Chapitre I : Continuité et dérivabilité des fonctions réelles

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre I : Continuité et dérivabilité des fonctions réelles"

Transcription

1 ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes en ligne sont précédée de (%i) en police courrier. Ce logiciel est disponible sur internet (google: calcul formel maima) 1/ Définition I - Continuité Définition de la continuité : Soit f une fonction réelle définie sur un intervalle I. Soit un réel a appartenant à I. La fonction f est continue en a si lim f() = f(a) a Par etension, f est dite continue sur I si elle est continue en tout réel a de I. Remarques : - Si f est continue en a, alors f doit être définie sur un «voisinage» de a de la forme ]a-ε ;a+ε[, ε>0. - f est continue à droite en a si f est définie sur un «voisinage» de a de la forme [a ;a+ε[, ε>0 et lim f() = f(a). + a - On reconnaît graphiquement qu une fonction est continue sur un intervalle I si elle peut être tracée sans lever le crayon. Corollaire 1 : L image d un intervalle fermé borné [a ;b] par une fonction continue est un intervalle fermé borné [m ;M]. De plus la fonction atteint ses bornes. Corollaire 2 : - En appliquant les propriétés sur les opérations avec les limites, le produit, la somme de fonctions continues est continue (voir le cours sur les limites). définition. - Les fonctions polynômes, cos et sin, e sont continues sur Ë. - La fonction est continue sur [0 ;+õ[, ln() est continue sur ]0 ;+õ[. - Les fonctions rationnelles sont continues sur tout intervalle contenu dans leur ensemble de -Les fonctions construites algébriquement à partir des fonctions usuelles sont continues sur leur ensemble de définition.

2 ENIHP1 mathématiques continuité et dérivabilité p 2/10 Eemple : Montrer que la fonction f définie par f()=² ln pour >0 et f(0)=0 est continue en 0 puis sur [0;+õ[. (%i) f():=^2*log(); (%i) limit(f()),, 0, plus); (%i) plot2d([^2*log(),[,0,2]); 2/ Application : Eistence de solutions pour l'équation f() = k Théorème des valeurs intermédiaires : Soit f une fonction continue sur un intervalle fermé [a ;b]. Alors, pour tout réel λ compris entre f(a) et f(b), il eiste au moins un réel c compris dans [a ;b] tel que f(c) = λ. Justification graphique : Remarque : Ce théorème ne montre que l eistence mais pas l unicité. Eemple : Montrer que la fonction f() = cos admet un point fie sur [0; 2 π ] cos() (%i20) plot2d([cos(),],[0,%pi/2]); (%i25) find_root(=cos(),, 0, %pi/2);

3 ENIHP1 mathématiques continuité et dérivabilité p 3/10 II Nombre dérivé Définition : Soit f une fonction définie sur un intervalle I, un réel a I, et h un réel non nul (a+h I). f est dérivable en a si le tau d accroissement f(a+h)-f(a) admet une limite finie l quand h h tend vers 0. l est appelé le nombre dérivé de f en a et on note f (a)=l. Interprétation géométrique : Tangente Si f est dérivable en a, la tangente (T a ) à C f au point A d abscisse a a pour coefficient directeur f (a). Une équation de (T a ) est : (T a ) y = f (a) (-a) + f(a) Interprétation numérique Si f est dérivable en a, on a f(a+h) = f(a) + f (a) h + h ε(h) avec lim ε(h) =0 h 0 f(a) + f (a) h + h ε(h) est appelé développement limité d ordre 1 de f en a. Si h voisin de 0, on a f(a+h) f(a) + f (a) h, approimation affine de f(a+h) au voisinage de a. Eemple d application : 1/ Démontrer que la fonction f définie par f()=² ln pour >0 et f(0)=0 est dérivable en 0. (%i) limit(f()/,,0,plus); 2/ Déterminer la meilleure approimation affine de (1+) n pour voisin de 0. (%i20) diff((1+)^n,); (%i28) taylor((1+)^n,,0,1);

4 ENIHP1 mathématiques continuité et dérivabilité p 4/10 III Fonction dérivée Définition : Lorsque f est dérivable en tout point de l intervalle I, on dit que f est dérivable sur I et on note f () la fonction qui à tout réel de I associe le nombre dérivé de f en. 1/ Dérivées des fonctions usuelles Le tableau ci-dessous sera complété au cours de l année f()= f ()= f dérivable sur k n (n N * ) α (α Ë) cos sin tan e ln 2/ Opérations et fonctions dérivées Si u et v sont 2 fonctions dérivables sur I alors u+v, k u (k Ë) et uv le sont aussi et : (u+v) = u + v (ku) =k u (uv) = u v + uv Si u et v sont dérivables sur I et v non nul sur I, 1 v et u v sont dérivables sur I et : ( 1 v ) =v v² ( u v ) = u v-uv v² Conséquence : Les fonctions polynômes et les fonctions rationnelles sont dérivables sur leur domaine de définition. Eemple : Calculer la dérivée de f()= ln - après avoir précisé D f. (%i29) diff(*log()-,); 3/ Dérivée d une fonction composée Dérivée d une fonction composée (admis): Soit v une fonction dérivable sur J. Soit u une fonction dérivable sur I telle que pour tout de I, u() appartient à J. Alors la fonction f() = v o u () est dérivable sur I et : f ()= v (u()) u () ( (v o u) = (v o u) u )

5 ENIHP1 continuité et dérivabilité p. 5 Applications de la dérivée d une fonction composée f f' I Eemple : Calculer la dérivée de ln e 2² après avoir précisé D f + 1 ² + 1 et de u(a+b) (%i29) diff(log((+1)/(^2+1)),); sin (a+b) u n, n É α (α Ë) e u ln u 4/ Classe d une fonction Dérivées successives : Soit f une fonction dérivable sur I. f () est appelée dérivée première de f sur I. Si f () est également dérivable sur I alors on définit la fonction dérivée de f () notée f () et appelée fonction dérivée seconde de f : (f ()) =f (). Pour la dérivée d ordre 3, 4, on note f (3) () f (4) () Classe d une fonction : Soit n É. On dit que f est de classe C n sur I ssi : - f est n fois dérivable sur I - f (n) est continue sur I f est de classe C 0 si f est continue sur I et de classe C õ si f est infiniment dérivable (cos ). Propriété : Si f et g sont de classe C n alors : (f+g), fg, f g (g non nulle sur I) g o f sont de classe Cn. Eemple : Calculer la dérivée première, deuième, troisième de ln(1+) et (1+) n (%i40) diff(log(1+),,4); 5/ Notations différentielles. Notation différentielle : En posant = h et y= f(+ ) f(), on obtient : y = f () + ε( ) avec lim ε( ) =0 et au voisinage de : y f () h 0 En physique on note f () = df d f () = d²f d²

6 ENIHP1 continuité et dérivabilité p. 6 1/ Définition IV Fonction réciproque Théorème fondamental : Soit f une fonction continue et strictement monotone sur un intervalle I alors, - f(i) est un intervalle dont les bornes sont les limites des bornes de I. - f réalise une bijection de I sur f(i) - La fonction réciproque de f, notée f -1, est strict. monotone et de même sens que f. - La fonction réciproque f -1 est continue sur f(i). Eemple : Déterminer l'image des intervalles suivant par une fonction continue strictement monotone Intervalle [a,b] ]a,b[ [a,b[ ]a,b] f f Application : Résoudre l équation f()=λ Si f est une fonction dérivable sur [a ;b], Si f est strictement monotone sur [a;b], et Si λ est compris entre f(a) et f(b), alors, l équation f()=λ admet une unique solution sur [a ;b]. Théorème fondamental suite : Soit f une fonction continue et strictement monotone sur un intervalle I. Si de plus f est dérivable en 0 I avec f ( 0 ) non nul alors f -1 est dérivable en y 0 =f( 0 ) et : (f -1 1 ) (y 0 )= f ( 0 ) 1 f ' of En particuliers si f () ne s annule pas sur I, (f -1 ) = 1 2/ Application au fonctions trigonométriques réciproques arc sin et arc tan

7 ENIHP1 continuité et dérivabilité p. 7

8 ENIHP1 continuité et dérivabilité p. 8 1/ Sens de variation IV Applications de la fonction dérivée Théorème 1 (admis): Soit f une fonction dérivable sur I, si f () est positive sur I, alors f est croissante sur I si f () est négative sur I, alors f est décroissante sur I si f () est nulle sur I, alors f est constante sur I Remarque : Si f conserve le même sens de variation sur I, f est dite monotone sur I. Application : Résoudre l équation f()=0 Si f est une fonction dérivable sur [a ;b], Si f ()>0 ou f () <0 sur ]a ;b[ Si f(a) et f(b) sont de signes contraires alors f réalise une bijection de [a;b] dans f( [a;b]) et f()=0 admet une unique solution sur [a ;b]. Eemple : Montrer l'eistence et l'unicité d'un point fie pour la fonction ln sur ]0; + õ[. En déduire un encadrement de e à *log() (%i5) solve(*log()-=0,); (%o5) [=%e,=0] 2/ Etremum local Définition : Soit f une fonction définie sur I et c un point de I. On dit que f(c) est un maimum local de f si il eiste un intervalle ouvert J contenant c tel que f(c) soit un maimum de f sur J. Donc pour tout de J on aura f() f(c)

9 ENIHP1 continuité et dérivabilité p. 9 Théorème : Soit f une fonction dérivable sur un intervalle ouvert I=]a,b[ et c un réel appartenant à I, Si f admet un etremum local en c, alors f (c)=0 Si f (c)=0 et change de signe, alors f(c) est un etremum local. Remarque : Si f admet un etremum local en c, alors sa courbe C f admet une tangente horizontale au point d abscisse c. Eemple : On découpe un secteur angulaire dont l angle au centre mesure (0 2 π) d un disque de rayon r. On construit alors un cône en ajustant les rayons découpés. Quelle est la valeur qui maimise le volume du cône? V/ Théorème de Rolle et des accroissements finis Théorème de Rolle : Soit deu réels a et b, a<b et f une application de [a ;b] dans Ë. Si f est continue sur [a ;b], dérivable sur ]a ;b[, et f(a)=f(b) alors il eiste un réel c ]a ;b[ tel que f (c)=0. Démonstration :

10 ENIHP1 continuité et dérivabilité p. 10 Théorème des accroissements finis Soit deu réels a et b, a<b, et f une fonction de [a ;b]dans Ë. Si f est continue sur [a ;b] et dérivable sur ]a ;b[ alors il eiste un réel c ]a ;b[ tel que f (c)= f(b)-f(a) b-a Démonstration Interprétation graphique : Application 1 : Démontrer le lien entre sens de variation et signe de la dérivée. Application 2 : Démonstration d'inégalité Eemple: Démontrer que pour tout >0 on a 2 1+ < arctan() < Application 3 : Inégalité des accroissements finis Soit une fonction f dérivable sur un intervalle I telle que pour tout de I f '( ) M. Alors pour tout couple (,y) de I ( y), on a : f ( y) f ( ) y M. Démonstration

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Fonctions de IR dans IR

Fonctions de IR dans IR Fonctions der dansr G03.1 JMS Fonctions de IR dans IR 1 ) Intervalles Intervalle fermé : [a;b] = { R tq a b } ( peut prendre les valeurs a et b) Intervalle semi-ouvert : [a;b[ = { R tq a < b } ne peut

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Séquence 2. Fonctions numériques Continuité. Sommaire. 1. Pré-requis. 2. Étude de fonctions (révisions 1 re ES)

Séquence 2. Fonctions numériques Continuité. Sommaire. 1. Pré-requis. 2. Étude de fonctions (révisions 1 re ES) Séquence Fonctions numériques Continuité Objectifs de la séquence Revoir les fonctions dérivables et découvrir les fonctions continues. Étudier le sens de variation d une fonction pour résoudre un problème

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

DERIVATION. PLAN I : Dérivée

DERIVATION. PLAN I : Dérivée 203 - Gérard Lavau - http://lavau.pagesperso-orange.fr/index.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreux ou

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

2.1 Nombre dérivé et fonction dérivée... 15 2.2 Les accroissements finis... 18 2.3 Application à l étude des fonctions... 18

2.1 Nombre dérivé et fonction dérivée... 15 2.2 Les accroissements finis... 18 2.3 Application à l étude des fonctions... 18 Calculus PCST Frédéric Le Roux et Thierry Ramond Mathématiques Université Paris Sud e-mail: frederic.leroux@ math.u-psud.fr et thierry.ramond@math.u-psud.fr version du 2 décembre 2005 Table des matières

Plus en détail

Chapitre : Fonctions convexes

Chapitre : Fonctions convexes Chapitre : Fonctions convexes I Définition Définition 1 Soit f : I R une fonction continue où I un intervalle de R On dit que f est une fonction convexe si (x, y I 2, λ [0, 1], f(λx + (1 λy λf(x + (1 λf(y

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3 Alexandre VIDAL Dernière modification : 11 janvier 2011 Table des matières I Généralités et rappels sur les fonctions 1 I.1 Définition....................................

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

C(x) = 5 9. et h = 160

C(x) = 5 9. et h = 160 Chapitre Fonctions affines. Définition Définition. La fonction définie par f : R R = m+h où m et h sont des nombres réels, est appelée fonction affine. Eemple La fonction C() qui permet de convertir des

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 004 CA/PLP CONCOURS EXTERNE Section : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L'usage des calculatrices de poche est autorisé (conformément au directives

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( )

5) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d abscisse 0 est de la forme ( )( ) ( ) Amérique du Nord Eercice ) Le coeicient multiplicateur associé à une hausse de % est égal à + =, Le coeicient multiplicateur associé à une hausse de % est égal à + =, Donc le coeicient multiplicateur associé

Plus en détail

Cours d analyse 1ère année. Rhodes Rémi

Cours d analyse 1ère année. Rhodes Rémi Cours d analyse 1ère année Rhodes Rémi 10 décembre 2008 2 Table des matières 1 Propriétés des nombres réels 5 1.1 Sous-ensembles remarquables de R........................ 5 1.2 Relations d ordre..................................

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R.

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R. CHAPITRE I Fonctions d une variable réelle. Limites Soit f une fonction définie sur R : et soit R. f W R! R 7! f./ Définition. Limite finie en un point) On dit que f admet ` pour ite lorsque tend vers

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Une année de Mathématiques en classe de Première S

Une année de Mathématiques en classe de Première S Une année de Mathématiques en classe de Première S Freddy Mérit Année scolaire 2012-2013 Ce manuel, à destination des élèves de Première S, a été en partie réalisé à partir de la consultation des ouvrages

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

Chapitre 7. Les fonctions de références

Chapitre 7. Les fonctions de références Chapitre 7 Les fonctions de références I Rappels sur les fonctions I1 Domaine de définition I2 Les variations I3 Parité II Les fonctions de référence II1 Fonctions affines II2 Fonction carré II3 Fonction

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables ECE Lcée Carnot 5 janvier Aspect graphique Définition. Une fonction à deux variables est une application f : D R, où D est une sous-ensemble du plan R appelé domaine de définition

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL Dans ce qui suit on adopte les notations suivantes : désigne une constante universelle h = π = 6,60 34 Joules par seconde est la constante

Plus en détail

Correction contrôle de mathématiques

Correction contrôle de mathématiques Chapitres 5 : la fonction eponentielle 7 décembre 0 Correction contrôle de mathématiques Du lundi 0 décembre 0 Eercice ROC (4 points) ) On détermine les variation deϕ: ϕ ()e or R, e >0. La fonctionϕest

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Applications de la dérivée 4

Applications de la dérivée 4 4.1 croissance, décroissance et etremums d une fonction Applications de la dérivée 4 4.1 Croissance, décroissance et etremums d une fonction La dérivée d une fonction nous renseigne sur certaines particularités

Plus en détail

COURS : FONCTIONS LINÉAIRES & AFFINES

COURS : FONCTIONS LINÉAIRES & AFFINES CHAPITRE CURS : FNCTINS LINÉAIRES & AFFINES Etrait du programme de la classe de troisième : CNTENU CMPÉTENCES EXIGIBLES CMMENTAIRES Fonction linéaire. Connaître la notation a, pour une valeur numérique

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier..................................... Fonctions affines....................................... Fonction logarithme......................................4

Plus en détail

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1.

Chapitre 1. Rappels sur les fonctions Continuité. 1.1 Rappels sur les fonctions. Sommaire. 1.1.1 Fonctions de référence. 1.1. Chapitre 1 Rappels sur les fonctions Continuité Sommaire 1.1 Rappels sur les fonctions.... 1 1.1.1 Fonctions de référence.... 1 1.1. Fonction trinôme....... 1 1. Continuité............. 4 1..1 Activités............

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

CHAPITRE 5 EXERCICES 5.2 0,1 ( 4; 0,10) 2. y. Chapitre 5 Régression et modélisation 43. f (x) = 1,8 x (3; 5,83) (2; 3,24) (1; 1,8) (0; 1)

CHAPITRE 5 EXERCICES 5.2 0,1 ( 4; 0,10) 2. y. Chapitre 5 Régression et modélisation 43. f (x) = 1,8 x (3; 5,83) (2; 3,24) (1; 1,8) (0; 1) Chapitre 5 Régression et modélisation CHAPITRE 5 EXERCICES 5.. 0 7 f () =,8 (;,8) (;,) (; 5,8) 0,7 0,5 0, 0, 0, ( ; 5 0,) ( ; 0,7) (0; ) 9( ; 0,5) 0, ( ; 0,0) 0 5 7 8 9.,0 0,7 0,5 0, 0, 0, 0, 5 7 0 Chapitre

Plus en détail

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine.

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine. Sommaire 1 C est quoi une fonction? 2 2 Représentation graphique d une fonction. 6 3 Fonction affine. 8 4 Représentation graphique d une fonction affine. 10 5 Coefficient directeur d une fonction affine.

Plus en détail

Chapitre 5 : Fonctions de Référence

Chapitre 5 : Fonctions de Référence Cours de de Chapitre 5 : Fonctions de Référence Dans ce chapitre nous allons étudier types de fonctions : les fonctions affines (déjà vu en ème), les fonctions polynôme de degré (dont la fonction carré)

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Dérivation. 1 Dérivées des fonctions usuelles : 2 Etude forme par forme des opérations sur les fonctions dérivables :

Dérivation. 1 Dérivées des fonctions usuelles : 2 Etude forme par forme des opérations sur les fonctions dérivables : Dérivation Dérivées des onctions usuelles : Pour savoir dériver, il aut d abord connaître les dérivées des onctions de base que vous pouvez retrouver dans le tableau cidessous. Fonction Fonction dérivée

Plus en détail

Fonctions réciproques

Fonctions réciproques Fonctions réciproques X =message coage y=f() Y y=message coé - = g(y)= f (y) écoage =message B. Aoubiza IUT Belfort-Montbéliar Département GTR 6 janvier 3 Table es matières.fonctionsréciproques... 3..

Plus en détail

I. FONCTION LOGARITHME NEPERIEN

I. FONCTION LOGARITHME NEPERIEN www.mathsenligne.com STI2D - TN4 - LOGARITHME NEPERIEN COURS (/5) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Fonction logarithme népérien. Utiliser la relation fonctionnelle pour transformer une écriture.

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

Chapitre 5 Le logarithme néperien

Chapitre 5 Le logarithme néperien A) La fonction ln(x) Chapitre 5 Le logarithme néperien ) Définition Nous avons vu que nous ne savions pas exprimer la primitive de la fonction inverse avec des fonctions connues. Alors inventons cette

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Chapitre 3 Term. S. Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 3 Term. S. Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIES appels : Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Première Maths FONCTIONS DE LA FORME f+g ET kf I- FONCTION DE RÉFÉRENCE Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Elle est

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

EN - EXERCICES SUR LES INTEGRALES MULTIPLES

EN - EXERCICES SUR LES INTEGRALES MULTIPLES EN - EXERCICES SUR LES INTEGRALES MULTIPLES Eercice Calculer I f(, y) ddy dans les cas suivants a) est le triangle de sommets O, A(,), B(,) f(,y) ln( + y + ) b) est le parallélogramme limité par les droites

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail