Exercices : Fonctions Dérivables

Dimension: px
Commencer à balayer dès la page:

Download "Exercices : Fonctions Dérivables"

Transcription

1 Exercices : Fonctions Dérivables Exercice Déterminez l ensemble de dérivabilité des fonctions suivantes et calculez leur dérivée. ) f : x x 2 + x 2 2) f : x x + cos( x ) 3) f : x arctan( xe x ) 4) f : x ln( + x 2 sin 2 (x)) Exercice 2 On considere f : R R telle que f(x) = { e x si x < 0 Calculer a et b pour que f soit de classe C 2 sur R. ax 2 + bx + c sinon Exercice 3 Prolonger par continuité les fonctions suivantes (aux points où elles ne sont pas continues). prolongées sont elles dérivables?. f : R + R x x ln(x) Les fonctions 2. g : R + R x e x x Exercice 4 Prouver que la fonction f définie par f(x) = x 5 5x + s annule 3 fois sur R. Exercice 5 (Application aux suites) Soit α ]0, [.. Montrer que n N, α (n + ) α (n + )α n α α n α 2. On pose u n = n p=. En déduire pα lim n + u n

2 Exercice 6 Soit y R + et n 2 un entier. On se demande si il existe x R tq (x + y) n = x n + y n.. Montrer que si n est impair, la fonction f : x x n est croissante. (Rappel: x n = { e n ln(x) si x > 0 ( ) n e n ln( x) 2. Résoudre la question si n est pair, puis si n est impair. Exercice 7 Soit n N. Montrer que le polynôme X n + ax + b admet au plus 3 racines réelles. 2

3 Indications pour l exercice Pas de difficultés. Ecrire les points où il y aura problème ( une valeur absolue n est pas dérivable en 0, etc...) Indications pour l exercice 2 Une fonction est C 2 si elle est deux fois dérivable, et si sa dérivée deuxieme est continue. Ecrire (d après le cours) la condition pour que f soit d abord une fois dérivable et trouver une relation pour a et b; continuer ensuite en écrivant la condition pour que f soit deux fois dérivable, etc... Indications pour l exercice 3 Pas de difficultés. POur vérifier qu une fonction est dérivable en x 0, on regarde si f(x) f(x 0) x x 0 limite finie. admet une Indications pour l exercice 4 Faire un tableau de variation. Indications pour l exercice 5. Utiliser le théorème des accroissements finis 2. Utiliser les théorèmes d necadrement sur les suites. Indications pour l exercice 6. Utiliser la dérivée sur les deux intervalles R + et R. 2. Faire l étude de la fonction g(x) = (x + y) n x n y n Indications pour l exercice 7 Faire un raisonnement par l absurde: que se passerait il si la fonction avait plus (strictement) de 3 zéros? 3

4 Correction de l exercice. Avant de s interesser à la dérivabilité, il faut calculer l ensemble de définition de la fonction. La fonction x x est définie sur R +. Donc D f = {x R tq x 2 +x 2 0}. Or x 2 +x 2 = (x )(x+2) Donc D f =], 2] [, [ La fonction x x est dérivable sur R +. En effet, il y a un problème en 0. Ainsi f n est pas dérivable là où x 2 + x 2 s annule. Donc f est dérivable sur ], 2[ ], [ 2. f est définie sur R. x cos(x) est dérivable sur R, donc x cos( x ) est dérivable sur R. x x est dérivable sur R ( problème en 0), donc x x + n est pas dérivable en. Donc f est dérivable sur R\{ }. 3. Avant de s interesser à la dérivabilité, il faut calculer l ensemble de définition de la fonction. La fonction x arctan(x) est définie sur R, donc pas de problème avec elle. La fonction x x est définie sur R + : donc x xe x est définie si xe x 0, autrement dit sur R +. Donc D f = R + La fonction x arctan(x) est dérivable sur R: donc pas de problème de dérivabilité avec elle; x x est dérivable sur R +. (problème en 0). Or xe x ne s annule qu en 0. Donc f est dérivable sur R +, auquel on doit enlever 0. f est dérivable sur R + 4. Calculons D f. On doit avoir + x 2 sin 2 (x) 0, ce qui est toujours le cas x ln(x) est définie sur R +. Or x R, Donc + x 2 sin 2 (x). D f = R Calculons D f. On doit avoir + x 2 sin 2 (x) 0 ( car x x pas dérivable en 0), ce qui est toujours le cas. f est dérivable sur R 4

5 Correction de l exercice 2 f est C 2 sur R, car x e x l est; de même un polynôme est C, donc f est C 2 sur R +. Reste à etudier f en 0. f doit être continue en 0 C est le cas si lim f(x) = lim f(x); or lim f(x) = c et lim f(x) =. + + Donc on doit avoir c = f doit être dérivable sur R Avec le même raisonnement qe pour la continuité, il est clair que f est dérivanle sur R ssi elle est dérivable en 0. f(x) f(0) f(x) f(0) C est le cas si lim = lim. + x 0 x 0 f(x) f(0) Or lim = lim ax + b = b et lim f(x) =. + x 0 + Donc on doit avoir b = f doit être C sur R C est le cas si f est continue sur R; Or f est continue sur R + et sur R : ainsi f continue f continue en 0. C est le cas si lim + f (x) = lim f (x). Or lim f (x) = lim 2ax + b = b = et lim f(x) = lim + + ex =. Donc f est C f doit être C 2 en 0 f est C 2 ssi f est continue sur R, ce qui revient à prouver que f est continue en 0. On a lim f (x) = lim 2a = 2a et lim f (x) = lim + + ex =. On doit donc avoir: a = 2 Conclusion: a = 2 Ainsi, pour que f soit C 2 sur R, il faut avoir: b = c = a = 2 (autrement dit, on a prouvé que f C 2 sur R b = c = Réciproquement, on vérifie que ces 3 valeurs conviennent. ). Correction de l exercice 3. f n est pas définie sur R + : regardons si on peut prolonger f par continuité à droite en 0. 5

6 On sait que lim X ln(x) = 0; X 0 + Or on peut écrire x ln(x) = x ln(( x) 2 ) = 2 x ln( x) = 2X ln(x) (où X = x) Comme X + 0, on obtient lim f(x) = 0. + Ainsi, on peut prolonger f par continuité en 0 +. La fonction prolongée est f : x f est elle dérivable en 0 +? { x ln(x) si x > 0 0 si x = 0 Calculons pour cela lim + f(x) f(0) x 0 ln(x) = lim = + x Donc f n est pas dérivable en f peut eventuellement être prolongée en 0 +. On sait que ex x Or f(x) =. e x x e = x x x x e = x. x Comme x 0 et e x x =, on obtient: lim f(x) = 0 + Ainsi, on peut prolonger f par continuité en 0 +. La fonction prolongée est f : x f est elle dérivable en 0 +? { e x x si x > 0 0 si x = 0 Calculons pour cela lim + f(x) f(0) : x 0 Or x x + et e x x Donc lim + f(x) f(0) x 0. f(x) f(0) x 0 = e x x x e = x x 2 x = = + : f n est pas dérivable en 0. x x e x x Correction de l exercice 4 6

7 Il suffit de faire une classsique étude de fonctions: f est un polynôme, donc continue et dérivable sur R. On a f (x) = 5x 4 5 = 5(x 4 ) = 5(x )(x+)(x 2 +). On en déduit facilement le tableau de variation de f. Ainsi f s annule une fois sur ], [, une fois sur ], [ et une fois sur ], + [. Correction de l exercice 5. Quand doit prouver une inégalité du type f(a) f(b), il faut penser que peut-être le théorème des accroissements finis sera utile. Ici, si on pose f(x) = x α, on doit encadrer f(n + ) f(n). Soit n N. Comme α > 0, f est de classe C : donc f est continue sur [n, n + ] et dérivable sur [n, n + [. On peut donc appliquer le théorème des accroissements finis: Or f (x) = α x α = c ]n, n + [ tq f(n + ) f(n) = f (c)(n + n) α. Cette fonction est décroissante. x α Donc, comme on a n < c < n +, on a f (n) f (c) f (n + ). Et ainsi on obtient f (n) f(n + ) f(n) f (n + ) α n α (n + )α n α α (n + ) α 2. On nous fait prouver une inégalité à la question précédente, et on nous demande maintenant d étudier une suite. Il va donc falloir utiliser les théorèmes de comparaison. En appliquant l inégalité obtenue ci-dessus avec α à la place de α ( ce qu on peut faire, car α ]0, [), on a: α n α (n + ) α n α α (n + ) α () On veut encadrer u n = n p= L inégalité () peut se réécrire: : on va donc encadrer chaque terme de la somme, on doit donc encadrer pα p α. p N, p α (p ) α α p α (p + ) α p α Ainsi, en ajoutant ces inégalités pour p [, n], on a:. Comme α > 0, Donc u n n + (n + ) α n u n (n + ) α 7

8 Correction de l exercice 6. La seule difficulté est dans la définition de la fonction f : x x n, qui diffère selon que x > 0 ou x < 0. Sur R +, f est strictement croissante, car f (x) = n x en ln(x) 0 Sur R, f est strictement croissante, car f (x) = ( ) n n x en ln(x) 0 (en effet, ( ) n < 0 et n x < 0). 2. Reformulé en termes de fonctions, l exercice devient celui-ci: la fonction g : x (x + y) n x n y n s annule elle? er cas: n est pair. Etudions cette fonction. Elle est dérivable sur R, et on a: g (x) = n(x + y) n nx n. On a x + y > x, et comme n est impair, x x n est croissante, donc (x + y) n > x n. Ainsi g (x) > 0. Donc g est strictement croissante. Or g s annulle en 0. Ainsi il n existe qu une seule solution au problème. 2 ième cas: n est impair. On fait la même étude: g (x) = n[(x + y) n x n ] Le signe de g est plus difficile à déterminer: On trouve ce signe en étudiant g. g (x) = n(n )[(x + y) n 2 x n 2 ] 0 car x x n 2 est croissante. Donc g est strictement croissante (car g 0 et n a qu un nombre fini de 0). Ansi g ne s annule donc qu une fois, en un point evident qui est y 2. On obtient le tableau de variation de g, qui prouve que g s annule sur ], y 2 [ et sur ] y 2, + [. On trouve facilement ces 2 valeurs qui sont y et 0. Ainsi le problème a deux solutions dans ce cas: y et 0. Correction de l exercice 7 Faisons un R.A: On suppose que f(x) = x n + ax + b possède au moins 4 racines distinctes. Notons x < x 2 < x 3 < x 4 ces 4 racines: Faites un dessin. (f a peut être d autres racines, mais on est certain que de l existence de ces 4 racines la) L idée est la suivante: si f s annule 4 fois, Alors d apres le théorème de Rolle, f va s annuler 3 fois; et en réappliquant le théorème de Rolle à f, on aurait f qui s annulerait 2 fois: ce qui est impossible, car f (x) = n(n )x n 2. Rédigeons cela: il suffit d expliquer pourquoi on a le droit d appliquer le théorème de Rolle. 8

9 On applique le th de Rolle à f sur les intervalles [x, x 2 ], [x 2, x 3 ] et [x 3, x 4 ]. On a le droit car f est continue er dérivable sur ces 3 intervalles. (en effet f est C sur R.) Ainsi f possède au moins 3 racines: y ]x, x 2 [, l autre dans y 2 ]x 2, x 3 [, et la troisieme dans y 3 ]x 3, x 4 [. On applique à nouveau le th de Rolle à f sur les 3 intervalles [y, y 2 ], [y 2, y 3 ] et [y 3, y 4 ]. ( ce qui est possible, car f étant C sur R, f est continue et dérivable sur ces 3 intervalles). Ainsi f possède au moins deux racines, ce qui est absurde. 9

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

Formules de Taylor. Applications.

Formules de Taylor. Applications. CAPES 27 Décembre 27 Oral Analyse Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis. Continuité, dérivabilité, inégalité des accroissements finis,

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Les Développements Limités

Les Développements Limités Abderezak Ould Houcine, 003-004. Les Développements Limités Définition. Soit I un intervalle et f : I R une application. Soit x 0 un élément de I ou une extrémité de I (exemple : si I = ]a, b[ alors x

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Exercices : Fonctions continues

Exercices : Fonctions continues Eercices : Fonctions continues Eercice 1 Sur quels ensembles les fonctions suivantes sont elles continues? sin() si 0 1) f : 2) f : E() 2 si = 0 3) f : sin(π)e() 4) f : sin() sin( 1 ) si 0 0 si = 0 Eercice

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie AVRIL 22 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE Option Économie CORRIGÉ DE LA ère COMPOSITION DE MATHÉMATIQUES Exercice Les symboles Ln et tan représentent respectivement le logarithme népérien

Plus en détail

LEÇON N 66 : Théorème de Rolle. Applications.

LEÇON N 66 : Théorème de Rolle. Applications. LEÇON N 66 : Théorème de Rolle. Applications. Pré-requis : Notions de limite, continuité, dérivabilité ; Théorème des valeurs intermédiaires ; L image d un segment par une application continue est un segment.

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa 3//2 Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa Année Universitaire 2/2 MATHEMATIQUES (Semestre ) Professeur: M.REDOUABY 3//2 Partie 2 A. Fonctions à une variable réel

Plus en détail

CONTINUITE - EXERCICES CORRIGES

CONTINUITE - EXERCICES CORRIGES CONTINUITE - EXERCICES CORRIGES Exercice n. x si x Soit f la fonction numérique définie par : f( x) = 5 x si x > f est-elle continue sur son ensemble de définition? x pour x Mêmes questions avec : f (

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

Limites, continuité et dérivabilité

Limites, continuité et dérivabilité Correction de la Feuille de TD - Analyse 8 9 Limites, continuité et dérivabilité Eercice. Montrer que a = et ( ) =.. Démontrer maintenant ces résultats en utilisant la définition (avec le ε) de la ite.

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables Exercice 1 On note l'ouvert de défini par 1 3, 3 0,1 et l'application définie sur par :,, ² ² Montrer que est strictement négative sur., 1 1 Pour,, 1 0. Pour 01, 1 0. Comme et

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Corrigé des Exercices d approfondissement du chapitre 0.

Corrigé des Exercices d approfondissement du chapitre 0. Corrigé des Exercices d approfondissement du chapitre 0. Exercice 0.17. Supposons que g f soit surjective et montrons que g est surjective. Soit z G. Comme g f est surjective, il existe x E tel que g f(x)

Plus en détail

Injectivité, surjectivité, bijectivité des applications. Calculs de dérivées. Études de fonctions

Injectivité, surjectivité, bijectivité des applications. Calculs de dérivées. Études de fonctions MPSI du lcée Rabelais http://mpsi.saintbrieuc.free.fr semaine du 4 septembre 05 FONCTIONS NUMÉRIQUES : GÉNÉRALITÉS Injectivité, surjectivité, bijectivité des applications Exercice : Soit f : R R la fonction

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Continuité, cours, terminale S

Continuité, cours, terminale S Continuité, cours, terminale S Continuité, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 26 mars 2013 1 Continuité 2 Généralisation à des intervalles quelconques Continuité 1 Continuité 2 Généralisation

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi.

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi. Exo7 Polynômes Corrections de Léa Blanc-Centi. 1 Opérations sur les polynômes Exercice 1 Trouver le polynôme P de degré inférieur ou égal à 3 tel que : P(0) = 1 et P(1) = 0 et P( 1) = 2 et P(2) = 4. [000427]

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

Fonctions Numériques :

Fonctions Numériques : Fonctions Numériques : Dérivabilité et Applications.. Notion de dérivées. Dénitions, Opérations et Exemples. 2. Dérivées successives. Dénitions, Opérations et Exemples. 3. Théorème des Acroissements nis

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

Analyse numérique Exercices corrigés

Analyse numérique Exercices corrigés Université Sultan Moulay Slimane 9- Module : Analyse numérique par S. Melliani & L. S. Chadli Analyse numérique Exercices corrigés Interpolation polynômiale Exercice Déterminer le polynôme d interpolation

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1 Université de Paris Sud 11 L MPI Mathématiques ème semestre 14/15 Math06 Equations aux Dérivées Partielles Feuille d Exercices 1 NB. Ces exercices, et les corrigés qui suivent, sont issus du site http://www.bibmath.net

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Solution du sujet. Décembre 2010

Solution du sujet. Décembre 2010 Université Aix-Marseille 3 Cours MA106 010-11 Nous avons Solution du sujet Décembre 010 f(x) = x 3x + 4 et g(x) = ln x 1. Les polynômes sont bien définis pour tout nombre réel. La fonction f est donc bien

Plus en détail

Limites de fonctions

Limites de fonctions Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle I) Définition de la fonction exponentielle 1) Théorème 1: Il existe une unique fonction f dérivable sur R telle que : Pour tout nombre x, f (x) = f(x), et f(0) = 1 Cette fonction

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Dérivabilité des fonctions réelles

Dérivabilité des fonctions réelles Chapitre 3 Dérivabilité des fonctions réelles La notion de dérivée est une notion fondamentale en analyse. Elle permet d étudier les variations d une fonction, de construire des tangentes à une courbe

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide de la ère S à la TS. I Exercices Dérivabilité Étudier la dérivabilité des fonctions suivantes au point demandé. f(x) = x 2 en x = 3 (Revenir à la définition du nombre dérivé) 2. f(x) = x en x =. 3. f(x)

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MTB - ch3 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un nombre

Plus en détail

CONTINUITE ET CONVEXITE

CONTINUITE ET CONVEXITE CONTINUITE ET CONVEXITE I. Continuité et théorème des valeurs intermédiaires Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite

Plus en détail

Exercices du chapitre 4 avec corrigé succinct

Exercices du chapitre 4 avec corrigé succinct Exercices du chapitre 4 avec corrigé succinct Exercice IV.1 Ch4-Exercice1 Montrer que l intersection d un nombre fini de voisinages de a est un voisinage de a. Soient (V k=1,...,p ) p voisinages de a.

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS DÉVELOPPEMENTS LIMITÉS Définitions et premières propriétés Définition. Développement limité Soient f une fonction définie au voisinage de a R (éventuellement non définie en a) et n N. On dit que f possède

Plus en détail

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004 Terminale ES Contrôle de mathématiques ( heures) Mardi septembre 004 La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies.

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

DEVELOPPEMENTS LIMITES

DEVELOPPEMENTS LIMITES DEVELOPPEMENTS LIMITES 1 Définitions Voici quelques notions utiles pour étudier une fonction numérique au voisinage d un point et donc pour aborder les développements limités. 1.1 Voisinage d un point

Plus en détail

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle 40 Chapitre 7 Fonctions usuelles. 7. Les fonctions trigonométriques inverses. tan :] π/, π/[ R est strictement croissante car sa dérivée + tan est strictement positive. La fonction tg est donc bijective

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

0» u k» 1 et u k» u k+1 :

0» u k» 1 et u k» u k+1 : ESSEC CONCOURS D ADMISSION DE 1998 Option économique Mathématiques II Lundi 27 avril 1998 de 8h à 12h La présentation, la lisibilité, l orthographe, la qualitédelarédaction, la clartéetlaprécision des

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES 1 FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES Ci-après figure le tableau de variations d une fonction définie sur R 1) Déterminer le nombre de solutions de l équation = 2) Déterminer le nombre

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

Développements limités

Développements limités Développements limités Relation de prépondérance Si I est un intervalle réel, l ensemble des points adhérents de I, dans R est l ensemble Ī, réunion des points de I et des points de la frontière de I.

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

Correction du devoir surveillé n o 2

Correction du devoir surveillé n o 2 Correction du devoir surveillé n o EA 5 novembre 06 Questions diverses. ( pt.) Arithmétique : r R, n N, u n+ = u n + r. On a alors u n = u 0 + nr pour tout n N. Géométrique : q R, n N, u n+ = qu n. On

Plus en détail

u k S n = u n Déterminer la nature d une série signifie qu il faut déterminer si la série est convergente ou divergente. u k =

u k S n = u n Déterminer la nature d une série signifie qu il faut déterminer si la série est convergente ou divergente. u k = Analyse : Chapitre 4 I Généralités sur les séries Définitions Séries numériques Définition Soit u une suite réelle. On appelle série de terme général u n, et on note u n, la suite (S n ) n N définie par

Plus en détail

Feuilles d exercices n 2 : corrigé

Feuilles d exercices n 2 : corrigé Feuilles d exercices n : corrigé ECE Lycée Carnot 8 septembre Exercice (*). Il faut résoudre l inéquation x x. Le trinome correspondant a pour discriminant = 9+6 = 5, donc admet deux racines réelles x

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS DIFFÉRENTIELLES ÉQUATIONS DIFFÉRENTIELLES K désigne les corps R ou C. 1 Généralités sur les équations différentielles 1.1 Notion d équation différentielle Définition 1.1 On appelle équation différentielle une équation

Plus en détail