La fonction logarithme népérien

Dimension: px
Commencer à balayer dès la page:

Download "La fonction logarithme népérien"

Transcription

1 DERNIÈRE IMPRESSION LE 3 décembre 04 à 0:07 La fonction logarithme népérien Table des matières La fonction logarithme népérien. Définition Représentation Variation de la fonction logarithme Propriétés de la fonction logarithme népérien 4. Relation fonctionnelle Quotient, inverse, puissance et racine carrée Étude de la fonction logarithme népérien 6 3. Dérivée Limite en 0 et en l infini Tableau de variation et courbe Des ites de référence Dérivée de la fonction ln u Applications 9 4. Approimation de e Étude d une fonction Le logarithme décimal 5. Définition Applications Nombre de chiffres dans l écriture décimale En chimie En acoustique Papier semi-logarithmique et logarithmique PAUL MILAN TERMINALE S

2 TABLE DES MATIÈRES Avant propos La création de la fonction logarithme népérien est, à l origine, antérieure à la fonction eponentielle bien que dans notre progression elle suive l étude de la fonction eponentielle. La fonction logarithme a été créée par un drapier écossais du XVII e siècle. Ce drapier, Néper, cherche une fonction pour simplifier les longs calculs des astronomes, des navigateurs et des financiers. Il crée alors une fonction qui transforme le produit en somme. C est à dire que f(ab) = f(a)+ f(b). Il a ensuite passé trente ans de sa vie à créer une table dite «de logarithmes» qui permettait d effectuer les conversions nécessaires. C est cette fonction, qui fait écho à la fonction eponentielle, qui est l objet de ce chapitre. La fonction logarithme népérien. Définition Définition : On appelle fonction logarithme népérien notée ln, la fonction définie de ]0;+ [ sur R telle que : = e y y = ln On dit que la fonction ln est la fonction réciproque de la fonction eponentielle. Remarque : Cette fonction eiste bien car la fonction eponentielle est une fonction continue, strictement croissante à valeur dans ]0; + [, donc d après le théorème des valeurs intermédiaires l équation = e y, d inconue y avec ]0;+ [, admet une unique solution ln. Conséquence On a les relations suivantes : ln = 0 et ln e = ainsi que : R, ln e = et ]0;+ [, e ln = Faire attention au ensembles de définition.. Représentation Théorème : Les représentations de la fonction logarithme népérien et de la fonction eponentielle sont symétriques par rapport à la droite d équation y =. Démonstration : On note C ln et C ep les courbes respectives des fonctions logarithme népérien et eponentielle. PAUL MILAN TERMINALE S

3 . LA FONCTION LOGARITHME NÉPÉRIEN Soit M(; y) un point de C ln avec ]0;+ [ et y R, donc y = ln. On a alors = e y, donc le point M (y, ) est un point de C ep. Les courbes C ln et C ep sont donc symétriques par rapport à la première bissectrice d équation y =. y = e 5 4 M 3 e y M y = ln 3 O y e Variation de la fonction logarithme Théorème : La fonction ln est strictement croissante sur R + Démonstration : Soit deu réels a et b strictement positifs et a < b alors on peut écrire : a < b e ln a < e ln b comme la fonction eponentielle est strictement croissante, on a : ln a < ln b La fonction logarithme est donc strictement croissante. Propriété : Soit a et b deu réels strictement positifs ln a = ln b a = b ln a = 0 a = ln a < ln b a < b ln a < 0 0 < a < ln a > 0 a > Remarque : Ces propriétés permettent de résoudre des équations et des inéquations. On veillera à mettre l équation ou l inéquation sous la forme ci-dessus et à déterminer les conditions de validité de l équation ou de l inéquation. PAUL MILAN 3 TERMINALE S

4 TABLE DES MATIÈRES Eemples : Résoudre ln( ) =. On met l équation sous la forme : ln( ) = ln e l équation est valide si, et seulement si, > 0 c est à dire < On a alors : < et = e soit = e e e On a < car 0, 36. { } e On conclut alors : S = Résoudre ln(+) < On met l inéquation sous la forme : ln(+) < ln e L inéquation est valide si, et seulement si, + > 0 soit > On a alors : > et + < e soit < e e On a : = e 0, 3 donc e < < e e ] On conclut par : S = ; e [ e Propriétés de la fonction logarithme népérien. Relation fonctionnelle Théorème 3 : Pour tous réels strictement positifs a et b, on a : ln ab = ln a+ln b Démonstration : D après les propriétés de l eponentielle, on a : e a = e b a = b Or e ln ab = ab et e ln a+ln b = e ln a e ln b = ab On conclut donc que ln ab = ln a+ln b. Remarque : C est cette propriété qui est à l origine de la fonction logarithme. Eemple : ln +ln 3 = ln 6. Quotient, inverse, puissance et racine carrée Théorème 4 : Pour tous réels strictement positifs a et b, on a : ) ln a b = ln a ln b 3) ln a n = n ln a avec n N ) ln b = ln b 4) ln a = ln a PAUL MILAN 4 TERMINALE S

5 . PROPRIÉTÉS DE LA FONCTION LOGARITHME NÉPÉRIEN Démonstration : Pour démontrer la propriété, on revient au propriétés de l eponentielle. On a e ln b a = a et e ln a ln b = eln a b e ln b = a b ln a = ln a ln b b Pour la deuième propriété, on fait a = d où la propriété : La troisième propriété se démontre par récurrence à l aide du produit. Pour la dernière propriété : on a a = a a donc d après la propriété du produit, on a : ln a = ln a+ln a = ln a d où ln a = ln a Eemples : Voici 3 eemples d utilisation de ces propriétés. Eprimer ln 50 avec ln et ln 5 et ln avec ln et ln 3 On a 50 = 5 donc ln 50 = ln + ln 5 On a = 3 donc ln = ( ln +ln 3) = ln + ln 3 Déterminer l entier n tel que n > On a donc : ln n > ln 0 4 soit n ln > 4 ln 0 4 ln 0 4 ln 0 On obtient alors : n > or 3.9 donc n 4 ln ln Résoudre l équation : ln 3 = ln(6 ) ln 3 > 0 > 3 l équation eiste si 6 > 0 < 6 > 0 > 0 ] 3 [ On en déduit l ensemble de définition : D f = ; 6 On a alors [ln( 3)+ln ] = ln(6 ) soit ln ( 3) = ln(6 ) L équation revient à : D f et ( 3) = (6 ) 3 = = 0 On calcule : = 8+44 = 5 = 5 on trouve alors deu solutions = 9+5 = 3 D f et = 9 5 on conclut par : S = {3} = / D f PAUL MILAN 5 TERMINALE S

6 TABLE DES MATIÈRES 3 Étude de la fonction logarithme népérien 3. Dérivée Théorème 5 : La fonction logarithme népérien est dérivable sur ]0;+ [ et : (ln ) = Démonstration : On admet que la fonction ln est continue sur ]0;+ [ On revient à la définition de la dérivée, c est à dire on cherche les a ]0;+ [ pour lesquels la ite suivante est finie : ln ln a a a Pour déterminer cette ite, on fait un changement de variable. On pose alors X = ln et A = ln a. On a alors = e X et a = e A et si a, comme la fonction ln est continue sur ]0;+ [, alors X ln a. La ite devient alors : X ln a X A e X e A Or la fonction eponentielle est dérivable sur R et la dérivée en ln a est e ln a : X ln a e X e A X A = eln a = a Cette ite est strictement positive pour a ]0;+ [. On en déduit que la ite suivante eiste pour tout a ]0;+ [ et : X ln a X A e X e A = a Conclusion : la fonction ln est dérivable sur ]0;+ [ et (ln ) =. 3. Limite en 0 et en l infini Théorème 6 : On a les ites suivantes : + ln = + et ln = 0 + Démonstration : Pour montrer la ite en +, on revient à la définition : Pour tout M > 0, si ln > M alors, comme la fonction ep est croissante, > e M. Il eiste donc un réel A = e M tel que si > A alors ln > M. Conclusion : ln = +. + PAUL MILAN 6 TERMINALE S

7 3. ÉTUDE DE LA FONCTION LOGARITHME NÉPÉRIEN Pour la deuième ite, on fait un changement de variable. On pose X =. Donc si 0 + alors X +. On a alors : ln = ln 0 + X + X = ln X = X Tableau de variation et courbe On peut résumer les variations et les ites de la fonction ln, dans un tableau de variation : ln 0 e O y = ln e On a alors la courbe représentative cicontre Des ites de référence Théorème 7 : On a : 0 ln(+ ) = Démonstration : Cela découle de la dérivée de ln en =, en effet, on a : (ln) () = = (ln) () = 0 ln(+ ) ln ln(+ ) = 0 h 0 ln(+h) h = Théorème 8 : Croissance comparée ln + = 0 et 0 + ln = 0 Démonstration : Pour la premère ite, on fait un changement de variable. On pose : X = ln, on a alors = e X. On a alors : Notre ite devient alors : ln + + alors X + = X e = 0 car X + ex + = + PAUL MILAN 7 TERMINALE S

8 TABLE DES MATIÈRES Pour la deuième ite, on fait le changement de variable suivant : X =. On a alors : La deuième ite devient alors : 0 + alors X + ln = 0 + X + X ln X = ln X X + X = 0 Remarque : On peut dire que : «l emporte sur ln en +». Eemple : Déterminer la ite suivante : ln + C est une ite indéterminée, car de la forme «+». On met alors en facteur. ( ln = ln ) On a alors : = + + ln + = 0 Par somme et produit, on a : ln = Dérivée de la fonction ln u Théorème 9 : Soit une fonction u dérivable et strictement positive sur D. La fonction ln u est alors dérivable sur D et : (ln u) = u u Démonstration : La démonstration est la conséquence directe de la dérivée de la composition de fonction. Remarque : Les fonctions u et ln u ont le même sens de variation car comme u > 0, (ln u) a le même signe que u. Eemple : Déterminer la dérivée de la fonction définie sur R par : f() = ln(+ ) On pose la fonction u() = +. u est manifestement strictement positive sur R, donc la fonction f est dérivable sur R et : f () = + PAUL MILAN 8 TERMINALE S

9 4. APPLICATIONS 4 Applications 4. Approimation de e On pose, pour n, u n = ( + n) n. Montrer que la suite (u n ) converge vers e. On pourra poser v n = ln u n. Faire un programme permettant de déterminer n pour une valeur approchée de e à 0 3. Que penser de la vitesse de convergence de la suite? ( Calculons v n : v n = ln + n) n ( = n ln + ) n La fonction f associée à la suite (v n ) définie sur]0;+ [ est : f() = ln ( + ) Sous cette forme, la ite de f en + est une forme indéterminée. On effectue un changement de variable pour lever l indétermination : X =, on a ainsi : On peut ainsi calculer la ite : On en déduit alors que : si + alors X 0 + ln(+ X) f() = + X 0 + X v n = n + On revient alors à la suite (u n ) : v n = ln u n donc u n = e v n, on en déduit que (u n ) est convergente et : + u n = e = On fait une boucle avec un "tant que" pour déterminer l indice n pour avoir la précision demandée. On trouve alors : N= 359 et U, 77 La vitesse de convergence est donc très lente. Cette suite n est donc pas judicieuse pour trouver une approimation de e Variables : I : entier U : réel Entrées et initialisation U I Traitement tant que U e > 0 3 faire I + I ( + I U I) fin Sorties : Afficher : I, U 4. Étude d une fonction Soit la fonction f définie sur ]0;+ [ par : f() = 4 4 ln ) Étudier les ites de f en 0 et + PAUL MILAN 9 TERMINALE S

10 TABLE DES MATIÈRES ) Déterminer f () et dresser le tableau de variation de la fonction f. 3) En déduire, en se justifiant, le nombre de solutions de l équation f() = 0. 4) À l aide d une calculatrice donner la valeur approchée par défaut à 0 3 près des solutions de l équation f() = 0. ) a) La ite en 0 ne pose pas de problème : 0 4 = 0 et ln = Par somme, on a : f() = b) La ite en + est indéterminée du type +. On change alors la forme de f() ( f() = 4 4 ln ) or 4 + = +, + Par produit et somme, on a donc : ) On calcule la dérivée : 0 ln = 0 et + = 0 f() = + + f () = 4 4 = 4 4 f () = 0 = 0 avec > 0 = ( ) On calcule = 4+8 = = ( 3), on obtient comme racines : = + 3 = + 3 et = 3 < 0 non retenu signe de f() = signe de ( ) avec > 0 on obtient alors le tableau de variation suivant : f () f() α , 48 α 0 + 3) D après le tableau de variation, sur les intervalles I =]0; + 3] et I = [+ 3;+ [ la fonction f est continue, strictement monotone et change de signe donc, d après le théorème des valeurs intermédiaires, l équation f() = 0 admet deu solutions α et α (une dans chaque intervalle) 4) À l aide du programme sur les valeurs intermédiaires, on obtient les valeurs approchées suivantes : 0, 600 < α < 0, 60 et 5, 6 < α < 5, 6 PAUL MILAN 0 TERMINALE S

11 5. LE LOGARITHME DÉCIMAL À titre indicatif, voici la courbe de la fonction f. 6 4 C f O α α Le logarithme décimal 5. Définition Définition : On appelle logarithme décimal, la fonction, notée log, définie sur ]0;+ [ par : log = ln ln 0 Remarque : On a : log = ln 0 ln. Comme ln 0 variations et les mêmes ites que la fonction ln. La fonction log transforme les produits en sommes y = log = 0 y ainsi : log 0 =, log 0 =,..., log 0 n = n On a la représentation ci-dessous : log = ln 0 > 0, la fonction log a les mêmes log O PAUL MILAN TERMINALE S

12 TABLE DES MATIÈRES 5. Applications 5.. Nombre de chiffres dans l écriture décimale Un nombre N est nécessairement compris entre deu puissances de 0. Soit alors : 0 p N < 0 p+ Dans ce cas, N possède p + chiffres. Comme la fonction log est une fonction croissante, on a : log 0 p log N < log 0 p+ p log N < p+ On a donc : E(log N) = p où E est la fonction partie entière Conclusion : le nombre de chiffres de N est donc : E(log N)+. Application : quel est le nombre de chiffres de 0 0? log 0 0 = 0 log ,465 On en déduit alors que 0 0 possède chiffres! 5.. En chimie L acidité d une solution est mesurée par son ph : ph = log[h + ] Lorsque la concentration en[h + ] est multipliée par 0, le ph diminue de. En effet : log ( 0 [H + ] ) = (log 0+log[H + ]) = log[h + ] = ph Si une étiquette d une eau minérale d eau gazeuse indique ph = 6, 3, on a : ph = log[h + ] donc [H + ] = 0 ph [H + ] = 0 6, mol/l 5..3 En acoustique Le niveau sonore L (en décibels) d un son d intensité I est donnée par : L = 0 log I I 0 où I 0 = 0 W.m correspond au seuil d audibilité en dessous duquel aucun son n est perçu. Par eemple le niveau sonore L d une conversation normale qui correspond à I = 0 5 I 0 est de : L = 0 log 0 5 = 0 5 = 50 décibels PAUL MILAN TERMINALE S

13 5. LE LOGARITHME DÉCIMAL Source sonore db Puissance Seuil Fusée puissante I I I 0 Intolérable (douloureu) I 0 Avion à réaction I 0 Avion au décollage (à 30 m) I 0 Hurlement à 0 cm de l oreille 0 0 I 0 nuisible immédiatement Marteau piqueur 0 0 I 0 nuisible au bout de h Cri (à,5 m) I 0 Klaon d une voiture I 0 Très fort (nuisible au bout de 8 h) Sèche cheveu Intérieur d une voiture I I 0 Bruyant Modéré Conversation normale (à m) I 0 Bureau I 0 Calme Salle de séjour (en ville) I 0 Chambre à coucher I 0 Très calme Studio d enregistrement 0 0 I 0 Frôlements des feuilles d un arbre 0 0I 0 à peine audible Seuil d audibilité 0 I 0 I 0 = 0 W.m Remarque : En sismologie, un même type d échelle est utilisé. La magnitude M d un séisme d intensité I est mesurée sur l échelle de Richter par : M = log I I 0 Par eemple, la magnitude des séismes suivant : Fukushima (0) I = 6, I 0 correspond à M = 8+log 6, 3 8, 8 Californie (99) I = 3, I 0 correspond à M = 7+log 3, 6 7, 5 PAUL MILAN 3 TERMINALE S

14 TABLE DES MATIÈRES 5..4 Papier semi-logarithmique et logarithmique Le papier semi-logarithmique utilise une échelle linéaire sur l ae des abscisses et une échelle logarithmique sur l ae des ordonnées. Sur l ae des ordonnées 0 correspond à unité, 00 à unités, 000 à 3 unités,... Sur le papier semi-logarithmique ci-dessous, on a tracé la fonction eponentielle e Le papier logarithmique utilise une échelle logarithmique sur l ae des abscisses et l ae des ordonnée. Sur le papier logarithmique ci-dessous, on a tracé quelques fonctions du type n ou n PAUL MILAN 4 TERMINALE S

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Intensité sonore et niveau d intensité sonore

Intensité sonore et niveau d intensité sonore ntensité sonore et niveau d intensité sonore Dans le programme figure la compétence suivante : Connaître et exploiter la relation liant le niveau d intensité sonore à l intensité sonore. Cette fiche se

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014 Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

«Tous les sons sont-ils audibles»

«Tous les sons sont-ils audibles» Chapitre 6 - ACOUSTIQUE 1 «Tous les sons sont-ils audibles» I. Activités 1. Différents sons et leur visualisation sur un oscilloscope : Un son a besoin d'un milieu matériel pour se propager. Ce milieu

Plus en détail

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité 1 Cours d Acoustique Techniciens Supérieurs Son Ière année Aurélie Boudier, Emmanuelle Guibert 2006-2007 Niveaux Sonores Puissance, Pression, Intensité 1 La puissance acoustique Définition La puissance

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS Matériel : Logiciel winoscillo Logiciel synchronie Microphone Amplificateur Alimentation -15 +15 V (1) (2) (3) (4) (5) (6) ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS Connaissances et savoir-faire

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note

Plus en détail

Notions d acoustique contexte réglementaire et solutions de prévention

Notions d acoustique contexte réglementaire et solutions de prévention Réduire le bruit au travail : des solutions de prévention 29 octobre 2008 Notions d acoustique contexte réglementaire et solutions de prévention Hubert FINCK Ingénieur Conseil Les enjeux Le bruit concerne

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Terminale SMS - STL 2007-2008

Terminale SMS - STL 2007-2008 Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,

Plus en détail

Résumé non technique. Tableaux d estimation

Résumé non technique. Tableaux d estimation Résumé non technique Tableaux d estimation 4 Chapitre 1 Introduction 5 E n application de la directive européenne 2002/49/CE, et de ses retranscriptions en droit français (décret 2006-361 du 24 mars 2006

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Séquence 8. Fonctions numériques Convexité. Sommaire

Séquence 8. Fonctions numériques Convexité. Sommaire Séquence 8 Fonctions numériques Conveité Objectifs de la séquence Introduire graphiquement les notions de fonctions convees et de fonctions concaves. Établir le lien entre le sens de variation d une fonction

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Commission Polydog Règlement de compétition SportPlaisir Catalogue des disciplines catégorie adresse niveau B

Commission Polydog Règlement de compétition SportPlaisir Catalogue des disciplines catégorie adresse niveau B 1 FAIRE UNE PIROUETTE SUR UNE PALETTE Description des installations Une estrade plane (palette) est placée au sol à environ 7 pas du point de départ. Pour le CCh, une ligne de démarcation est tracée un

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Vous disiez? Dossier d enseignement sur le bruit et les lésions de ľouïe Exercices de consolidation 120 minutes, moyen 2009-0303

Vous disiez? Dossier d enseignement sur le bruit et les lésions de ľouïe Exercices de consolidation 120 minutes, moyen 2009-0303 =1 Vous disiez? Dossier d enseignement sur le bruit et les lésions de ľouïe Exercices de consolidation 120 minutes, moyen Objectif Permettre aux apprenants d approfondir des connaissances essentielles

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail

NOTICE D UTILISATION ET D'EXPLOITATI ET D EXPLOITATION. Bloc Autonome d'alarme Sonore type Sattelite avec ou sans Flash

NOTICE D UTILISATION ET D'EXPLOITATI ET D EXPLOITATION. Bloc Autonome d'alarme Sonore type Sattelite avec ou sans Flash NOTICE D UTILISATION ET D'EXPLOITATI ET D EXPLOITATION 08 BASSA NT001 Notice B.A.A.S. Sa REV A1 Bloc Autonome d'alarme Sonore type Sattelite avec ou sans Flash Sous Tension Défaut batterie Sous Tension

Plus en détail

Les fonction affines

Les fonction affines Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1 ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

SOMMAIRE MONTAGE DU COMPTEUR ET CAPTEURS...3 LE MOT DU CHEF DE PRODUIT...5 L ORGANISATION DE L ECRAN...5 LES PICTOGRAMMES UTILISES...5 LES BOUTONS...

SOMMAIRE MONTAGE DU COMPTEUR ET CAPTEURS...3 LE MOT DU CHEF DE PRODUIT...5 L ORGANISATION DE L ECRAN...5 LES PICTOGRAMMES UTILISES...5 LES BOUTONS... OMMAIRE MONTAGE DU COMPTEUR ET CAPTEUR...3 LE MOT DU CHEF DE PRODUIT...5 L ORGANIATION DE L ECRAN...5 LE PICTOGRAMME UTILIE...5 LE BOUTON...5 LE MENU...5 AVANT LA PREMIERE ORTIE (ou après changement de

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Chapitre 5 : Le travail d une force :

Chapitre 5 : Le travail d une force : Classe de 1èreS Chapitre 5 Physique Chapitre 5 : Le travail d une force : Introduction : fiche élève Considérons des objets qui subissent des forces dont le point d application se déplace : Par exemple

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Atelier «son» Séance 2

Atelier «son» Séance 2 R IO 2 0 0 9-2 0 1 0 Animateur : Guy PANNETIER Atelier «son» Séance 2 A) 1. Rappels Mathématiques En physique, les hommes ont été confrontés à des nombres très grands ou très petits difficiles à décrire

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail