Techniques de calcul littéral identités remarquables. Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Techniques de calcul littéral identités remarquables. Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème"

Transcription

1 Techniques de calcul littéral identités remarquables Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème Feuille exercices vers le calcul littéral Pb 1 à 16 Objectif 3N6 : maîtriser les différentes techniques de calcul pour réduire et développer des expressions littérales 1) Comment je «calcule» avec des lettres ou comment je réduis une expression littérale? Comment je vérifie ma réponse : je teste chaque réponse en remplaçant la lettre par un chiffre par exemple :. 1) Réduire les expressions : 5a 5a 5a a 6a a 8a a 3a 10a 4a ( a) 8a 5x 7 3x 4 6x 4 x 7 8x 7 3x 4x x 5 Retenons de 4!!!! (à retravailler seul avec mathenpoche 4 entre autre ) 1) Une lettre en math peut être remplacée par un nombre dans une formule. 3x x Ex : peut être calculé pour x = : il suffit de remplacer la lettre par le chiffre. ) Convention : on peut supprimer le signe x entre : - un nombre et une lettre ex : 3 x a = 3a - un nombre et une parenthèse ex : 3x(5y + 6) = 3(5y + 6) - une lettre et une parenthèse ex : a x (5y + 6) = a(5 y + 6) - deux lettres ex : a x b = ab - deux parenthèses ex : (5y+6)x (7y-3)= (5y+6)(7y-3) 5 1

2 3) Réduire une expression c est ajouter toutes les quantités semblables Règles de calcul Je ne peux additionner ou soustraire que des quantités de même nature : - des plus des = des - des kg avec des kg - des avec des - des m² avec des m² Par contre je peux toujours multiplier entre elles des quantités qui ne sont pas de même nature. - des par des = des ² - des ² par des = des Quel que soit le nombre relatif a : 1 x a = a (-1) x a = - a 0 x a = 0 4) Dans une expression écrite avec des parenthèses et des signes opératoires + et - : Je peux supprimer des ( ) en faisant attention au signe qui les précédent : - quand les parenthèses sont précédées du signe +, je peux supprimer ce +, les parenthèses et je récris ce qui est dans les ( ) sans changer les signes Ex : - quand les parenthèses sont précédées du signe -, je peux supprimer ce -, les parenthèses et je récris ce qui est dans les ( ) en changeant tous les signes en leur opposé. Ex : ( )Développer des expressions de la forme k(a+b) et (a+b)(c+d) (programme 4 ) puis Je teste chaque réponse en remplaçant la lettre par un chiffre par exemple :.

3 Retenons de 4!!! suite et fin!!! (à retravailler seul avec mathenpoche 4 entre autre ) Développer (ou distribuer) = Transformer un produit en une somme Produit somme k x ( a + b) = k a + k b produit somme Factoriser = Transformer une somme en un produit Développer : a) A 5( a ) B 3( a 5) C 7( x ) D ( x 3) 8 E 8( 6 x) F 4x(6x 4) 6x(x 8) G 3(3x 4) x(5 3x) H (6x 3x 5) ( 4x 3x 1) b) I J K (5x )(6x 4) (x 5)(x 5) ( 8x 5)( x 4) CA p 14 n 1 3 3

4 3) Développer le carré d une somme (a+b)² Pb 19 : On considère un carré de côté a cm. a) On augmente la longueur de son côté de 1. Quelle surface obtient-on et calculer son aire de deux façons différentes. b) On augmente la longueur de son côté de b. Quelle surface obtient-on et calculer son aire de deux façons c) En déduire le carré de la somme de deux nombres Pb 0 : Ecrire de deux façons l aire d un carré de côté 3x augmenté de. Retenons : Le carré de la somme de deux nombres est égal à la somme des carrés de chacun des nombres augmentée du double produit des deux nombres (a+b) ² = a² + a b + b² Cette égalité (identité) sert : - à calculer sans poser l opération des carrés comme 101² ou 5² - développer plus rapidement des carrés de sommes comme (3x + 5)² CA p 14 n 4 5 4) Développer le carré d une différence (a-b)² d) On diminue la longueur de son côté de 1 cm. Quelle surface obtient-on et calculer son aire de deux façons différentes. e) On diminue la longueur de son côté de b. Quelle surface obtient-on et calculer son aire de deux façons différentes. f) En déduire le carré d une différence de deux nombres Pb 1) Ecrire de deux façons l aire d un carré de côté 3x diminué de. Retenons : Le carré de la différence de deux nombres est égal à la somme des carrés de chacun des nombres diminuée du double produit des deux nombres (a- b) ² = a² - a b + b² Cette égalité (identité) sert : - à calculer sans poser l opération des carrés comme 97² ou 59² 4

5 - développer plus rapidement des carrés de sommes comme (3x - 5)² 5) Développer le produit de la somme de deux nombres par leur différence g) on augmente la longueur du carré de 1 et on diminue sa largeur de 1. Quelle surface obtient-on et calculer son aire de deux façons différentes. h) on augmente la longueur du carré de b et on diminue sa largeur de b. Quelle surface obtient-on et calculer son aire de deux façons i) En déduire le produit de la somme de deux nombres par leur différence Retenons : Le produit de la somme de deux nombres par leur différence de deux nombres est égal à la différence des carrés des deux nombres. (a- b)(a + b) = a² - b² Cette égalité (identité) sert : - à calculer sans poser l opération des produits comme 97 x développer plus rapidement des carrés de sommes comme (3x - 5)(3x + 5) Pb ) Ecrire de deux façons l aire d un rectangle de côté (x+3) et (x-3) CA p 15 n 6 5) de forme plus complexes réinvestissant 1) ), 3) et 4) CA p 16 n 11 à 16 Retour à la fiche des 0 problèmes : Savoir résoudre des problèmes avec équations. Reprendre les problèmes et les résoudre Objectif 3 N 7: savoir factoriser des expressions ayant un facteur commun (factoriser des expressions algébriques dans lesquelles le facteur est apparent) Factoriser des expressions simples telles que : Livre p 35 activité 5 CA p 17 n 1 à 6 CA p 18 n 7 à 1 Objectif 3N 8 : savoir factoriser des expressions littérales n ayant pas de facteur commun apparent (en utilisant les identités remarquables) CA p 19 n 1 à 7 5

6 CA p 0 n 8 à 15 Synthèse : CA p 3 n 1 à 4 CA p 4 n 5 à 9 Retour à la fiche des 0 problèmes : Savoir résoudre des problèmes avec équations. Reprendre les problèmes et les résoudre. 6

Techniques de calcul littéral identités remarquables. Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème

Techniques de calcul littéral identités remarquables. Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème Techniques de calcul littéral identités remarquables Objectif 3 N 5 : Utiliser des expressions littérales pour la mise en équation d un problème Feuille exercices vers le calcul littéral Pb 1 à 16 Objectif

Plus en détail

Pour démarrer calcul mental, calculer une expression algébrique. 1) Règles de suppression de parenthèses. 2 1 x. 2) Réduction d expression littérale

Pour démarrer calcul mental, calculer une expression algébrique. 1) Règles de suppression de parenthèses. 2 1 x. 2) Réduction d expression littérale CALCUL LITTERAL, EQUATIONS Compétences traitées : 4.N40 Calculer une expression littérale pour des valeurs numériques données. 4.N41 Réduire une expression littérale du premier ou second degré à une ou

Plus en détail

CALCUL LITTÉRAL ET ÉQUATIONS

CALCUL LITTÉRAL ET ÉQUATIONS CALCUL LITTÉRAL ET ÉQUATIONS I.Développer avec les identités remarquables Pour tous nombres a et b, (a b) 2 = a 2 2ab b 2 ; (a b) 2 = a 2 2ab b 2 ; (a b)(a b) = a 2 b 2. Exemple 1 : Développe et réduis

Plus en détail

Développer les expressions suivantes en utilisant une des identités remarquable A = (X 2)² A = (X +2)(X 2) B = (5 X)² B = (5 X)(5 + X) C = (1 3X)²

Développer les expressions suivantes en utilisant une des identités remarquable A = (X 2)² A = (X +2)(X 2) B = (5 X)² B = (5 X)(5 + X) C = (1 3X)² EXERCICE 1 A = (x + 2)² B = (3 + x)² C = (x + 5)² D = (2x + 1)² E = (1 + 3x)² F = (3x + 2)² G = (5x + 3)² H = (x² + 1)² I = (3 + 4x)² J = (3x² + 4)² Développer les expressions suivantes en utilisant une

Plus en détail

II. Expressions littérales

II. Expressions littérales Chapitre 3 Calcul littéral I. Activités Activité n 1 p.30 A et B. (voir cahier d exercices) Périmètre et aire d un carré. Périmètre et aire d un rectangle II. Expressions littérales 1) Expression numérique

Plus en détail

Calcul littéral. 1 Notion de calcul littéral, établir et comprendre une expression littérale

Calcul littéral. 1 Notion de calcul littéral, établir et comprendre une expression littérale Calcul littéral 1 Notion de calcul littéral, établir et comprendre une expression littérale On est allé courrir dans la cour. Le parcourt était composé de deux parties. Une partie de 20 m que l on devait

Plus en détail

CALCUL LITTERAL. Sur le cahier d exercices Exercice p 69 (1 ). Correction :

CALCUL LITTERAL. Sur le cahier d exercices Exercice p 69 (1 ). Correction : CALCUL LITTERAL Exercice p 69 (1 ). I Calculer la valeur d une expression littérale Définition : une expression littérale est un calcul dans lequel des nombres ont été remplacés par une ou plusieurs lettres.

Plus en détail

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =...

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =... Énoncés Exercice 1 Développer, réduire et ordonner les expressions suivantes : A = 3(4x 7) 4(2x 9) B = 7x(2x 5) x(2x 5) C = (2x 5)(3x 7) D = (2x 5)(3x 2) Exercice 2 Développer, réduire et ordonner les

Plus en détail

Ch.N2 : Calcul littéral et équations

Ch.N2 : Calcul littéral et équations e - programme 01 mathématiques ch.n cahier élève Page 1 sur 1 Exercice n 1 page Vrai ou faux? Justifie tes réponses. x est toujours égal à x. (5x) est toujours égal à 5x. 8x est toujours égal à 5x. x =

Plus en détail

a qui se lit «a au carré», on peut a qui se lit «a au cube».

a qui se lit «a au carré», on peut a qui se lit «a au cube». Simplification d une expression littérale Convention d écriture : pour simplifier l écriture d une expression littérale, on peut supprimer le symbole devant une lettre ou devant une parenthèse. Rappels

Plus en détail

DE L AIRE À L ALGÈBRE

DE L AIRE À L ALGÈBRE Nom : Groupe : Enseignant(e) : 10 DE L AIRE À L ALGÈBRE Combien de litres de peinture seront nécessaires pour repeindre ta chambre? Combien de carreaux de céramique devras-tu acheter pour recouvrir le

Plus en détail

EXPRESSIONS LITTERALES ET IDENTITES REMARQUABLES

EXPRESSIONS LITTERALES ET IDENTITES REMARQUABLES EXPRESSIONS LITTERALES ET IDENTITES REMARQUABLES Activité n 1 Les expressions littérales 1- L aire d un disque est donnée par la formule suivante A = x R² (A = x R x R) Cette relation est une expression

Plus en détail

Chapitre 2. Calcul littéral. Théorie. 2.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT 2.2 LES SIMPLIFICATIONS D ÉCRITURE

Chapitre 2. Calcul littéral. Théorie. 2.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT 2.2 LES SIMPLIFICATIONS D ÉCRITURE 7 Chapitre Calcul littéral Théorie.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT Le calcul littéral consiste à calculer avec des variables (c est-à-dire avec des lettres) comme on le ferait avec des nombres.

Plus en détail

Activité 1 : Des situations...

Activité 1 : Des situations... Activité 1 : Des situations... 1. Programmes On considère les programmes de calcul suivants. Programme A : Choisir un nombre ; Effectuer le produit de la différence du double du nombre et de 8 par la somme

Plus en détail

Calcul littéral - Développement

Calcul littéral - Développement Calcul littéral - Développement C H A P I T R E 7 Énigme du chapitre. 7 personnes se rencontrent et se serrent la main, elles s échangent en tout 21 poignées de main. Combien de poignées échangent entre

Plus en détail

CALCUL LITTÉRAL : CORRIGÉS

CALCUL LITTÉRAL : CORRIGÉS Seconde 7, année 2013-2014 CALCUL LITTÉRAL Exercices: corrigés 1/6 CALCUL LITTÉRAL : CORRIGÉS Exercice 1 DÉVELOPPER A(x) = (4x 1) 2 + (3x 2)(x + 4) = (16x 2 8x + 1) + ( 3x 2 + 12x 2x 8 ) = 16x 2 8x + 1

Plus en détail

Nombres-calcul algébrique

Nombres-calcul algébrique Les ensembles de nombres Notions de troisième et exemples. notations-symboles d appartenance et d inclusion L ensemble N = {0; ; ;...} est appelé ensemble des entiers naturels et se note N. L ensemble

Plus en détail

Approfondissement algébrique

Approfondissement algébrique 2 nde, novembre 2010 Approfondissement algébrique Ce petit livret d exercices vous sera utile pour approfondir et améliorer vos méthodes de calcul. Certaines des exercices sont corrigés, d autres ont juste

Plus en détail

Calcul littéral. Calcul littéral et géométrie. Exercice 1. Exercice 2

Calcul littéral. Calcul littéral et géométrie. Exercice 1. Exercice 2 Calcul littéral Calcul littéral et géométrie Eercice 1 On considère la figure codée ci-dessous D 4 5 A Eercice 2 C B 1. Eprimer l aire du rectangle ABCD de deu façons différentes en utilisant les distances

Plus en détail

Chapitre XXII : Programme de calcul : réduction et simplification de formules

Chapitre XXII : Programme de calcul : réduction et simplification de formules Quatrième Chapitre XXII : Programme de calcul : réduction et simplification de formules - Page 1 / 7 Chapitre XXII : Programme de calcul : réduction et simplification de formules Liste des objectifs :

Plus en détail

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS.

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. I DEVELOPPEMENT ET FACTORISATION : Rappelons que, dans une suite de calculs, les calculs dans les parenthèses sont prioritaires ; en cas d absence de

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

XPRESSIONS LITTÉRALES. a. 2 5 d =... d =... b. 3 e 8 =... c. g 8 9 =... d. 3 (n m) =... e. (a b) 5 =... a 1 =... g 1 =... 1 b =...

XPRESSIONS LITTÉRALES. a. 2 5 d =... d =... b. 3 e 8 =... c. g 8 9 =... d. 3 (n m) =... e. (a b) 5 =... a 1 =... g 1 =... 1 b =... ÉRIE 1 : EXPRESSIONSE XPRESSIONS LITTÉRALES Pour tous les exercices de cette fiche, les lettres représentent des nombres quelconques. 1 Place tous les signes sous-entendus dans les expressions littérales

Plus en détail

CALCUL LITTÉRAL - EQUATIONS

CALCUL LITTÉRAL - EQUATIONS CHAPITRE VI CALCUL LITTÉRAL - EQUATIONS COMPÉTENCES ÉVALUÉES DANS CE CHAPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions)

Plus en détail

Calcul littéral. Objectifs du chapitre. Énigme du chapitre.

Calcul littéral. Objectifs du chapitre. Énigme du chapitre. Calcul littéral C H A P I T R E 3 Énigme du chapitre. Objectifs du chapitre. Pour son anniversaire, Charlie a reçu des chocolats. Combien?, demande Bruno. Je me souviens seulement, dit Charlie, qu il y

Plus en détail

99 [ ( 8 2 ) ( ) 5 ( ) ] ( 5 54 ) ( )

99 [ ( 8 2 ) ( ) 5 ( ) ] ( 5 54 ) ( ) 3 ème Chapitre A 1 EGALITES REMARQUABLES 1 I) Somme ou produit? Pour reconnaître si une expression numérique ou littérale est un produit, on considère la ou les opérations de la même famille qui seraient

Plus en détail

Calcul littéral, équations, inéquations

Calcul littéral, équations, inéquations Calcul littéral, équations, inéquations 1) Calcul littéral a. Égalités des expressions littérales Des expressions sont littérales quand elles sont écrites avec des lettres. Elles sont égales quand elles

Plus en détail

EXPRESSIONS ALGEBRIQUES, POLYNOMES.

EXPRESSIONS ALGEBRIQUES, POLYNOMES. Chapitre 4 ALGEBRE EXPRESSIONS ALGEBRIQUES, POLYNOMES. 1 ) Notions de base en calcul algébrique. Une expression algébrique est une expression dans laquelle un (ou plusieurs) nombre(s) est remplacé par

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

Outils algébriques et numériques 2 nde

Outils algébriques et numériques 2 nde Outils algébriques et numériques 1 Distributivité de la multiplication par rapport à l addition Propriété 1. En cinquième, vous avez appris que la multiplication est distributive par rapport à l addition

Plus en détail

3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1. I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes :

3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1. I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes : 3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1 I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes : 4 ( 5x 3 ) + 8x 7 = 3 ( 3 2x ) + 5 20x 12 + 8x 7 = 9 6x + 5 12x 19 =

Plus en détail

Chapitre 5 : Calcul littéral et équations

Chapitre 5 : Calcul littéral et équations Chapitre 5 : Calcul littéral et équations I Rappels. Définition : Une expression littérale est une expression dans laquelle un ou plusieurs nombres sont désignés par des lettres. Si une même lettre apparaît

Plus en détail

Sommaire. Prérequis. Expressions algébriques

Sommaire. Prérequis. Expressions algébriques Expressions algébriques Stéphane PASQUET, 10 juillet 014 04 Sommaire Associer une expression algébrique à un problème.................... Développer une expression algébrique...........................

Plus en détail

Exercices de 4 ème Chapitre 7 Calcul littéral Énoncés

Exercices de 4 ème Chapitre 7 Calcul littéral Énoncés Énoncés Exercice 1 Compléter le tableau suivant sans calculatrice. a = a= 3 4 a = -5 0a 3 1 7a² 4a 3 - (8a 1)(4 a) Exercice Le problème de Léo Moser Soit n un nombre entier positif différent de 0. On pose

Plus en détail

Calcul littéral, programme de calcul, développement et factorisation

Calcul littéral, programme de calcul, développement et factorisation Calcul littéral, programme de calcul, développement et factorisation François Meria 1 Introduction Un calcul se fait à l aide de nombres. S il y a plusieurs calculs se ressemblant à effectuer, il est souvent

Plus en détail

CALCUL LITTERAL. Programme de calcul

CALCUL LITTERAL. Programme de calcul 1 Session du brevet 1996 Allemagne 96 On considère l expression A = (x + 5) 2 (x + 5)(2x + 1). 1) Développer et réduire A. 2) Factoriser l expression A. 3) Résoudre l équation (x + 5)( x + 4) = 0. Amiens

Plus en détail

Gamme 5 Vrai ou faux? Gamme 6 QCM. Gamme 7 Calculs avec Scratch ALGO

Gamme 5 Vrai ou faux? Gamme 6 QCM. Gamme 7 Calculs avec Scratch ALGO Les identités remarquables Réviser ses gammes Gamme LUL MENTL alculer de tête et le plus rapidement possible. a. + b. ( 4) c. ( 5) + ( 5) d. 7 4 Gamme LUL MENTL alculer de tête et le plus rapidement possible.

Plus en détail

Calcul littéral. Objectifs de cycle. Factoriser. Développer en utilisant la distributivité simple. Développer en utilisant la double distributivité

Calcul littéral. Objectifs de cycle. Factoriser. Développer en utilisant la distributivité simple. Développer en utilisant la double distributivité Calcul littéral A7 Objectifs de cycle Factoriser Le facteur commun est «simple» tests n 1 et 2 Le facteur commun est une expression littérale tests n 3, 4 et 5 Niveau 2 Niveau 3 Développer en utilisant

Plus en détail

CALCUL LITTÉRAL ET PRODUIT NUL

CALCUL LITTÉRAL ET PRODUIT NUL CALCUL LITTÉRAL ET PRODUIT NUL Ce chapitre va compléter ce qui a été fait en 4ème avec le calcul littéral. La dernière partie du chapitre fait appel à la résolution d'équations du 1er vue en 4ème. I/ Développer

Plus en détail

2 Calculer la valeur d une expression littérale

2 Calculer la valeur d une expression littérale 1 Expressions littérales OBJECTIF 1 DÉFINITION Une expression littérale est un calcul contenant une ou plusieurs lettres qui désignent des nombres. Une expression littérale peut servir à décrire une méthode

Plus en détail

Chapitre II Développer Factoriser pour résoudre. On développe x ( 5 + y ) = 5x + xy On factorise

Chapitre II Développer Factoriser pour résoudre. On développe x ( 5 + y ) = 5x + xy On factorise Chapitre II Développer Factoriser pour résoudre Extrait du programme : I. Vocabulaire Définitions : - «Développer» c'est transformer un produit de facteurs en somme de termes. - «Factoriser» c'est transformer

Plus en détail

Seconde Module : EXPRESSIONS ALGEBRIQUES (a + b)² = a² + 2ab + b². - d = n d. B = (x 3)² - 4x(x 1) B =

Seconde Module : EXPRESSIONS ALGEBRIQUES (a + b)² = a² + 2ab + b². - d = n d. B = (x 3)² - 4x(x 1) B = 1. Développement et factorisation. Développement ❶ Ne pas oublier le double produit dans le développement d un carré. (a + b)² = a² + 2ab + b² ❷ Lorsqu on a un signe «-» devant une parenthèse, il faut

Plus en détail

DM01.1: Révisions de calcul littéral

DM01.1: Révisions de calcul littéral DM01.1: Révisions de calcul littéral Classe: Nom: Prénom: I. Révisions sur le calcul littéral : Réduire, multiplier. Pour enchaîner des additions et des soustractions, on pense à «je perds, je gagne» :

Plus en détail

Ch. N4 : Calcul littéral

Ch. N4 : Calcul littéral 4 e A - programme 11 mathématiques ch.n4 cahier élève Page 1 sur 8 Ch. N4 : Calcul littéral 1 SIMPLIFICATION D UNE EXPRESSION LITTÉRALE ex. 1 à 3 PROPRIÉTÉ 1 Pour simplifier l'écriture d'une expression

Plus en détail

Chapitre 1 : Diviseurs et multiples.

Chapitre 1 : Diviseurs et multiples. Chapitre 1 : Diviseurs et multiples. 1. Chiffre et nombre : a. Chiffre : Ce sont les symboles utilisés pour écrire les nombres. Dans notre système (système décimal), il y a 10 chiffres distincts qui permettent

Plus en détail

Chapitre III : Développer - Factoriser pour résoudre

Chapitre III : Développer - Factoriser pour résoudre Chapitre III : Développer - Factoriser pour résoudre Extrait du programme : I Vocabulaire Définition 1 :Développer, c est transformer un produit de facteurs en somme de termes. Factoriser, c est transformer

Plus en détail

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré.

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré. Module L algèbre (10 cours) 3. Exploiter les relations mathématiques pour analyser des situations diverses, faire des prédictions et prendre des décisions éclairées. RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES

Plus en détail

La distributivité. Exprime l'aire des rectangles suivants de deux manières différentes:

La distributivité. Exprime l'aire des rectangles suivants de deux manières différentes: La distributivité 1. La distributivité simple 1.1. Introduction Exprime l'aire des rectangles suivants de deux manières différentes: A A Constatation :.. A A Constatation :.. A A Constatation :.. A A Constatation

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail

La factorisation Module 1

La factorisation Module 1 Notes de cours et exercices Séquence Sciences Naturelles ( ème année du éme cycle) La factorisation Module 1 Définitions Module 1 Factorisation Factorisation : la factorisation est le processus par lequel

Plus en détail

Calcul littéral. 1 Introduction. 1.1 Exemples. Année académique Collège Théophile Gautier Classe de 3e

Calcul littéral. 1 Introduction. 1.1 Exemples. Année académique Collège Théophile Gautier Classe de 3e Année académique 01-014 Collège Théophile Gautier Classe de e Calcul littéral 1 Introduction Le calcul littéral est très important dans les mathématiques. Par exemple, il permet : La généralisation de

Plus en détail

CALCUL ALGEBRIQUE. p60 n 1 : Reconnaître la forme d une expression algébrique ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014

CALCUL ALGEBRIQUE. p60 n 1 : Reconnaître la forme d une expression algébrique ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 1 sur 5 CALCUL ALGEBRIQUE Activité conseillée p20 n 1 : Reconnaître la forme d une expression algébrique Activité conseillée p60 n 1 : Reconnaître la forme d une expression algébrique I. Somme de termes

Plus en détail

Chapitre 7 Fonction du second degré, algèbre, équations

Chapitre 7 Fonction du second degré, algèbre, équations Chapitre 7 Fonction du second degré, algèbre, équations TABLE DES MATIÈRES page -1 Chapitre 7 Fonction du second degré, algèbre, équations Table des matières I Exercices I-1 1................................................

Plus en détail

Mathématique 306 ALGÉBRIQUE. Section 2.1 Rappel sur les expréssions algébriques. Section 2.2 Les opérations sur les monômes et les polynômes

Mathématique 306 ALGÉBRIQUE. Section 2.1 Rappel sur les expréssions algébriques. Section 2.2 Les opérations sur les monômes et les polynômes Mathématique 306 Chapitre 2 LA MANIPULATION ALGÉBRIQUE Section 2.1 Rappel sur les expréssions algébriques Section 2.2 Les opérations sur les monômes et les polynômes Section 2.3 Le développement et la

Plus en détail

: Rappel... Choisir un nombre Lui ajouter un Soustraire au triple du résultat précédent le double du résultat

: Rappel... Choisir un nombre Lui ajouter un Soustraire au triple du résultat précédent le double du résultat I - Développement Activité n 1 1. Soit l algorithme suivant : : Rappel...... Choisir un nombre Lui ajouter un Soustraire au triple du résultat précédent le double du résultat précédent Annoncer le résultat

Plus en détail

Brevet : le minimum vital à connaître

Brevet : le minimum vital à connaître Brevet : le minimum vital à connaître Thème Cours Exemples Calcul Fractions Puissances Règles de priorité: On commence par les parenthèses, puis les multiplications ou division et enfin les additions ou

Plus en détail

Une expression algébrique

Une expression algébrique Une expression algébrique Lorsque dans une situation mathématique, une donnée (quantité, valeur) nécessaire pour résoudre un problème est inconnue, on peut représenter cette donnée inconnue par une lettre

Plus en détail

EQUATION DU PREMIER DEGRE

EQUATION DU PREMIER DEGRE EQUATION DU PREMIER DEGRE I) Définition : 1) Définition 1 : Une équation est une égalité dans laquelle interviennent un ou plusieurs nombres inconnus. Ces nombres inconnus sont désignés par des lettres.

Plus en détail

PARTIE C. Le sujet est composé de 2 feuilles (1 pour la géométrie et 1 pour le calcul littéral)

PARTIE C. Le sujet est composé de 2 feuilles (1 pour la géométrie et 1 pour le calcul littéral) PARTIE C Cette troisième partie est constituée : - d un exercice de calcul littéral - d un exercice de géométrie La durée totale prévue est d une séquence de 55 minutes. La calculatrice et le brouillon

Plus en détail

N4 : Calcul littéral Série 1 : Expression littérale

N4 : Calcul littéral Série 1 : Expression littérale Le cours avec les aides animées Qu'est-ce qu'une expression littérale? Les exercices d'application Pour tous les exercices de cette fiche, les lettres représentent des nombres quelconques. 1 Avec des lettres

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Programme de 4 ème en mathématiques

Programme de 4 ème en mathématiques Programme de 4 ème en mathématiques 1. THEOREME DE PYTHAGORE 3 I. Vocabulaire 3 II. Le théorème (direct) de Pythagore 4 III. Application : comment on rédige les exercices 4 IV. Réciproque du théorème de

Plus en détail

N4 : Calcul littéral Série 2 : Calcul littéral

N4 : Calcul littéral Série 2 : Calcul littéral Le cours avec les aides animées Q1. Écris la formule de la distributivité de la multiplication sur l'addition. Indique à l'aide de flèches sur la formule le sens à utiliser pour factoriser une expression.

Plus en détail

CHAPITRE 1 Calcul algébrique

CHAPITRE 1 Calcul algébrique CHAPITRE 1 Calcul algébrique 1.1 Développement et factorisation Les notions suivantes, à savoir : monômes, polynômes, addition et multiplication de monômes, de polynômes, identités remarquables, factorisation,

Plus en détail

Cours n 11 : EQUATIONS

Cours n 11 : EQUATIONS Enigme : un panier de fruits pèse 12 kilos. Les fruits seuls pèsent 10 kilos de plus que le panier vide. Combien pèse le panier vide? Solution : on peut trouver la solution par essais, ou bien par une

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

Les racines carrées. Pour cela, il doit connaitre les longueurs de côté de chacun des carrés ; aide-le à les trouver.

Les racines carrées. Pour cela, il doit connaitre les longueurs de côté de chacun des carrés ; aide-le à les trouver. 1 Les racines carrées A. Activité de découverte Henry veut construire différents enclos carrés pour ses animaux. Il possède des lapins, des chèvres et des poules. Pour les lapins, il veut construire un

Plus en détail

Exercice 4 Soit F(x) = (2x + 1) 2 (x 5) 2. Exercice 5

Exercice 4 Soit F(x) = (2x + 1) 2 (x 5) 2. Exercice 5 Exercice 1 /Calcul-Algébrique/exo-001/texte 1. Question de cours : Citer la règle du produit nul. 2. Développer, réduire et ordonner (2x + 1) 2 16.. En factorisant (2x + 1) 2 16, établir que : (2x + 1)

Plus en détail

Mon passeport Néomath

Mon passeport Néomath Mon passeport Néomath 1 3 4 5 6 7 LA SCIENCE DE TON PASSÉ EST TON PASSEPORT POUR L AVENIR. Christine de Suède «Maximes et pensées», 168 8 9 10 Mon passeport Néomath Comment fonctionne mon passeport Néomath?

Plus en détail

grouper les termes par puissances décroissantes de x : on ne doit avoir qu'un

grouper les termes par puissances décroissantes de x : on ne doit avoir qu'un Méthode 1 Développer et réduire une expression. Pour développer et réduire une expression repérer les parenthèses de l'expression traiter les opérations par ordre de priorité grouper les termes par puissances

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

FA175 Produits, sommes et différences

FA175 Produits, sommes et différences Page 7 FA75 Produits, sommes et différences a) 7x g) 6x + 0 x 60x b) 5a h) 6 x 3 a 5x 6 c) y i) x y 5 x d) x j) x 8x 5x e) x 3 + x k) x + 3 x x 3x 3 f) 0 l) 3x + x x x 3 FA76 Encore des sommes et des différences.

Plus en détail

PROPORTIONS (3) CALCUL ALGEBRIQUE (1)

PROPORTIONS (3) CALCUL ALGEBRIQUE (1) PROPORTIONS (3) Représentation graphique Si on représente des suites de nombres par un graphique, on reconnaît des suites proportionnelles au fait que les points sont alignés avec l'origine. Ex x 4 5 8

Plus en détail

-1- des signes. Ces calculs obéissent à des règles mathématiques très précises et strictes que nous allons maintenant étudier.

-1- des signes. Ces calculs obéissent à des règles mathématiques très précises et strictes que nous allons maintenant étudier. -- PLANCHE-MATH algébriques MATH8- Calculs numériques et I Le calcul numérique Nous allons maintenant manipuler des calculs avec des nombres ayant des signes Ces calculs obéissent à des règles mathématiques

Plus en détail

Chapitre 1 : Opération sur les nombres relatifs

Chapitre 1 : Opération sur les nombres relatifs Chapitre 1 : Opération sur les nombres relatifs I- Rappels Activité 1 : Activité 2 Activité 3 2 RETENONS : Comparaison de deux nombres relatifs Propriété : - Tout nombre positif est plus grand que tout

Plus en détail

FICHE TD3 (8 PAGES) EXERCICE 1 EXERCICE 2 EXERCICE 3. LEMAZURIER Calcul littéral

FICHE TD3 (8 PAGES) EXERCICE 1 EXERCICE 2 EXERCICE 3. LEMAZURIER Calcul littéral 1 FICHE TD3 (8 PAGES) EXERCICE 1 Recopier les expressions suivantes en supprimant le signe s il est inutile. A = 9 n B = x 3 C = 12 (7 3) D = 4 (3,2 + 6) E = n x F = 2 π R G = (3 + 6) (7 1) H = 16 3,5

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2012 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L emploi des calculatrices est autorisé (circulaire n 99 186 du 16 Novembre 1999 publiée au

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

I. Expression littérale II. Équations du 1er degré à une inconnue III. Équations du 2nd degré à une inconnue. Calcul littéral. maths-cfm.

I. Expression littérale II. Équations du 1er degré à une inconnue III. Équations du 2nd degré à une inconnue. Calcul littéral. maths-cfm. 3e Table des matières 1 I. Expression littérale a. Rappels 2 a. Les deux règles de résolution 3 a. Équation produit nul b. Équation du type x 2 = a a. Rappels : I. Expression littérale a. Rappels Définitions

Plus en détail

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h BREVET BLANC Vendredi 18 Avril 2014 Mathématiques Durée de l épreuve : 2 heures 9h à 11h Les calculatrices sont autorisées Conseils : Dans un même exercice, fais les questions dans l ordre. N oublie pas

Plus en détail

I. Suite d opérations sans parenthèses

I. Suite d opérations sans parenthèses Enchaînement des opérations ; distributivité I. Suite d opérations sans parenthèses Activité 1:fiche1 distribuée en classe Règle 1 : Dans un calcul sans parenthèses contenant uniquement des additions et

Plus en détail

ChN4 LES NOMBRES RELATIFS (2) progression

ChN4 LES NOMBRES RELATIFS (2) progression ChN4 LES NOMBRES RELATIFS (2) progression séance 0 (une semaine avant) test [4N10] + vidéo «météo» + séance CM (vérif tables multiplication et addition relatifs) (prévoir séance labomep obligatoire et

Plus en détail

CHAPITRE 4 : FONCTIONS VARIATIONS

CHAPITRE 4 : FONCTIONS VARIATIONS Chapitre 4 Fonctions variations page 1 CHAPITRE 4 : FONCTIONS VARIATIONS Enoncé : Voici les représentations graphiques de plusieurs fonctions : a. Courbe représentative de la fonction f b. Courbe représentative

Plus en détail

1 Vocabulaire Expression littérale Réduire... 3

1 Vocabulaire Expression littérale Réduire... 3 Sommaire 1 Vocabulaire. 2 1.1 Expression littérale.......................... 2 1.2 Réduire................................. 3 2 Utilisation des expressions littérales. 4 2.1 Calculer avec une expression

Plus en détail

QUE RETENIR DE L ANNEE DE CINQUIEME?

QUE RETENIR DE L ANNEE DE CINQUIEME? Organisation d un calcul Méthodes Dans un calcul sans parenthèses : on effectue les multiplications et les divisions en premier, puis les additions et les soustractions (de la gauche vers la droite). Dans

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Programme Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490)

Programme Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490) Programme 2008 Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490) 4 E N1 NOMBRES RELATIFS - VOCABULAIRE 5 I QU EST CE QU UN NOMBRE RELATIF? 5 II PARENTHESES ET SYMBOLE «- E5 III OPPOSE D UN NOMBRE

Plus en détail

Chapitre 1: REGLES DE CALCULS

Chapitre 1: REGLES DE CALCULS Chapitre 1: REGLES DE CALCULS 1. Vocabulaire: Le résultat d'une addition est la somme. Le résultat d'une soustraction est la différence. On appelle termes les nombres que l'on ajoute ou soustrait. Le résultat

Plus en détail

EXERCICES CACLUL LITTERAL

EXERCICES CACLUL LITTERAL EXERCICES CACLUL LITTERAL Réduction d expressions NIVEAU 1.1 a. x + 3x + 3y + 1= 5x + 3y + 1 b. x + 3y + 4x 5y = 6x - y c. 7 + 8x x + 14 = 6x + 1 d. 1x 14x + 1x 3y = 10x 3y Il y a trop de fautes, je fais

Plus en détail

SOMMAIRE du Cours de Mathématiques

SOMMAIRE du Cours de Mathématiques SOMMAIRE du Cours de Mathématiques Thème : NOMBRES ET CALCULS Chapitre 01 : NOMBRES DECIMAUX Fiche 1 : Fractions décimales et nombres décimaux Fiche 2 : Demi-droite graduée Fiche 3 : Comparer des nombres

Plus en détail

littéral, équations, inéquations

littéral, équations, inéquations 1 Calcul littéral, équations, inéquations Livre p.54 et 80. Objectifs : Développer, réduire, factoriser une epression algébrique Savoir choisir la forme (développée, factorisée...) adaptée à la résolution

Plus en détail

6 : calculs numériques

6 : calculs numériques 6 : calculs numériques EXERCICE:. Calculer A et B en donnant le résultat sous la forme simplifiée : A = 8 4 x 8 + 7 6 4 B = +. Calculer C en donnant le résultat sous une forme scientifique : C = x 0 x

Plus en détail

Période : 7 semaines MARDI JEUDI VENDREDI

Période : 7 semaines MARDI JEUDI VENDREDI Période 1 2015-2016 : 7 semaines 1 1 2 2 3 3 4 4 5 5 6 6 7 7 01/09 03/09 04/09 08/09 Utiliser la calculatrice (1) Utiliser la calculatrice (1) 15/09 Utiliser la calculatrice (2) Utiliser la calculatrice

Plus en détail

Seconde 7 Chapitre 3 : Equations, inéquations 1

Seconde 7 Chapitre 3 : Equations, inéquations 1 Seconde 7 Chapitre 3 : Equations, inéquations 1 Chapitre 3 : Equations et inéquations dans IR 1 Equations dans IR 1.1 Vérifier qu un nombre est solution d une équation Dans chaque cas, dire si le réel

Plus en détail

UNITÉ 3 : DES POLYNÔMES

UNITÉ 3 : DES POLYNÔMES UNITÉ 3 : DES POLYNÔMES INTRODUCTION Définition : On appelle expression algébrique, un ensemble de lettres et de nombres reliés entre eux par des signes indiquant les opérations à effectuer. 3a b 4ab 4xy

Plus en détail

a = 2 a = 5 a = 3 SÉRIE CALCUL LITTÉRAL : CHAPITRE N4 4 Complète ce tableau avec les valeurs des expressions pour chaque valeur de a proposée.

a = 2 a = 5 a = 3 SÉRIE CALCUL LITTÉRAL : CHAPITRE N4 4 Complète ce tableau avec les valeurs des expressions pour chaque valeur de a proposée. ÉRIE 1 : VALEURV ALEUR NUMÉRIQUE 1 Recopie les epressions suivantes en faisant apparaître les signes sous-entendus. A = 3 6 B = 5(2y 7) D = 4u(5 2u) E = (4 )(3 4) 4 Complète ce tableau avec les valeurs

Plus en détail

Classe de 5 ème Chapitre 1 Lignes de calculs Énoncés

Classe de 5 ème Chapitre 1 Lignes de calculs Énoncés Énoncés Exercice 1 Effectuer les calculs suivants, en écrivant au moins une étape. A = 24 3 7 B = 15 5 2 C = 720 4 D = 20 0,1 38 E = 60 14 5 3 2 F = 8 3 5 4 0,2 Exercice 2 Effectuer les calculs suivants

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

Chapitre Calcul algébrique

Chapitre Calcul algébrique Chapitre Calcul algébrique 1 Ce chapitre a pour but d énoncer des rappels sur le calcul algébrique vu au lycée. Ce dernier est à la base de tous les autres chapitres et vous serez aussi amenés à l utiliser

Plus en détail