Contrôle continu d Outils Mathématiques pour Scientifiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Contrôle continu d Outils Mathématiques pour Scientifiques"

Transcription

1 Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130) (6 novembre 010 durée : h) Les calculatrices et les documents ne sont pas autorisés pages imprimées Les différents exercices sont indépendants Exercice I Calcul algébrique (7 points) Les deux questions sont indépendantes 1. Déterminer toutes les valeurs de x solutions de l équation suivante : cos 3 x cos x cosx + 1 = 0 On pose X = cosx. L équation devient : X 3 X X + 1 = 0. Solution évidente : X = 1. On peut donc exprimer l équation comme le produit du terme (X 1) et d un polynome de degré (factorisation) : (X 1)(aX + bx + c) = 0. En développant cette expression, on obtient : ax 3 + (b a)x + (c b)x c = 0. Par identification, on obtient directement a = et c = 1 ; comme (b a) = et (c b) = 1, on détermine ensuite que b = 0. L équation factorisée est donc : (X 1)(X 1) = 0. Les valeurs de X solutions de l équation X 3 X X + 1 = 0 sont donc { ; ; 1}. Les valeurs de x solutions de l équation cos 3 x cos x cosx + 1 = 0 sont donc {0 + kπ; π 4 + k π }, avec k entier.. Dans une fête foraine, Jean s installe dans un manège circulaire représenté en Figure 1. Il peut s installer sur l un des huit points indiqués sur le cercle. Le manège comporte un jeu qui consiste à attraper un pompon qui se déplace sur un câble formant un carré dans lequel est inscrit le cercle. Le manège tourne dans le sens des aiguilles d une montre, à vitesse constante : il fait un tour en 4 secondes. Le pompon se déplace dans le même sens, à vitesse constante : il fait une tour en 17 secondes. Pour gagner, Jean doit attraper le pompon ; il ne peut le faire qu aux points de contact, notés A, B, C et D sur la figure. A l instant t = 0, Jean part du point H. Au même instant, le pompon part du point A. On suppose qu à un certain instant t, Jean attrape le pompon en A ; Jean a déjà pu passer un certain nombre de fois en A sans y trouver le pompon. A l instant t, on note y le nombre de tours effectués par Jean depuis son premier passage en A, et x le nombre de tours effectués par le pompon. (a) Exprimer t en fonction de x puis de y. Montrer ainsi que le couple d entiers (x, y) est solution de l équation : 17x 4y = 9. Expression de t en fonction de x : t = 17x. Expression de t en fonction de y : t = 4y+9 ; en effet, jean parcourt la distance HA (qui correspond à 3 8 d un tour de manège) en = 9 secondes. On a donc t = 17x = 4y + 9, ce qui équivaut à : 17x 4y = 9. 06/11/010 Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130)

2 Licence 1ère année Figure 1: Schéma du manège. (b) Vérifier que (9, 6) est solution de cette équation. Trouver tous les couples d entiers (x, y) solutions de l equation. Pour x = 9 et y = 6, on verifie que = 9. On peut donc écrire : 17x 4y = = 9, d où 17x 4y = 0 17(x 9) 4(y 6) = 0 17(x 9) = 4(y 6) (x 9) 4 = (y 6) 17 = k, avec k entier positif. En effet, x et y sont des entiers positifs, et les nombres 17 et 4 sont premiers entre eux. Les couples (x, y) solutions de l équation 17x 4y = 9 sont donc du type (9 + 4k, k), avec k entier positif. Ainsi, pour k = 0, le couple solution de l équation est (9, 6) ; pour k = 1 : (33, 3) ; pour k = : (57, 40) ; etc... (c) Jean a payé pour minutes sur le manège. Aura-t-il le temps d attraper le pompon? Nous avons vu que le couple (9, 6) est la plus petite solution de l équation. Pour attraper le pompon, Jean doit donc faire au minimum y = 6 tours de manège après avoir passé le point A. Par conséquent, il pourra attraper le pompon pour la première fois en A pour un temps t = = 153 secondes. En minutes (c est-à-dire en 10 secondes), il n aura donc pas le temps d attraper le pompon. (d) Montrer qu il n est en fait possible d attraper le pompon qu au point A. Les autres points où Jean pourrait attraper le pompon sont les points B, C et D. Jean passe au point B toutes les (4y+15) secondes ; le pompon passe au point B toutes les (17x ) secondes. On ne peut pas avoir 4y + 15 = 17x peut pas attraper le pompon en B. Jean passe au point C toutes les (4y+1) secondes ; le pompon passe au point C toutes les (17x+ 17 ) secondes. On ne peut pas avoir 4y + 1 = 17x + 17 peut pas attraper le pompon en C. Jean passe au point D toutes les (4y+3) secondes ; le pompon passe au point D toutes les (17x ) secondes. On ne peut pas avoir 4y + 3 = 17x peut pas attraper le pompon en D. (e) Jean part maintenant du point E. Aura-t-il le temps d attraper le pompon en A avant les deux minutes? Si Jean part du point E, il passe par le point A toutes les (4y + 3) secondes ; Jean attrape donc le pompon en A si et seulement si 4y + 3 = 17x, d où l équation 17x 4y = 3. Une solution particulière de cette équation est le couple (3, ). Jean pourra donc attraper le pompon en A (en étant parti de E) pour une valeur minimale de y =, c est-à-dire au bout d un temps Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130) 06/11/010

3 t = = 51 secondes. En partant du point E, Jean aura donc le temps d attraper le pompon en moins de minutes (et même en moins d une minute). Exercice II Logarithmes et exponentielles (6 points) 1. Démontrer la relation suivante : log a x = log b x log b a On pose y = log a x, d où x = a y. Alors, log b x = log b (a y ) = y log b a = log a x log b a. On a donc montré que log b x = log a x log b a, ce qui équivaut à log a x = log b x log b a.. Calculer le produit log a b log b a et montrer qu il ne dépend ni de a ni de b. En utilisant le formule de changement de base (démontrée dans la question précédente), on obtient : log a b log b a = log c b log c a log c a log c b = 1 Remarque : dans la suite, on pourra donc utiliser log a b = 1 log b a. 3. Résoudre les équations suivantes : (a) e x = 3 e x = 3 log e e x = log e 3 x = log e 3 x = 1 log e 3 = 1 log 10 3 log 10 e = 1 log 10 3 log e 10 = 0, 5 0, 48, 3 = 0, 55. (b) x = 3 x = 3 log x = log 3 x = log 3 = log 10 3 log 10 = 0,48 0,3 = 1, 6 (c) ln 3x = ln 3x = ln 3 + lnx = lnx = ln 3 x = e ln 3 = e = e e ln 3 3 (d) e ln x = 4 e ln x = 4 x = 4 x = (e) log x log 10 x = log 10 log x log 10 x = log 10 log 10 x log 10 log 10 x = log 10 (log 10 x) = (log 10 ) log 10 x = ± log 10 log 10 x = log 10 ou log 10 x = log 10 ( 1 ) = log 10 ( 1 ) x = ou x = 1. On donne ln 10, 3, log 10 0, 3 et log , /11/010 Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130)

4 Licence 1ère année Exercice III Géométrie du triangle et trigonométrie (7 points) Les deux questions sont indépendantes 1. Donner l expression de la surface d un triangle isocèle dont les deux côtés égaux, de longueur l, font entre eux un angle θ. On considère un triangle isocèle ABC, de côtés AB = AC = l. Avec AH la hauteur issue de A de longueur h, on pose BH = HC = a. On pose également BAC = θ et ÂBC = BCA = α ; on a BAH = ĈAH = θ. L aire d un triangle est donnée par : S = base hauteur. L aire du triangle ABC est donc : S = ah = ah. La somme des angles d un triangle est égale à π ; dans chacun des triangles BAH et CAH (qui sont des triangles rectangles), on a donc α = π π θ = π θ. On a egalement sinα = h l et cosα = a l, avec sinα = sin ( π θ ) = cos( θ ) et cosα = cos( π θ ) = sin (θ ). On a donc : cos( θ ) = h l h = l cos( θ ), et sin ( θ ) = a l a = l sin( θ ). L expression de l aire du triangle ABC devient alors : S = ah = l sin ( θ )cos( θ ).. On se propose de mesurer par triangulation la hauteur h d une montagne (voir Figure ). Pour cela, on se place au point A et l on vise le sommet de la montagne; l angle de la direction de visée avec l horizontale est α. On se déplace alors perpendiculairement au plan de visée (ACD) et on parcourt la distance s. Au point d arrivée B, on vise de nouveau le sommet de la montagne; l angle de la direction de visée avec l horizontale est alors β. Calculer h si α = 45, β = 30 et s = 500 m. On rappelle que 1, 41. Dans le triangle ACD : α = π 4. La somme des angles du triangle vaut π : ÂCD = π π π 4 = π 4. Le triangle ACD (rectangle en D) est donc isocèle : ĈAD = ÂCD = α. On en déduit que AD = CD = h. Dans le triangle ABD : D après le théorème de Pythagore : BD = AD + AB = h + s. Dans le triangle BCD : β = π 6 et BCD = π π 6 π = π 3. De plus : sin BCD BD sin π 3 h +s = sin π 6 h sin ĈBD = CD 3 h +s = 1 h 3 h = 1 3h = h + s h = s h = s = 500 h + s 3h = h + s 354, 6 m. Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130) 06/11/010

5 Figure : Schéma de triangulation pour la mesure de la hauteur d une montagne (zone hachurée). 06/11/010 Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130)

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2012 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L emploi des calculatrices est autorisé (circulaire n 99 186 du 16 Novembre 1999 publiée au

Plus en détail

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015 Mathématique Sylvie Jancart sylvie.jancart@ulg.ac.be septembre 2015 Equations trigonométriques élémentaires Exemple 1 : résoudre dans IR l équation sin x = 1 : 2 L examen du cercle trigonométrique montre

Plus en détail

NOMBRES COMPLEXES (exercices)

NOMBRES COMPLEXES (exercices) Exercice : NOMBRES COMPLEXES (exercices). Placer les points A,B,C,D et E d affixes a = 3 + 3 i, b = - i, c = 4, d = -i, e = - + i dans le plan complexe.. Calculer l affixe du milieu I de [BD] Exercice

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Lemmes utiles en géométrie

Lemmes utiles en géométrie Lemmes utiles en géométrie Thomas Budzinski Avant-propos La géométrie est un domaine où une bonne culture peut s avérer très utile pour résoudre des exercices. Ce document est une liste (non exhaustive!)

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes.

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. 3 ème B DS4 calcul littéral -trigonométrie 2012-2013 sujet 1 Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. Trace un demi-cercle () de centre O et de diamètre [AB]

Plus en détail

Bilan fin de seconde. 1. Statistiques

Bilan fin de seconde. 1. Statistiques Bilan fin de seconde Les questions concernant des notions pour une première particulière sont précisées (remarque : les programmes de mathématiques de TL et TID sont les mêmes) Pour chaque question, il

Plus en détail

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES 3 ème : ENTRAINEMENT AU BREVET DES COLLEGES Janvier 2012 Epreuve de : MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. En plus des 36 points prévus pour les 3 parties de l épreuve,

Plus en détail

d) cos(x + 5π) e) sin( x π) 1) cos 2x + π ) où x est l inconnue. où x [0 ; 2π]. est sur le cercle trigonométrique.

d) cos(x + 5π) e) sin( x π) 1) cos 2x + π ) où x est l inconnue. où x [0 ; 2π]. est sur le cercle trigonométrique. I Exercices Exercice 1 : Déterminer la mesure principale des angles suivants : a) 45π b) 75π c) 11π d) 15π e) 14π 4 6 6 Exercice : Simplifier les formules suivantes : f) 1961π a) cos(π x) b) sin(π + x)

Plus en détail

TRIGONOMETRIE - Cours

TRIGONOMETRIE - Cours CHAPITRE N Cours de Mathématique 1S TRIGONOMETRIE - Cours Partie : Géométrie I - Radian et cercle trigonométrique 1) Le radian Définition : Soit un cercle C de centre O. On appelle radian, noté rad, la

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Concours Euclide 2014

Concours Euclide 2014 Le CENTRE d ÉDUCATION en MATHÉMATIQUES et en INFORMATIQUE cemc.uwaterloo.ca Concours Euclide 014 le mardi 15 avril 014 (Amérique du Nord et Amérique du Sud) le mercredi 16 avril 014 (hors de l Amérique

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Les angles orientés. I Conventions et notation 1 1 Orientation du plan Notations... 1

Les angles orientés. I Conventions et notation 1 1 Orientation du plan Notations... 1 Les angles orientés Table des matières I Conventions et notation 1 1 Orientation du plan............................................. 1 2 Notations................................................... 1

Plus en détail

Flocon de Von Koch et approximation de Pi

Flocon de Von Koch et approximation de Pi Flocon de Von Koch et approximation de Pi Vincent Pilaud Février 00 1 Préliminaire 1.1 Calculs d aire Soit ABC un triangle de cotés de longueur AB = x, AC = x et BC = y. Question 1 Montrer que l aire du

Plus en détail

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3 ompétences: Identités remarquables Equations alculs-racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace Le / 02 / 2008 classe : Devoir de mathématiques n 6. (sujet ) Durée 2h calculatrice

Plus en détail

EXERCICES SUR LES SUITES

EXERCICES SUR LES SUITES EXERCICES SUR LES SUITES EXERCICE 1 u est une suite définie sur IN par u 7 = 6 et u 10 = 162 Déterminer sa raison, son premier terme u 0, ainsi que la somme S = u 10 + u 11 + + u 25 : 1) dans le cas où

Plus en détail

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 4. Trigonométrie. c 2014 UNIVERSITY OF WATERLOO

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 4. Trigonométrie. c 2014 UNIVERSITY OF WATERLOO Le entre d éducation en mathématiques et en informatique teliers en ligne Euclide telier n o 4 Trigonométrie c 014 UNIVERSITY OF WTERLOO teliers en ligne Euclide telier n o #4 TRIGONOMÉTRIE OÎTE À OUTILS

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore.

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. - Les relations trigonométriques dans le triangle rectangle. COURS I ) propriétés de Pythagore Pré requis Théorème : Dans un triangle

Plus en détail

OLYMPIADES DE MATHEMATIQUES Académie de MONTPELLIER Session 2008

OLYMPIADES DE MATHEMATIQUES Académie de MONTPELLIER Session 2008 CLASSES DE PREMIERES GENERALES ET TECHNOLOGIQUES OLYMPIADES DE MATHEMATIQUES Académie de MONTPELLIER Session 008 Durée : 4 heures Série S Ce sujet comporte 4 exercices indépendants. Les calculatrices sont

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

CORRECTION DU DEVOIR MAISON 2

CORRECTION DU DEVOIR MAISON 2 Chapitre wicky-math.fr.nf Trigonométrie CORRECTION DU DEVOIR MAISON Exercice. Angles de vecteurs ABCD est un polygone tel que : AB; AD = π. Dessiner ce polygone tel que AB=4 cm et AD=6 cm. BA; BC = π 4

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2008

Correction du baccalauréat S Pondichéry 16 avril 2008 Correction du baccalauréat S Pondichéry 6 avril 008 EXERCICE Commun à tous les candidats 4 points. a. x e x e ou encore e x e e x > par croissance de la fonction exponentielle). f est donc bien définie

Plus en détail

1S Evaluation n 3 de mathématiques Le 21 Mai 2013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min

1S Evaluation n 3 de mathématiques Le 21 Mai 2013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min 1S Evaluation n 3 de mathématiques Le 1 Mai 013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min QCM : (13 points) : 1 point par bonne réponse, 0,5 point par mauvaise réponse, 0 si pas de réponse

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

Trigonométrie et calcul numérique

Trigonométrie et calcul numérique Université de Liège Examen d admission aux études de bachelier ingénieur civil et architecte Trigonométrie et calcul numérique Prof. P. ewallef et Prof. Q. Louveaux Septembre 016 Question 1 Résoudre l

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants:

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants: Nombres complexes Exercice 1 1 Ecrire sous forme algébrique et trigonométrique les nombres suivants : i 0, i 1, i, i et i a Pour tout n IN, on note S n i 0 + i 1 + i +... + i n. Calculer S n - i S n, puis

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Exercice de géométrie

Exercice de géométrie DOMAINE : Géométrie NIVEAU : Débutants CONTENU : Exercices AUTEUR : Igor KORTCHEMSKI STAGE : Cachan 2011 (junior) Exercice de géométrie 1 Énoncés Exercice 1 Soit ABC un triangle. Montrer que l intersection

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

T. D. n o 3 Suites numériques. Limite d une suite numérique.

T. D. n o 3 Suites numériques. Limite d une suite numérique. T. D. n o 3 Suites numériques. Limite d une suite numérique. Exercice : D après le concours d inspecteur du trésor, épreuve 2, 2004.. Étudier la fonction de la variable réelle x définie par : f(x) = ln

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

Algèbre, Juillet 2011

Algèbre, Juillet 2011 Algèbre, Juillet 2011 1. Résoudre dans IR, en discutant en fonction du paramètre réel m, l équation 2. Factoriser au maximum le déterminant m x + (x 1) 2 = 1. a b 2 b a 2 b b 2 b c 2 c b 2 c c 2 c a 2

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

ABCD est un carré donc les distances des côtés sont égales. On note.

ABCD est un carré donc les distances des côtés sont égales. On note. Exercice 1 ABCD est un carré donc les distances des côtés sont égales. On note. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On peut ainsi noter car ils correspondent

Plus en détail

Trigonométrie et calcul numérique

Trigonométrie et calcul numérique Université de Liège Examen d admission aux études de bachelier ingénieur civil et architecte Trigonométrie et calcul numérique Prof. P. Duysinx et Prof. P. Dewallef Juillet 01 Question 1 Montrer que Solution

Plus en détail

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE Pré-requis : I-mise en situations RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE -Trigonométrie dans le triangle rectangle -le radian -la proportionnalité Pour connaître la hauteur de la falaise

Plus en détail

EXERCICES : TRIGONOMÉTRIE

EXERCICES : TRIGONOMÉTRIE Chapitre wicky-math.fr.nf Trigonométrie EXERCICES : TRIGONOMÉTRIE Exercice 1. Sur le cercle trigonométrique C de centre O ci-dessous, les points A et B sont tels que : ÎOA=5 et ÎOB= 10 Donner une mesure

Plus en détail

Soit a un nombre... Le nombre... dont le... est égal à a est la... de a. On note ce nombre...

Soit a un nombre... Le nombre... dont le... est égal à a est la... de a. On note ce nombre... 5.1 Activités Activité n 1 : Découverte....... Depuis le théorème de Pythagore, vous avez appris à utiliser la touche racine carrée de votre calculatrice. De plus, vous avez été surpris(e) par certaines

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Nombres complexes I Trigonométrie Exercice 1. 1. Déterminer les valeurs exactes de cos π, sin π et tan π (on pourra utiliser les 12 12 12 valeurs connues

Plus en détail

NOM : TRIGONOMETRIE 1ère S

NOM : TRIGONOMETRIE 1ère S Exercice 1 Résoudre sur R les équations suivantes : 1) sin 2 x = 3 4 ; 2) cos 2 x = 1 2 ; 3) sin(2x) = cos(x). D. LE FUR 1/ 50 Exercice 2 1) Simplifier au maximum les expressions suivantes : ( π ) a) A(x)

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

7 2 4 = = ² 10-3

7 2 4 = = ² 10-3 EXERCICE 1 A = 2 3 2 21 3 10 1,8 10 B = 4 7 7 8 6 10 3 1) A = 3 7 2 7 21 8 = 3 7 2 21 7 8 = 3 7 2 7 3 7 2 4 = 3 7 3 4 = 3 4 7 4 3 7 12 21 = = -9 4 7 28 28 2 3 10 1,8 10 2) a) B = 4 6 10-1 + (-5) = 9 10

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

DEVOIR SURVEILLÉ 1S Second degré : le corrigé

DEVOIR SURVEILLÉ 1S Second degré : le corrigé DEVOIR SURVEILLÉ 1S Second degré : le corrigé Exercice 1 1) Résolution d équations : a / x + 5x 3 0 en utilisant le discriminant : On reconnaît un polynôme de degré. Calcul de Δ : Δ b ac 5 3 5+ 9 Δ > 0,

Plus en détail

= (x en m et S(x) en m²) On note S(x) l aire (colorée en rouge), limitée par les trois demi-cercles de diamètres respectifs [AB], [AM] et [MB].

= (x en m et S(x) en m²) On note S(x) l aire (colorée en rouge), limitée par les trois demi-cercles de diamètres respectifs [AB], [AM] et [MB]. Eercice 1 : 1 Etudier le sens de variation de la fonction f définie sur R par f ( ) Eercice : Un maître nageur dispose d un cordon flottant de 360m de longueur pour délimiter un rectangle de baignade surveillée

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

I. Relations métriques

I. Relations métriques 1 sur 8 http://www.ilemaths.n/maths-capes-lecon-37-relation-triangle-rectang... LEÇON 37 : RELATIONS MÉTRIQUES DANS UN TRIANGLE RECTANGLE. TRIGONOMÉTRIE. APPLICATIONS Niveau : Collège (4 ème - 3 ème )

Plus en détail

1. Trigonométrie dans le triangle rectangle

1. Trigonométrie dans le triangle rectangle 1. Trigonométrie dans le triangle rectangle On considère un triangle ABC, rectangle en C. Par convention, on note angles et côtés comme sur la figure ci-contre. B β Remarque : Lorsque les triangles ont

Plus en détail

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h BREVET BLANC Vendredi 18 Avril 2014 Mathématiques Durée de l épreuve : 2 heures 9h à 11h Les calculatrices sont autorisées Conseils : Dans un même exercice, fais les questions dans l ordre. N oublie pas

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3.

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3. BCPST. Année 00-0 Lycée Pierre de Fermat Toulouse Fiche n o Nombres complexes Exercice. On considère les nombres complexes a = + i et b = 3 i. a Déterminer la forme trigonométrique de a, b, et de ab. b

Plus en détail

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005 Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S Mars 2005 1 Exercice 1 (4 points). A ne traiter que par les élèves ne suivant pas l enseignement de spécialité. 1. Résoudre dans C l équation

Plus en détail

Mars 2006 Baccalauréat blanc TGM

Mars 2006 Baccalauréat blanc TGM Exercice (5 points). Le plan est muni d un repère orthonormal (; u, v ).. Résoudre dans C l équation d inconnue z : z 2 2z + 5 = 0 2. Soit P le polynôme défini par P (z) = z 3 4z 2 + 9z 0. (a) Démontrer

Plus en détail

REVISION JUIN 2012 ALGEBRE

REVISION JUIN 2012 ALGEBRE REVISION JUIN 01 ALGEBRE THEORIE ( en gras : à étudier en normal : à connaître pour résoudre les exercices ) CHAPITRE 4 : les inéquations Connaître les conventions d écriture, de lecture et de représentation

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1994 : Bordeaux I) Activités numériques Exercice 1 : Écrire sous la forme a b (où a et b sont des entiers) le nombre : E 75 + 3 1 4 3. Calculer : 3(3 3) ; G ( 5 + )( 5 ). Exercice : Résoudre les

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

BREVET BLANC DE MATHEMATIQUES DE TROISIEME

BREVET BLANC DE MATHEMATIQUES DE TROISIEME BREVET BLANC DE MATHEMATIQUES DE TROISIEME Janvier 015 Le sujet comporte 7 exercices indépendants. 4 points sont attribués pour le soin, les unités et la maîtrise de la langue. La calculatrice est autorisée.

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE Définition 1 : soit θ un nombre réel. On pose : cossin Théorème 1 (admis) : soit et deux nombres réels. Alors : Définition : soit r un nombre réel strictement

Plus en détail

I) Angle orienté formé par deux vecteurs du plan

I) Angle orienté formé par deux vecteurs du plan CHAPITRE Angles orientés, trigonométrie Capacités au programme : Utiliser le cercle trigonométrique, notamment pour : déterminer les cosinus et sinus d angles associés ; résoudre dans R les équations d

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature :

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature : NOM : Prénom : Classe : Observations : Note : Signature : Durée 2 heures Il sera tenu compte de la clarté et de la présentation de la copie. Exercice 1 (2 points) Calculer et simplifier : A = 34 2 : 4

Plus en détail

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré DERNIÈRE IMPRESSION LE 4 octobre 016 à 8:57 Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré....................... 1. Quelques exemples de formes canoniques...............

Plus en détail

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux 006 E 35 1/14 Situations DIVERS PROBLEMES 1 - Les barreaux 7 barreaux équidistants forment un porche en demi-cercle. Calculer la longueur totale des barreaux. - La tente Une tente canadienne est large

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Chapitre 8 : Géométrie

Chapitre 8 : Géométrie Chapitre 8 : Géométrie I. Triangles rectangles.le théorème de Pythagore Le côté le plus long dans un triangle rectangle est l hypoténuse ; c est le côté où il n y a pas d angle droit. Le théorème de Pythagore

Plus en détail

Corrigé du baccalauréat S La Réunion septembre 2010

Corrigé du baccalauréat S La Réunion septembre 2010 Corrigé du baccalauréat S La Réunion septembre 00 EXERCICE Commun à tous les candidats 5 points Mx ; y ; z P Q { x+y+ z = 0 x+ 3y+ z = 0 En posant, t R, le système devient : x+y = t x+ 3y = t y = + t x

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

CP 2 = r 2. )2 +y 2 +2 c y +( c. 2a )2 (y+ c. 2a )2 d = b2 +c 2 4ad

CP 2 = r 2. )2 +y 2 +2 c y +( c. 2a )2 (y+ c. 2a )2 d = b2 +c 2 4ad 5 Le cercle Équation cartésienne du cercle On considère un cercle Γ de centre C(x 0 ;y 0 ) de rayon r et un point P(x;y). Les conditions suivantes sont équivalentes : P 1) P Γ : le point P appartient au

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Exercices du chapitre II : Introduction aux vecteurs (1 ou 2 séances)

Exercices du chapitre II : Introduction aux vecteurs (1 ou 2 séances) Exercices du chapitre II : Introduction aux vecteurs (1 ou 2 séances) A faire avant la 1 ère séance : - étudier les sections 1 à 5.1 du chapitre II. - faire les exercices suivants avant la séance: Projection

Plus en détail

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures. COLLÈGE NAZARETH BREVET BLANC N 2-2009- MATHÉMATIQUES Durée : 2 heures. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin. Présentation, orthographe et rédaction : 4 points.

Plus en détail

Éléments de correction du contrôle type bac

Éléments de correction du contrôle type bac Éléments de correction du contrôle type bac Exercice (Restitution organisée de connaissances points) Pré-requis : Si une variable aléatoire T suit la loi exponentielle de paramètre λ (avec λ > ), la densité

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire

Chapitre 3 Produit scalaire. T ale STI2D. Un peu d'histoire Un peu d'histoire Le produit scalaire est une notion de géométrie euclidienne découverte tardivement par Camille Jordan (1838 1922). Né à Lyon, cet élève de l'école polytechnique entre major avec la note

Plus en détail

Trigonométrie. 0 π. Sin Cos Tan 0 1 Χ 0. -a π-a π+a - a + a Sin -sin a sin a -sin a cos a cos a Cos cos a -cos a -cos a sin a -sin a

Trigonométrie. 0 π. Sin Cos Tan 0 1 Χ 0. -a π-a π+a - a + a Sin -sin a sin a -sin a cos a cos a Cos cos a -cos a -cos a sin a -sin a Trigonométrie 1. Savoir 1.1. Cercle trigonométrique et valeurs d angles 1.1.1. Cercle trigonométrique 0 π Sin 0 1 0 Cos 1 0-1 Tan 0 1 Χ 0 1.1.2. Angles associés -a π-a π+a - a + a Sin -sin a sin a -sin

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit Terminale S Chapitre 0 «Nombres complexes ème partie» Page sur 9 I) Forme exponentielle ) Argument du produit Propriété : Soient deux nombres complexes et d'arguments respectifs θ et θ. A B A B Alors un

Plus en détail

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012 TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 01 Exercice n 1 : 1. On transforme l expression de cette façon : 4 = 4 = 1 = 4 = 4 = 41 + 1 1 + = 41 + = + 1. L équation + 4 = 0 est une équation du

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail