Cours d analyse - Résumé sur les suites 2015/2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours d analyse - Résumé sur les suites 2015/2016"

Transcription

1 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du type {n N,n n 0 } qui sera le plus souvent N ou N, et dont l ensemble d arrivée est R. Remarque. Attention à ne pas confondre u n qui désigne le terme de la suite et (u n ) n N (ou (u n ) ou u) qui désigne la suite elle même. Exemple. Une suite peut être définie par une formule explicite : u n = ln(n 2 +n+1), { u par une formule de récurrence du type u n+1 = f(u n ) : 1 = 2 u n+1 = u n e, { un u par une autre formule de récurrence : 0 = 1 u n+1 = u 2 n +n. Définition. Une suite (u n ) est dite croissante si u n+1 u n pour tout entier n. Une suite (u n ) est dite décroissante si u n+1 u n pour tout entier n. Une suite (u n ) est dite monotone si elle est croissante ou décroissante. Une suite (u n ) est dite stationnaire si elle est constante à partir d un certain rang. Définition. Une suite (u n ) est dite majorée s il existe M dans R tel que u n M pour tout entier n. M est un majorant de (u n ). Une suite (u n ) est dite minorée s il existe m dans R tel que m u n pour tout entier n. Une suite (u n ) est dite bornée si elle est minorée et majorée. Proposition. Pour tout suite (u n ), la suite (u n ) est bornée si, et seulement si, la suite ( u n ) est majorée. I.2. Suites et limites. 1

2 I.3. Limites. Définition. On dit que la suite (u n ) converge vers le réel l si pour tout ε > 0, il existe n 0 N tel que si n n 0, alors u n l < ε. On note alors lim u n = l et on n + montre que la limite l est unique. Exemple. (1) Les suites constantes convergent. (2) Pour p N 1, on a lim n + n = 0. p 4n+3 A l aide de la définition, montrer que lim ( n + n+5 ) = 4. On a 4n+3 n+5 4 = n+5. Soit ε > 0 et n 0 = E ε Alors n n 0, n 17 5 soit 17 ε n+5 < ε. Définition. Une suite qui n est pas convergente est dite divergente. Définition. On dit que la suite (u n ) tend vers + si pour tout A > 0, il existe n 0 N tel que si n n 0, alors u n A. On note alors lim n + u n = +. Remarque. On a la définition analogue pour les suites qui tendent vers. Parmi les suites divergentes, il y a celles qui tendent vers +, celles qui tendent vers mais aussi celles qui n ont pas de limite. (q n )? Suivant la valeur de q, quel est le comportement asymptotique de Proposition. Toute suite convergente est bornée. Démonstration. Soit (u n ) une suite convergeant vers l. 1 > 0, donc : n 0 N,n n 0 u n l < 1 l 1 < u n < l + 1. Soit M = max(l + 1,u 0,,u n0 1) et m = min(l 1,u 0,,u n0 1). Alors n N,m u n M donc (u n ) est bornée. Remarque. La réciproque est fausse. Contre-exemple : u n = ( 1) n. (u n ) est bornée mais divergente. I.4. Opérations sur les suites. Proposition. Soient (u n ) n N R N et (v n ) n N R N. Soit λ R. Soient (l 1,l 2 ) R 2. On suppose que u n l 1 et v n l 2. Alors : λu n +v n λl 1+l 2, et u n v n l 1l 2. n + n + n + n +

3 Proposition. ( Soit )(u n ) n N R N convergente, de limite non nulle l. Alors, on peut définir 1 qui est convergente de limite 1 u n n n 0 l. Démonstration. Soit ε > 0. Pour n n 1, on a u n l ε. De plus, 1 1 u n l = u n l u n l. Or (u n ) converge vers une limite non nulle, donc ( u n ) est minorée par m, donc, pour n max(n 1,n 0 ), u n l u n l ε, d où le résultat. ml Proposition. Soit (u n ) une suite convergeant vers une limite l. Alors ( u n ) converge, vers l. Démonstration. Soit(u n ) convergente versl. Soitε > 0. Alors, n 0 N, n n 0, u n l ε. Ainsi, par l inégalité triangulaire u n l u n l ε. Donc u n l. n + Proposition. Soit f : D R R continue. Si (u n ) est une suite d éléments de D qui converge vers a D, alors la suite (f(u n )) converge vers f(a). Démonstration. Soit ε > 0, alors par continuité de f en a, il existe η > 0 tel que x D, x a < η f(x) f(a) < ε. Or il existe n 0 N, tel que n N,n n 0 u n a < η. D où f(u n ) f(a) < ε. Remarque. L hypothèse de continuité est indispensable. Contre-exemple : u n = 1 1 n et f(x) = E(x). Théorème (Moyenne de Césaro). Soit (u n ) n 1 une suite réelle et l R {,+ }. Pour n 1, on définit la suite (v n ) dite moyenne de Césaro par v n = 1 n u k. Si lim n + u n = l, alors n lim n + v n = l. k=1 Remarque. La réciproque est fausse. Contre-exemple : u n = ( 1) n. II. Comparaison de suites II.1. Suite et ordre. Proposition. Soit (u n ) une suite réelle convergente. On suppose qu il existe n 0 N tel que, pour tout n n 0, on ait u n 0. Alors lim n + u n 0. Démonstration. Soit l = lim n + u n. Par l absurde, supposons que l < 0. Soit ε = l 2 > 0. Alors, n 1,n n 1 u n l < l 2 soit u n < l 2. Pour n 2 = max(n 0,n 1 ), on a u n2 0 (car n 2 n 0 ) et u n2 < 0 (car n 2 n 1 ). Absurde.

4 Proposition (Passage à la limite dans les inégalités). Soient (u n ) et (v n ) deux suites convergentes. On suppose qu il existe n 0 N tel que, pour tout n n 0, on a u n v n. Alors lim u n lim v n. n + n + Démonstration. Posons w n = v n u n. On a bien w n 0 et (w n ) convergente de limite lim n + v n lim n + u n, donc en appliquant la proposition précédente, on en déduit lim n + v n lim n + u n 0. Remarque. Par passage à la limite, les inégalités strictes deviennent larges. Exemple : 0 < 1 n. Proposition (Théorème des gendarmes). Soient (u n ), (v n ) et (w n ) trois suites vérifiant u n v n w n, à partir d un certain rang n 0. Si (u n ) et (w n ) convergent vers un même réel l, alors (v n ) converge vers l. II.2. Comparaison de suites. II.2.1. Suites équivalentes. Définition. Soient (u n ) et (v n ) deux suites réelles. On dit que (u n ) est équivalente à (v n ) si l une des propriétés équivalentes suivantes est vérifiée : s(il existe une suite (ε n ) qui tend vers 0 et telle que u n = (1+ε n )v n. Remarque. Si à partir d un certain rang, v n ne s annule pas, alors (u n ) n + (v n) si, et seulement si, u n v n n + 1. Donner un équivalent de sin ( ) 1. n III. Critères de convergence III.1. Suites monotones bornées. Théorème. Toute suite réelle croissante et majorée converge. De même, toute suite réelle décroissante et minorée converge. Démonstration. L ensemble X = {x n,n N} de tous les x n est non vide et majoré dans R donc admet une borne supérieure α = supu n. Alors, la suite converge vers α. En effet, n N fixons ε > 0. Par définition de la borne sup, il existe un entier n 0 tel que α ε < u n0 α. Le raisonnement est similaire pour les suites décroissantes minorées. n 1 Étudier le comportement de la suite u n = p!. Elle est évidemment croissante. On peut vérifier par récurrence que n 1, 1 n! 1 n 2 n 1, ce qui donne n 1,u 1 1 n 1+ = 3 2k Ainsi, (u n) est n 1 k=1 croissante majorée, donc converge. Montrer que la suite (u n ) définie par u 0 = 1 et la relation de récurrence u n+1 = sinu n converge vers 0. p=0

5 Proposition. Toute suite réelle croissante et non majorée tend vers +. De même, tout suite réelle décroissante et non minorée tends vers. Remarque. Une suite peut tendre vers + sans être croissante! III.2. Suites adjacentes. Définition. On dit que deux suites réelles (u n ) et (v n ) sont adjacentes si elles vérifient : (1) (u n ) est croissante, (2) (v n ) est décroissante, (3) lim n + v n u n = 0. Théorème. Deux suites adjacentes sont convergentes de même limite. Démonstration. La suite (v n u n ) est décroissante puisque (v n+1 u n+1 ) (v n u n ) 0. De plus, comme elle converge vers 0, elle est toujours positive, et donc u n v n. Par conséquent : u 0 u n v n v 0. La suite (u n ) est donc croissante majorée (par v 0 ) donc convergente vers l. De même, la suite (v n ) est décroissante minorée (par u 0 ), donc convergente vers l. Comme la différence des deux suites tend vers 0, on a l = l. n 1 Soient u n = k! et v n = u n + 1. Montrer qu elles convergent vers un n! k=0 même réel. (u n ) est clairement croissante. v n+1 v n = 1 n (n+1)! 0, donc (v n) est décroissante. De plus, v n u n = 1 n! 0. n + Les suites u et v sont donc adjacentes, elles convergent vers un même réel. III.3. Suites de Cauchy. Définition. On dit que la suite (u n ) est une suite de Cauchy si : ε > 0, n 0 N, p,q n 0, u p u q < ε. Remarque. Cela est équivalent à : ε > 0, n 0 N, (n,p) N 2, n n 0, u n+p u n < ε Théorème (Critère de Cauchy). Une suite réelle converge si, et seulement si, elle est de Cauchy. Démonstration. Il est clair que si une suite est convergente, alors elle est de Cauchy, par définition de la convergence. La réciproque est admise. Remarque. Attention, il existe des espaces (par exemple Q) dans lesquels il existe des suites qui sont de Cauchy, mais qui ne convergent pas. n Soit 1 < q < 1, θ R, et u n = q k cos(kθ). Montrer que (u n ) est de Cauchy. k=0

6 III.4. Approximation décimale d un nombre réel. Étant donné un réel x et un entier naturel n, l entier p n = E(x10 n ) est l unique entier qui p n vérifie : 10 x < 1+p n n 10. n Définition. Les rationnels p n 10 et 1+p n sont appelés valeurs décimales approchées de x à 10 n près respectivement par défaut et par n 10 n excès. Exemple. Une simple élévation au carré montre que < 2 < Les valeurs décimales approchées à 10 4 près par défaut et par excès de 2 sont donc et Étant donné un réel x, on peut, pour chaque entier n N définir : u n = p n 10 n sa valeur approchée à 10 n par défaut, v n = (1+p n )10 n sa valeur approchée à 10 n par excès. Proposition. Pour une réel x, les suites u et v de ses approximations décimales par défaut et par excès sont adjacentes, et convergent vers x. Proposition. Tout nombre réel est limite d une suite de nombres rationnels. Démonstration. Il suffit de prendre la suite des approximations décimales par défaut( ou par excès). Remarque. Cette proposition est une autre formulation de la densité de Q dans R. Lorsque x est irrationnel, les suites précédentes fournissent un exemple simple de suites adjacentes de nombre rationnels qui ne convergente pas dans Q. Si A est une partie de R, on peut démontrer que les propriétés suivantes sont équivalentes : Entre deux réels distincs, il existe au moins un élément de A. Tout réel est limite d une suite d éléments de A. On dit alors que A est dense dans R. IV. Suites extraites Définition. Soit (u n ) n N R N. Soit ϕ : N N une application strictement croissante. Alors ( u ϕ(n) )n N s appelle suite extraite ou sous-suite de (u n) n N. Exemple. (u 2n+1 ) n N et (u 2 n) n N sont des suites extraites de (u n ) n N. Remarque. Si ϕ est une application strictement croissante de N dans N, on a par une récurrence immédiate : n N,ϕ(n) n. Soit (u n ) une suite de réel strictement positifs convergeant vers 0. A priori, rien ne dit que (u n ) est décroissante. Montrer cependant qu on peut construire une suite extraite décroissante. Proposition. Si v est une suite extraite d une suite u et si u tend vers l R, alors v tend aussi vers l.

7 Démonstration. Les démonstrations des trois cas l R, l = +, l = étant très similaires, nous ne traiterons que le premier. Soient u une suite convergeant vers l et v = ( u ϕ(n) une suite extraite de u. Montrons )n N que limv = l, c est à dire que : ε > 0, n 0 N, n n 0, uϕ(n) l ε. Soit ε > 0. Comme limu = l, on peut trouver n 0 tel que : n n 0, u n l ε. Comme n n 0,ϕ(n) n n 0, on en déduit n n 0, uϕ(n) l ε. Remarque. On utilise surtout cette propriété pour démontrer qu une suite n est pas convergente en exhibant deux sous-suites convergeant vers des limites différentes. Exemple. La suite définie par u n = ( 1) n est divergente, car la sous suite (u 2n ) converge vers 1 et la sous-suite ( (u 2n+1 ) converge vers 1. nπ ) La suite définie parv n = cos diverge puisque v 4n = ( 1) n en est une sous-suite 4 divergente. Proposition. Soit l R. Alors (u n ) converge vers l si, et seulement si, (u 2n ) et (u 2n+1 ) convergent vers l. Démonstration. Si (u n ) converge vers l, alors par la propriété précédente, on a (u 2n ) et (u 2n+1 ) convergent vers l. Supposons que (u 2n ) et (u 2n+1 ) convergent vers l. Soit ε > 0, on peut trouver n 1 et n 2 tels que : n n 1, u 2n l < ε et n n 2, u 2n+1 l ε. Avec n 0 = max(2n 1,2n 2 +1), on a n n 0, u n l ε d où la convergence de u vers l. Remarque. La limite des deux suites doit être la même. Contre-exemple : u n = ( 1) n. Théorème (Bolzano-Weierstrass, admis). Toute suite bornée possède au moins une suite-extraite convergente. V. Suites récurrentes de la forme u n+1 = f(u n ) Soit D une partie de R et f : D R. On suppose que D est { stable par f, c est à dire que u0 D f(d) D. On peut ainsi considérer la suite u définie par u n+1 = f(u n ). L hypothèse de stabilité est indispensable pour définir u. Proposition. Si f est continue sur D, et que u est convergente, alors sa limite est un point fixe de f (c est à dire une solution de f(l) = l). V.1. f est croissante sur D. Proposition. Si f est croissante sur D, alors la suite (u n ) est monotone. Plus précisément : si u 0 < u 1, alors la suite est croissante, si u 0 > u 1, alors la suite est décroissante, Si u 0 = u 1, alors la suite est constante.

8 V.2. f est décroissante sur D. On se ramène au cas précédent en utilisant f f = h qui est croissante sur D, et en l appliquant aux suites(v n ) = (u 2n ) et(w n ) = (u 2n+1 ) puisquev n+1 = u 2n+2 = f f(u 2n ) = h(v n ) et de même, w n+1 = h(w n ). Si on trouve que v et w convergent vers le même réel l, alors u converge vers l. Sinon, u diverge. VI. Et dans C? Lorsque l on se place dans C, les valeurs absolues sont transformées en module : Définition. On dit que la suite complexe (z n ) converge vers le nombre complexe z si pour tout ε > 0, il existe n 0 N tel que si n n 0, alors z n z < ε. Proposition. Une suite (z n ) n N C N converge vers z si, et seulement si, les deux suites réelles Re(z n ) et Im(z n ) convergent vers l 1 et l 2 auquel cas z = l 1 +il 2. Attention, tous les résultats sur les suites réelles relatifs à l ordre (croissance, décroissance, majoration, minoration, adjacence) ne sont plus valables dans C. Par contre, les résultats de Césaro, Bolzano-Weierstrass et le critère de Cauchy restent vrais dans C.

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Chapitre 7 Suites de nombres réels et complexes

Chapitre 7 Suites de nombres réels et complexes Chapitre 7 Suites de nombres réels et complexes I - Généralités sur les suites réelles I.1 - Dénition et Structure Définition 1 (Suite). Une suite réelle u est une application de N dans R. Pour tout n

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 3 : Suites numériques Équipe de Mathématiques Appliquées UTC Juillet 2014 suivant Chapitre 3 Suites numériques 3.1 Définition, convergence, propriétés......................

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n.

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n. LES SUITES RÉELLES Exercice Soit (u n ) et (v n ), deux suites convergeant respectivement vers α et β. On pose : pour tout n N, m n = min(u n, v n ) et M n = max(u n, v n ) : ces deux suites convergent-elles

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui Rappels de cours M1 Enseignement, Analyse M71 Rachid Regbaoui 2 Chapitre 1 Rappels sur les suites et séries numériques 1.1 Suites numériques 1.1.1 Généralités Dans la suite K désignera le corps des réels

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

u n = u n 1 + u n 2, (1)

u n = u n 1 + u n 2, (1) Chapitre II Suites II.a. Introduction Définition 21 (suite) Une suite est une fonction (cf. déf. 35) u de N dans un ensemble E. Notation Pour mettre en évidence le fait que l ensemble de départ est N,

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Math 104 ANALYSE (première partie) Université Paris Sud Orsay

Math 104 ANALYSE (première partie) Université Paris Sud Orsay Math 104 ANALYSE (première partie) Université Paris Sud Orsay 2015 2016 Notes de cours de José Montesinos préparées à partir du précédent Polycopié de Math 104 de Thierry Ramond Table des matières 1 La

Plus en détail

Les Suites réelles. MPSI Prytanée National Militaire. Pascal Delahaye - D après le cours d Alain Soyeur 17 novembre 2015

Les Suites réelles. MPSI Prytanée National Militaire. Pascal Delahaye - D après le cours d Alain Soyeur 17 novembre 2015 Les Suites réelles MPSI Prytanée National Militaire Pascal Delahaye - D après le cours d Alain Soyeur 7 novembre 205 Premières définitions Définition : Suite Une suite réelle est une application u : N

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques Université Denis Diderot - Paris 7 Année 2013-2014 L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri Suites numériques 1. Limites de suites complexes Définition 1. Une suite complexe est une application

Plus en détail

Exercices 6. Suites numériques. Étude théorique et pratique des suites à valeurs dans R ou C.

Exercices 6. Suites numériques. Étude théorique et pratique des suites à valeurs dans R ou C. Exercices 6 Suites numériques Étude théorique et pratique des suites à valeurs dans R ou C. 6 Suites numériques...................................................................... 1 1 Aspects théoriques.................................................................

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Limites et Continuité

Limites et Continuité Voisinages, Points adhèrents Limites Fonctions continues Les grands théorèmes sur les fonctions continues Département de Mathématiques, Faculté des Sciences de Fès. Octobre 2013 Voisinages, Points adhèrents

Plus en détail

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014 Chapitre 8 : Suites PTSI B Lycée Eiffel janvier 4 Toute la suite des hommes doit être considérée comme un même homme. Blaise Pascal. Deux suites adjacentes décident d aller s éclater dans une soirée «no

Plus en détail

Convergence : vitesse et accélération

Convergence : vitesse et accélération 1 Convergence : vitesse et accélération 1. Rapidité de convergence. a) Introduction. Daniel PERRIN Soit (u n ) n N une suite de nombres réels qui converge vers a. On cherche à préciser la rapidité de convergence

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot NOMBRES RÉELS 1 Approximations d un réel 1.1 Ensembles de nombres Notation 1.1 On note R l ensemble des nombres réels. On note Q l ensemble des nombres rationnels i.e. l ensemble des nombres de la forme

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N Nombres réels 1 Suites de rationnels Définition Une suite de rationnels (ou suite rationnelle) est une application u : N Q. Notation : Pour tout entier n, on note u n l image u(n) de l entier n par l application

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

3.1. Le corps des nombres réels Borne supérieure, borne inférieure Généralités sur les suites

3.1. Le corps des nombres réels Borne supérieure, borne inférieure Généralités sur les suites 3. Nombres réels, suites numériques 3.1. Le corps des nombres réels 3.1.1. Le groupe (IR, +) 3.1.2. L anneau (IR, +, ) 3.1.3. Le corps (IR, +, ) 3.1.4. Nombres rationnels ou irrationnels 3.1.5. Relation

Plus en détail

Suites récurrentes et méthode de Newton approche progressive

Suites récurrentes et méthode de Newton approche progressive Suites récurrentes et méthode de Newton approche progressive Ce document vient en complément du chapitre 6 du livre Informatique, programmation et calcul scientifique en Python et Scilab, publié chez ellipses.

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc.

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc. 1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière SMIA : Exercices avec Corrigés Analyse 1 : Par BENAZZOUZ HANA Série1

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

Suites réelles et complexes

Suites réelles et complexes Table des matières Suites réelles et complexes 1 Généralités 1 1.1 Qu est-ce qu une suite?......................................... 1 1. Différents modes de définition d une suite...............................

Plus en détail

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n )

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n ) EXERCICES SUR LES SUITES VERIFIANT 1. Soit la fonction f définie sur R par f(x) = 1 2 (1+x2 ). Montrer que la suite (u n ) n 0 définie par la relation de récurrence est croissante quel que soit u 0 réel.

Plus en détail

Pour remettre un peu d ordre dans R

Pour remettre un peu d ordre dans R Arnaud de Saint Julien - MPSI Lycée La Merci 016-017 1 1 Relation d ordre sur R 1.1 Vocabulaire Pour remettre un peu d ordre dans R Sur R, on dispose de la relation de comparaison. On dit que c est une

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

SUITES DE NOMBRE REELS

SUITES DE NOMBRE REELS SUITES DE NOMBRE REELS Version 1 Dr Euloge KOUAME UVCI 2017 Aout 2017 Table des matières Objectifs 5 I - I. Généralités 7 A. I-1. Définition d'une suite...7 B. II-2. Suite majorée, minorée, bornée...7

Plus en détail

Suites récurrentes du type u n+1 = f(u n )

Suites récurrentes du type u n+1 = f(u n ) Suites récurrentes du type u n+ = f(u n ) Exemple : Soit la suite définie par la relation de récurrence : n N u n+ = u n u 2 n. En posant f la fonction définie sur R par x x x 2, on obtient que pour tout

Plus en détail

Fonctions d'une variable réelle : étude locale

Fonctions d'une variable réelle : étude locale Plan Fonctions d'une variable réelle : étude locale Rédaction incomplète. Version beta 1 du 27/11/15 I. Limites.................................. 1 1. Converger! Mais où?............................. 1

Plus en détail

Epsilon. Analyse 1. 8 novembre 2013

Epsilon. Analyse 1. 8 novembre 2013 Epsilon Analyse 1 8 novembre 2013 En bref But du jeu : voir les raisonnements les plus simples avec ε (epsilon) Justification de quelques propriétés des limites de suites en utilisant ces raisonnements

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Suites et séries numériques.

Suites et séries numériques. Licence MIEE, Module AN2 Suites et séries numériques. L - 200-20 - S2/S4 Résumé de cours Chapitre Premières propriétés des nombres réels.. Introduction Vous avez déjà rencontré des ensembles de nombres

Plus en détail

Corrigés d exercices pour les TD 1 et 2

Corrigés d exercices pour les TD 1 et 2 Corrigés d exercices pour les TD et 2 Soit E = C 0 ([0, ]; R) et A = {f E; f(x) 0 pour tout x [0, ]}.. Montrer que les applications qui à tout élément (f, g) E 2 associent respectivement d (f, g) = définissent

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1.

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1. Chapitre III Séries III.a. Introduction Définition 31 (série) Soit (u n ) une suite de N dans un K-espace vectoriel normé E. La somme partielle S n = u 0 + u 1 + u 2 + + u n (1) définit une nouvelle suite,

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

LES SUITES. 1 Dénitions générales

LES SUITES. 1 Dénitions générales LES SUITES Objectifs Connaître les dénitions générales. Savoir calculer une limite. Connaître les théorèmes généraux de convergence. Connaître les notions de suites négligeables et de suites équivalentes.

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Introduction. 1 Rappel sur les suites de Cauchy. Arthur LANNUZEL http ://mathutbmal.free.fr

Introduction. 1 Rappel sur les suites de Cauchy. Arthur LANNUZEL http ://mathutbmal.free.fr 1 le 30 Septembre 2010 UTBM MT26 Arthur LANNUZEL http ://mathutbmal.free.fr Séries numériques Introduction. Une série est la somme des termes d une suite. Mais la théorie des séries n est pas qu une simple

Plus en détail

Chapitre 2 : Limites de suites

Chapitre 2 : Limites de suites Chapitre 2 : Limites de suites I Suite convergeant un réel l Définition Soient (u n ) une suite numérique et l un nombre réel. On dit que (u n ) admet pour limite l (ou converge vers l) lorsque tout intervalle

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail