en sa moyenne, queues de distribution plus longues et épaisses, e.g. Cauchy, Student, Laplace, Poisson Platikurtique : γ 2 < 0, faible pointe autour de la moyenne et queues plus fines, e.g. Bernoulli de paramètre 1/2, Uniforme Marie Bernhart Cours de l ENPC, 27 février /86

54 Tour d horizon des modèles non-gaussiens Principales approches non-gaussiennes recensées dans la littérature, cf. [MT04] 1 Modèles structurels ou d équilibre, cf. [Bar02], [ACNT09], [ACL11] Idée : Le prix spot est obtenu par confrontation d un niveau de demande et d une fonction d offre Demande : décrite par un processus stochastique (Gaussien) Fonction d offre : souvent supposée déterministe, les arrêts de centrales sont mieux décrits par des processus aléatoires (e.g. Poisson composé) 2 Modèles markoviens avec sauts, cf. [GR06] Idée : Les fluctuations aléatoires du signal de prix sont dues à des fluctuations standards (Brownien), à des fluctuations exceptionnelles (processus à sauts avec amplitudes et fréquences aléatoires). Typiquement, le log-prix spot désaisonnalisé est modélisé comme la somme de deux processus X et Y tels que : dx t = ax tdt + σ cdwt 1 + dnt, Yt = σ LWt 2 avec N, processus de Poisson composé. Difficulté pour estimer les paramètres de saut (fréquence et amplitude) Les sauts sont bien représentés mais les pics de prix sont mal représentés. Marie Bernhart Cours de l ENPC, 27 février /86

55 Tour d horizon des modèles non-gaussiens 3 Modèles à changement de régime, cf. [Wer05] Idée : La dynamique du signal de prix évolue selon 2 modèles : un modèle standard (régime de base) et un modèle de crise (régime à "pics"). Typiquement, 2 modèles de retour à la moyenne (processus d OU) avec des paramètres de volatilités différents (un faible et un fort). La transition d un régime à l autre (switching) peut être gouvernée par un seuil déterministe sur le niveau de prix, ou par un processus aléatoire (e.g. chaîne de Markov à deux états non-observables). Loi de probabilité de la transition difficile à calibrer 4 Modèles à loi leptokurtique, cf. [BKM06], [Oud03] Idée : Modèles de retour à la moyenne (type OU) dans lequel le mouvement Brownien (distribution Gaussienne) est remplacé par un processus de Lévy mais dont la distribution est leptokurtique. Typiquement, le log-prix spot désaisonnalisé est modélisé comme somme de 2 processus d Ornstein-Uhlenbeck : le premier est Gaussien, le second est dirigé par un processus de Lévy. Nous allons nous intéresser à un modèle factoriel de Lévy de type NIG. Marie Bernhart Cours de l ENPC, 27 février /86

56 Modèle structurel de Barlow (2002) Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

57 Modèle structurel de Barlow (2002) Modèle fondé sur la confrontation de l offre et de la demande : u t(s t) = d t(s t) avec u t : fonction d offre et d t : fonction de demande Marie Bernhart Cours de l ENPC, 27 février /86

58 Modèle structurel de Barlow (2002) La demande D t est supposée inélastique au prix : d t(s t) = D t S t avec D t : modélisée par un Ornstein-Uhlenbeck La fonction d offre est supposée constante : u t(x) = g(x) = a 0 + b 0 x α En inversant D t = g(s t) et en imposant une contrainte de prix maximum ε 1/α 0 ( ) 1/α a0 D t b = (1 + αxt) 1/α pour D t < a 0 ε 0 b 0 0 S t = ε 1/α 0 pour D t a 0 ε 0 b 0 avec X t = OU(a, m, σ) si D t = OU(a, m, σ) S (partie non-capé) : processus d Ornstein-Uhlenbeck non linéaire (NLOU) Paramètre α : si nul, le log-spot est un simple OU ; si négatif, le prix spot est une fonction de X qui croit plus rapidement qu exponentiellement. Marie Bernhart Cours de l ENPC, 27 février /86

59 Modèle structurel de Barlow (2002) Quand α diminue, les "pics" de prix augmentent. Le processus NLOU a tendance à produire trop de sauts, alors que l exponentielle d un OU n en a pas (seul effet volatilité). Simulations après calibration sur les données d Alberta (Barlow) Marie Bernhart Cours de l ENPC, 27 février /86

60 Modèle structurel de Aïd et al. (2009, 2001) Outline 1 Introduction : Prix sur les marchés de l énergie Prix et produits cotés sur les marchés de l énergie Charactéristiques des prix de l électricité Prix à terme de l électricité 2 Un modèle factoriel Gaussien Principes des modèles factoriels Un modèle à deux facteurs Gaussiens 3 Approches non Gaussiennes pour les prix électriques Tour d horizon des modèles non-gaussiens Modèle structurel de Barlow (2002) Modèle structurel de Aïd et al. (2009, 2001) 4 Modèle factoriel de Lévy de type NIG Modèle factoriel Normal Inverse Gaussien (NIG) Calibration des paramètres et simulations du modèle factoriel NIG Conclusions Marie Bernhart Cours de l ENPC, 27 février /86

61 Modèle structurel de Aïd et al. (2009, 2001) Modèle d équilibre : à chaque date, les producteurs d électricité peuvent choisir entre différents moyens de production : merit order (offre par empilement). Le combustible marginal est le combustible le plus opportun pour produire de l électricité parmi les différents combustibles disponibles. Le prix spot est donné par le coût du combustible marginal. Marie Bernhart Cours de l ENPC, 27 février /86

62 Modèle structurel de Aïd et al. (2009, 2001) Le prix spot est supposé être déterminé par la demande, les différents moyens de productions (prix des combustibles et heat rates) et leurs capacités. On se donne un ensemble de n technologies de production de l électricité. D t, demande (en MW) Combustibles disponibles i = 1,..., n Ct i, capacité disponible pour le combustible i (en MW) St i, prix du combustible i h i, heat rate associé au combustible i (tel que h i St i en e/mwh) On suppose les coûts de production ordonnés parmi les combustibles : Modèle de prix spot : S t = MC t := h 1 S 1 t h 2S 2 t... hnsn t. n i=1 h i St i I{ i 1 k=1 C t k Dt }. ik=1 C t k Marie Bernhart Cours de l ENPC, 27 février /86

Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF

Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF Optimisation de l équilibre offre-demande, rôle des interconnexions et impact de l arrêt du nucléaire allemand pour EDF 07 juin 2011 Philippe TORRION Directeur Optimisation Amont/Aval et Trading Sommaire

Plus en détail

Indicateurs des marchés de gros de l électricité Mars 2011

Indicateurs des marchés de gros de l électricité Mars 2011 Indicateurs des marchés de gros de l électricité Mars 2011 Cahier des indicateurs électricité Evolution des prix de l électricité Développement du négoce en France Indicateurs relatifs aux fondamentaux

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Modélisation des marchés de matières premières

Modélisation des marchés de matières premières Modélisation des marchés de matières premières Louis MARGUERITTE Jean-Baptiste NESSI Institut des Actuaires Auditorium CNP Vendredi 10 Avril 2009 L. MARGUERITTE JB. NESSI Modélisation des marchés de matières

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE. Conférence Centrale Energie, 19 Janvier 2011

LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE. Conférence Centrale Energie, 19 Janvier 2011 LE MARCHE FRANCAIS ET EUROPEEN DE L ELECTRICITE Conférence Centrale Energie, 19 Janvier 2011 SOMMAIRE 01. Les enjeux du marché de électricité 02. L ouverture du marché de l électricité en Europe 03. Le

Plus en détail

Séminaire de formation Les bourses de l électricité & le marché spot. Alger 4 & 5 mai 2009

Séminaire de formation Les bourses de l électricité & le marché spot. Alger 4 & 5 mai 2009 Séminaire de formation Les bourses de l électricité & le marché spot Alger 4 & 5 mai 2009 Objectif général Objectifs spécifiques Résultats attendus Définir les principes de fonctionnement, le rôle et les

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2)

Production de données et échelles temporelles de l évaluation du risque en finance. Deuxième partie (séance 2) Séminaire d enseignement M2 Production de données et échelles temporelles de l évaluation du risque en finance Deuxième partie (séance 2) Séminaire M2 2015-2016 page 1 Plan 1. Les échelles de temps 2.

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Indicateurs des marchés de gros de l électricité septembre 2011

Indicateurs des marchés de gros de l électricité septembre 2011 Indicateurs des marchés de gros de l électricité septembre 2011 Cahier des indicateurs électricité Evolution des prix de l électricité Développement du négoce en France Indicateurs relatifs aux fondamentaux

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

PROJET MODELE DE TAUX

PROJET MODELE DE TAUX MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Deux modèles de bruit de microstructure et leur inférence statistique

Deux modèles de bruit de microstructure et leur inférence statistique et leur CMAP-X, Paris 7, ENSAE-CREST et CNRS 17 Septembre, 2009 Plan 1 2 3 4 5 6 Representation du prix d un actif en dimension 1 prix traité = drift + fluctuations + sauts prix = drift + σ BM + PPP Dans

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Prise en compte de la liquidité dans les algorithmes de trading

Prise en compte de la liquidité dans les algorithmes de trading Prise en compte de la liquidité dans les algorithmes de trading clehalle@cheuvreux.com Resp. de la Recherche Quant., Atelier Trading & Micro Structure 10 décembre 2008 Contenu La liquidité en Europe Les

Plus en détail

Communication de la Commission de régulation de l énergie (CRE) sur le pic de prix de l électricité du 19 octobre 2009

Communication de la Commission de régulation de l énergie (CRE) sur le pic de prix de l électricité du 19 octobre 2009 Délibération Paris le 20 novembre 2009 Communication de la Commission de régulation de l énergie (CRE) sur le pic de prix de l électricité du 19 octobre 2009 Le prix de l électricité sur le marché spot

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Couverture dynamique des produits dérivés de crédit dans les modèles à copules

Couverture dynamique des produits dérivés de crédit dans les modèles à copules Couverture dynamique des produits dérivés de crédit dans les modèles à copules David Kurtz, Groupe de Recherche Opérationnelle Workshop Copula in Finance, 14 mai 2004, ENS Cachan Sommaire 1 Le marché des

Plus en détail

CHAPITRE 1. Michel LUBRANO using lecture notes by Luc Bauwens. Avril 2011. 1 Introduction 2

CHAPITRE 1. Michel LUBRANO using lecture notes by Luc Bauwens. Avril 2011. 1 Introduction 2 CHAPITRE 1 Volatilité et risques financiers Michel LUBRANO using lecture notes by Luc Bauwens Avril 2011 Contents 1 Introduction 2 2 Rendements et volatilité 2 2.1 Rendements..................................

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

7 Les marchés européens de l électricité

7 Les marchés européens de l électricité 7 Les marchés européens de l électricité La baisse des prix de l électricité sur les marchés de gros en Europe se poursuit et affecte la rentabilité des centrales à gaz. Des réflexions sont en cours, au

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Problématiques dans trading à haute fréquence

Problématiques dans trading à haute fréquence Extrait de la présentation de Charles-Albert Lehalle, Atelier Trading & Micro-structure, Collège de France, 10 Décembre 2008. mdang@cheuvreux.com Recherche Quantitative, Séminaire de la finance, VNFinance

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Assistance à la gestion des contrats de fourniture d électricité et de gaz Dans le contexte défini par la loi NOME Et la loi de la consommation 1 Suppression des TRV d électricité 2 Gestion tarifaire de

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Value at Risk - étude de cas

Value at Risk - étude de cas Value at Risk - étude de cas Daniel Herlemont 17 juin 2011 Table des matières 1 Introduction 1 2 La Value at Risk 1 2.1 La VaR historique................................. 2 2.2 La VaR normale..................................

Plus en détail

CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION

CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION Ce document présente : les principales caractéristiques cycliques de la consommation d électricité en France, les différents

Plus en détail

Monopole public vs ouverture à la concurrence entre maîtrise des rentes et préparation du long terme. Master ENPC Séance n 4 Jean-Charles HOURCADE

Monopole public vs ouverture à la concurrence entre maîtrise des rentes et préparation du long terme. Master ENPC Séance n 4 Jean-Charles HOURCADE Monopole public vs ouverture à la concurrence entre maîtrise des rentes et préparation du long terme Master ENPC Séance n 4 Jean-Charles HOURCADE Le modèle calcul économique en question? Conventions, stabilisation

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Réseau de Transport d Electricité Quel rôle aujourd hui et demain?

Réseau de Transport d Electricité Quel rôle aujourd hui et demain? Gestionnaire du Réseau de Transport d'electricité Réseau de Transport d Electricité Quel rôle aujourd hui et demain? 2 Le menu Quelques caractéristiques de l électricité Le réseau de transport européen

Plus en détail

Bilan du marché organisé du gaz. 8 mars 2012

Bilan du marché organisé du gaz. 8 mars 2012 Bilan du marché organisé du gaz 8 mars 2012 Bilan du marché organisé du gaz Modèle de marché Références de prix Membres Liquidité Panorama européen Service Système Equilibrage Couplage Afgaz 8 mars 2012

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

SEMINAIRE DE FORMATION LES BOURSES DE L ELECTRICITE ALGER 4 & 5 MAI 2009

SEMINAIRE DE FORMATION LES BOURSES DE L ELECTRICITE ALGER 4 & 5 MAI 2009 SEMINAIRE DE FORMATION LES BOURSES DE L ELECTRICITE ALGER 4 & 5 MAI 2009 Nous reprenons dans ce document les principaux messages délivrés lors du séminaire de formation sur les bourses de l électricité

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Génération de scénarios économiques

Génération de scénarios économiques Modélisation des taux d intérêt Pierre-E. Thérond ptherond@galea-associes.eu pierre@therond.fr Galea & Associés ISFA - Université Lyon 1 22 novembre 2013 Motivation La modélisation des taux d intérêt est

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Asymétrie des rendements et volatilité multifractale

Asymétrie des rendements et volatilité multifractale Asymétrie des rendements et volatilité multifractale Emmanuel Bacry 1, Laurent Duvernet 2, Jean-François Muzy 3 Séminaire du Labex MME-DII 26 février 2013 1. CNRS École Polytechnique 2. Univ. Paris-Ouest

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité

L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité L intégration du marché européen de l énergie Le rôle de la Bourse européenne de l électricité Jean-François Conil-Lacoste, Président du Directoire Premier Cercle 2013 05 avril 2013, Paris Agenda 1. Fondamentaux

Plus en détail

COPULE DE GUMBEL. Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet. Groupe de travail ISFA 3

COPULE DE GUMBEL. Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet. Groupe de travail ISFA 3 COPULE DE GUMBEL Caillat Anne-lise, Dutang Christophe, Larrieu Marie Véronique et NGuyen Triet Groupe de travail ISFA 3 sous la direction de Stéphane Loisel Année Universitaire 2007-2008 TABLE DES MATIÈRES

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Problématique de la «base empirique» : l exemple des trajectoires boursières

Problématique de la «base empirique» : l exemple des trajectoires boursières Analyse critique des certitudes actuarielles Problématique de la «base empirique» : l exemple des trajectoires boursières Christian Walter Dirigeant fondateur de H&W Conseil Professeur associé à l IAE

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Indicateurs des marché de gros du gaz mars 2011

Indicateurs des marché de gros du gaz mars 2011 Indicateurs des marché de gros du gaz mars 2011 Cahiers des indicateurs gaz Evolution des prix du gaz Développement du négoce en France Indicateurs relatifs aux infrastructures 2 Prix Day-ahead en France

Plus en détail

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE Gestionnaire du Réseau de Transport d 'Electricité La prévision de consommation d électricité à RTE 2 PLAN DE LA PRESENTATION RTE, le gestionnaire du réseau d électricité Présentation d une méthodologie

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

L équilibre offre-demande d électricité en France pour l été 2015

L équilibre offre-demande d électricité en France pour l été 2015 L équilibre offre-demande d électricité en France pour l été 2015 Synthèse Juin 2015 Sommaire Analyse globale 4 1. Prévision de consommation 5 2. Disponibilité du parc de production 7 3. Étude du risque

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Correction des exercices du livre La Gestion des Risques Financiers

Correction des exercices du livre La Gestion des Risques Financiers Correction des exercices du livre La Gestion des Risques Financiers Thierry Roncalli 4 Décembre Ce document présente les corrections des questions de cours et des exercices des pages 535 à 55 du livre

Plus en détail

Analyse du Risque et Couverture des Tranches de CDO Synthétique

Analyse du Risque et Couverture des Tranches de CDO Synthétique Analyse du Risque et Couverture des Tranches de CDO Synthétique Areski Cousin Laboratoire de Sciences Actuarielle et Financière ISFA, Université Lyon 1 Soutenance de Thèse, Lyon, 17 Octobre 2008 Directeur

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Estimation ultra haute fréquence de la volatilité et de la co-volatilité

Estimation ultra haute fréquence de la volatilité et de la co-volatilité Estimation ultra haute fréquence de la volatilité et de la co-volatilité Christian Y. Robert 1 et Mathieu Rosenbaum 2 1 CREST-ENSAE Paris Tech, 2 CMAP-École Polytechnique Paris Christian Y. Robert et Mathieu

Plus en détail

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version Ce document rassemble de brèves notes de cours. Les résultats sont proposés sans démonstration, les preuves ayant été données en

Plus en détail

L'ouverture à la concurrence

L'ouverture à la concurrence [Extrait] CONSOMMATION ET CONCURRENCE RÉGLEMENTATION Services en réseaux L'ouverture à la concurrence Article du bureau Économie des réseaux, de la direction de la Prévision et de l analyse économique.

Plus en détail

Introduction aux produits de taux d intérêts

Introduction aux produits de taux d intérêts Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

5- Valorisation de la dette et structures des taux d'intérêt

5- Valorisation de la dette et structures des taux d'intérêt 5- Valorisation de la dette et structures des taux d'intérêt Objectif : Présenter : 1.Évaluation d'obligation 2.Rendement actuariel (rendement à l'échéance) 3.Risque de taux 4.Structure par termes des

Plus en détail

Méthodes de prévision des ventes

Méthodes de prévision des ventes Méthodes de prévision des ventes Il est important pour toute organisation qui souhaite survivre dans un environnement concurrentiel d adopter des démarches de prévision des ventes pour anticiper et agir

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail