Deuxième séance de regroupement PHR004

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Deuxième séance de regroupement PHR004"

Transcription

1 Deuxième séance de regroupement PHR4 Rappels de cours (Leçons 3 à 5) Commentaires sur les exercices Questions / Réponses

2 Dynamique du point matériel

3 Rappels On nomme "Référentiel" un système d'axes, pouvant constituer un repère des coordonnées, lié à un observateur muni d'une horloge fournissant la date t. Il existe des référentiels privilégiés: référentiels d inertie, dans lesquels le mouvement d une particule libre est rectiligne et uniforme Le référentiel galiléen est identique au référentiel d inertie, il vérifie donc la loi d inertie : si une particule est libre, son vecteur vitesse est constant

4 Loi fondamentale de la dynamique Définitions : Une particule libre est gouvernée par la loi : Lorsque la particule n est plus libre de toutes dp contraintes extérieures (non-isolée) : P Cte La loi fondamentale de la dynamique consiste à définir la force comme étant l'action de l extérieur à chaque instant sur la particule : def P = m v = vecteur quantité de mouvement L = r P = r mv = vecteur moment cinétique dp P = m v = Cte = F dp = = m a

5 Principe de relativité de GALILÉE t i = i' ; j = j' ; k = k' Si le référentiel R est galiléen, il en est de même du référentiel R qui se déplace à vitesse constante et sans rotation propre dans R. R un référentiel galiléen, R : un référentiel qui se déplace dans le référentiel R à la vitesse constante, sans rotation propre, M un point défini par : OM = r dans R O'M = r' dans R' dr doo' dr' t, r = OO' + r' = + v V = cte v' dv dv dv' = + F = F' a a' Les référentiels R et R sont équivalents pour la description de la mécanique V

6 Forces, travail, puissance et énergie

7 Les lois de Newton Ce sont des lois qui permettent de lier étroitement les deux notions de force et de mouvement. Loi d'inertie : si un corps mobile n'est soumis à aucune force, il continue éternellement à se déplacer dans la même direction et à la même vitesse d p dv v = cte p = mv = cte = m = a = Loi du mouvement (Formule [1.3] corrigée dans le cours) Loi d'égalité ou d actions réciproques F = F F ext dp = = ma A sur B B sur A

8 Travail d'une Force Travail d'une Force : W Énergie de mouvement Énergie cinétique : Ec Énergie potentielle (qui peut créer le mouvement) : Ep Énergie mécanique totale d'un système : E = T + V = Ec +Ep M 1 Travail élémentaire d'une force F lors d'un déplacement (élémentaire) dr F M θ dr M dr dw = F dr W θ = π/ = F.drcos( F,dr) = F.drcos θ = dw dr = M M1 F dr Le travail W est égal à la circulation de la Force le long du parcours M 1 M dw < θ > π/ F Travail résistant F dw = dw = F.dr cos θ θ < π/ dr F dw > Travail moteur

9 Travail élémentaire en coordonnées cartésiennes Le travail est une grandeur scalaire, sa valeur peut être considérée comme la somme des travaux effectués lors d'un déplacement quelconque décomposé en des trajets parallèles aux axes x, y, z respectivement. dr = dx i + dy j + dz k dw = F dx + F dy + F dz F F i F j F k = x + y + x x y z z dw = dw + dw + x y dw z Travail élémentaire en coordonnées cylindriques: dr = dr ur + rdθ uθ + dz k dw = Fr dr + Fθ r d θ+ Fz dz F F u F u F k = r r + θ θ + z

10 Puissance instantanée Energie cinétique dw P = dw dr dw = F dr P = = F = F v C'est le travail fourni par unité de temps: Dans un référentiel d inertie, on considère un point matériel de masse m animé d une vitesse v. Son énergie cinétique est et sa dérivée par rapport au temps est : dec E 1 c = mv dv = mv = vm γ= vf = PuissancedelaForce Si la puissance est positive, la force est motrice, si la puissance est négative, la force est résistante. Si plusieurs forces sont appliquées à m, on a : de c = F v = P i i i i i

11 Théorème de l énergie cinétique : La variation d énergie cinétique d un point matériel se déplaçant entre les points A et B s écrit : tb Δ E = E (B) E (A) = F v t t B A c c c i i t i A t B = F dr = F dr = W i i i i AB i i t i La variation d énergie cinétique d un point matériel se déplaçant entre les points A et B est égale à la somme des travaux des forces appliquées effectués lors de ce déplacement. A Δ Ec = E c(b) E c(a) = WAB i

12 Forces conservatives Forces dissipatives Une force est dite conservative si pour tous les points A et B le travail pour aller de A en B ne dépend pas du chemin suivi entre A et B Toutes les forces transformant l énergie mécanique en une autre forme (chaleur, rayonnement...) sont dissipatives Exemples de forces dissipatives : Force de frottements solides Force de frottements liquides Si la force est conservative on peut définir une fonction de l espace E p (x,y,z) qui ne dépend que du point M(x,y,z) de l espace considéré

13 Energie potentielle La fonction E p (r) = E p (x,y,z) est l énergie potentielle au point M(x,y,z) La relation suivante n est vraie que si la force F(r) est conservative : B Δ p = p p = A E E (B) E (A) F dr Si le point de départ ou référence est toujours le même (surface de la Terre par exemple en mécanique, ou l'infini pour les forces électrostatiques) alors : p B = p O E(B) E(O) Fdr L'énergie potentielle du point B est égale à une constante moins le travail pour aller du point de référence au point B. On dit que l'énergie potentielle est définie à une constante additive près.

14 Relation entre énergie potentielle et force =Δ = ΔE = = Δr F = grad E p Ep( B) Ep( A) Ep F dr F F p de dr p

15 Deux types d énergie : Récapitulatif Energie cinétique E c : liée au mouvement Energie potentielle E p : liée à la position Energie mécanique E = Ec + Ep L'énergie mécanique se conserve (est constante) si les forces sont conservatives ΔE = ΔE c +Δ E p =

16 Les oscillateurs

17 Différents types d oscillateurs Oscillateur libre non amorti Oscillateur forcé sur un système non amorti Oscillateur libre sur un système amorti par frottements visqueux Cas des faibles frottements : le régime pseudo périodique Cas des forts frottements : le régime apériodique Cas limite : l amortissement critique Oscillateur forcé sur un système amorti par frottements visqueux (Exercice n 4 L : AFM)

18 Oscillateur mécanique libre non amorti Horizontal Vertical R F = k x x P + R + F = ma P X x T P x dv K x = m a = m = m d x x d x + K x = d x + ω x = m A : amplitude x() t = A cos ( ω ot +ϕ) avec ϕ: Phase ω pulsation = π f = K m Attention à la CE : P+T= K x + m g = PFD : Attention force de rappel : T = - K * (allongement total) P+ T=ma d x mg KΔ x = m d x mg K( x+ x ) = m d x mg Kx Kx= m

19 Oscillateur mécanique libre non amorti Oscillateur horizontal ou vertical, on aboutit toujours à la même équation différentielle Ne négliger jamais un paramètre si on ne vous le demande pas explicitement N oublier pas la condition d équilibre à chaque fois que vous avez affaire à un ressort vertical L allongement Δx est toujours compté par rapport à la longueur à vide du ressort l Dans toutes les équations différentielles relatives aux oscillateurs, il faut toujours s arranger pour avoir le facteur 1 qui précède la dérivée seconde x ii, le facteur qui précède x est ω

20 (ox) F Oscillateur mécanique forcé non amorti Diapason en vibrations entretenues R masse P T ressort A cos x + B sin x = C cos x + D sinx A = C et B = D amplitude Fo m ω o - ω ( ) Résonance Excitations sinusoïdales T+F+P+R=ma Projection sur l'axe des x d x Kx + F o sin ωt = m d x F + ω o x = m sin ω t Intuitivement la masse va osciller à la même pulsation que la force appliquée : ( ) ω x t = A sin ( t + ϕ ) F A ( ω o o ω ) sin ( ωt + ϕ) = sin ωt m F A ( ωo ω ) (cos ϕ) sin ωt + A( ωo ω )(sin ϕ) cos ωt = o sin ωt m Fo m ωo o ω ο ω pulsation o A( ω ω ) sin ϕ = ϕ = F A = o Fo A( ωo ω ) cos ϕ = m( ωo ω ) m

21 Oscillateur mécanique libre amorti R f = αx i F = k x + Force de frottement F +f+ P+R=ma Projection sur l'axe des x x P K x α x = m x K α mx + Kx+ α x = x+ x + x = m m ω λ Equation caractéristique : r + λr+ ω = Discriminent : Δ= 4λ 4ω

22 Oscillateur mécanique libre faiblement amorti Discriminent négatif ( ) i ( ) ( i ) Δ= 4λ 4ω = 4 ω λ = 4 ω λ = ω λ > Solutions complexes de l équation caractéristique: r1 = λ i ω λ = λ i Ω r = λ + i ω λ = λ + i Ω Solution générale de l équation différentielle : x t e A t B t -λ () = t [ cos Ω + sin Ω ] ( Ω ϕ ) -λt x(t) = X M e cos t + x(t) x(t + T) : l amplitude des oscillations diminue avec le temps Mouvement pseudo périodique λ Ω= ω λ = ω < ω T 1 ω π π π ω = = = = > Ω ω λ λ λ 1 1 ω ω T T Pseudo pulsation Pseudo période

23 Oscillateur mécanique libre fortement amorti Discriminent positif ( ) ( ) Δ= 4λ 4ω = λ ω = β Solutions réelles de l équation caractéristique: ( ) ( λ β) r1 = λ + β < α avec β = λ ω et λ = r = < m Solution générale de l équation différentielle : x(t) = Ae Régime Apériodique Pas d oscillations ( λ β) t ( λ β) + Le temps de relaxation le plus grand τ 1 = imposera la λ β décroissance de l exponentielle. + C e 1 resonnateur3.swf t

24 Régime critique Discriminent nul λ Δ = 4λ 4ω = r = = λ = ω Solution générale de l équation différentielle : ( ) = ( + ) x t At B e ω t τ c. 1 = ω Temps de relaxation pour le régime critique : 1 = τ c ω Le temps de relaxation pour le régime apériodique est toujours plus important que celui du régime critique. Si on désire un retour rapide à l équilibre (pour les amortisseurs d une voiture par exemple) on a un intérêt de se rapprocher le plus possible du régime critique.

25 Oscillateur mécanique forcé et amorti (1/) F Excitation sinusoïdale + Force de frottement Ressort horizontal. Projection sur l'axe des x : ii i ii i On peut poser : x(t) = x m cos(ωt + ϕ) et résoudre l équation : T+f +F+ P+R=ma i Kx α x + F cosω t= mx α K F x + x + x = cosωt x + λ x + ω x = A cosωt m m m ( ) ( ) ( ) m m m ω x cos ω t +ϕ λx ωsin ω t +ϕ + ω x cos ω t +ϕ = A cosωt f ii Plus simple : passage au nombre complexe Déterminer x(t) = Déterminer les valeurs de : x et ϕ () iϕ iωt iωt x t = x e e = x e x i iωt x() t = x i ω e = i ω x() t ii x t x e x t F() t = F e = A e m iωt () = ω = ω () iωt Ft () iωt

26 Oscillateur mécanique forcé et amorti (/) Equation du mouvement : ii Rappel mathématique : Dans notre cas : i iϕ ( ) iωt iωt iωt x + λ x + ω x = A e ω + iωλ+ω x e = A e iϕ x = x e = x e = ( ( ω ω ) + iωλ ) ( ) i ( ) x A (( ω ) ) ω + iωλ z = a + i b z = a + b z z = = arg = arg arg = x = ( ω ω ) ( ω ω ) 1 1 z z et z z1 z z z 1 A (( ) ) ω ω + 4ω λ A ϕ = arg( Z) = arg = arg( A) arg( ( ω ω ) + iωλ) ϕ= arg ω ω + ωλ tgϕ = λω ϕ = arctg λω

Deuxième séance de regroupement PHR004

Deuxième séance de regroupement PHR004 Deuxième séance de regroupement PHR4 Rappels de cours (Leçons 3 à 5) Commentaires sur les exercices Questions / Réponses Dynamique du point matériel Rappels Référentiel = système d'axes (pouvant constituer

Plus en détail

OSCILLATEURS MECANIQUES

OSCILLATEURS MECANIQUES OSCILLATEURS MECANIQUES 1 1. GENERALITES : 1.1.Définition : un oscillateur mécanique est un système matériel animé d un mouvement périodique. On appelle oscillateur harmonique, un oscillateur pour lequel

Plus en détail

Cours de mécanique. M13-Oscillateurs

Cours de mécanique. M13-Oscillateurs Cours de mécanique M13-Oscillateurs 1 Introduction Nous étudierons dans ce chapitre en premier lieu l oscillateur harmonique solide-ressort horizontale, nous introduirons donc la force de rappel du ressort

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

Comprendre-cours 3 TS - programme Travail et énergie

Comprendre-cours 3 TS - programme Travail et énergie Comprendrecours 3 TS programme 2012 Introduction : Travail et énergie L énergétique est la partie de la mécanique qui étudie les travaux et les puissances mises en oeuvres dans les déplacements des solides.

Plus en détail

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système

Plus en détail

Oscillateur linéaire à un degré de liberté

Oscillateur linéaire à un degré de liberté Chapitre 4 Oscillateur linéaire à un degré de liberté 4.1 Rappel sur l oscillateur harmonique L équation différentielle d un oscillateur harmonique au voisinage d une position d équilibre stable est avec

Plus en détail

Oscillationsforcéesdessystèmesàun degrédeliberté

Oscillationsforcéesdessystèmesàun degrédeliberté Chapitre 3 Oscillationsforcéesdessystèmesàun degrédeliberté 3.1 Equation différentielle Rappelons la forme générale de l équation de Lagrange pour les systèmes à un degré de liberté : d L L dt q q + D

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis Signaux physiques Chapitre 14 : Oscillateurs mécaniques amortis Sommaire 1 Etude du régime libre de l oscillateur harmonique amorti 1 1.1 Définition d un OH amorti...........................................

Plus en détail

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT»

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» Introduction : Ce chapitre a pour but de relier les concepts de forces et couples de forces (causes des mouvements) appliquées

Plus en détail

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Chapitre 7 : Temps, mouvement et évolution Notions et contenus Travail d une force. Force conservative ; énergie potentielle. Forces

Plus en détail

Mécanique fondamentale

Mécanique fondamentale Chapitre 1 Mécanique fondamentale CURS Ce cours a pour objet de donner aux étudiants en PAES les outils indispensables àlaréussite de leurs concours. Nous avons donc privilégié systématiquement l aspect

Plus en détail

oscillateurs et ondes progressive

oscillateurs et ondes progressive oscillateurs et ondes progressive Ce cours reprend le cours de madame Grenier de 2007, il constitue une aide et en aucun cas une référence pour le concours! C est un résumé du cours de madame Grenier,

Plus en détail

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α Chapitre n 3 Travail et énergie I. Travail d une force constante 1. Notion de travail Le travail est une grandeur algébrique qui permet d évaluer l effet d une force sur l énergie d un objet en mouvement.

Plus en détail

A- MOUVEMENT CIRCULAIRE

A- MOUVEMENT CIRCULAIRE CHAPITRE 3 MOUVEMENTS PARTICULIERS A- Mouvement circulaire B- Mouvement oscillatoire Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 5-6 SVI-STU A- MOUVEMENT

Plus en détail

Chapitre IV : Problèmes à un degré de liberté

Chapitre IV : Problèmes à un degré de liberté Chapitre IV : Problèmes à un degré de liberté I Forces conservatives I-1) Définition I-2) Propriété principale I-3) La force de pesanteur I-4) La force de rappel I-5) Forces non conservatives II Energie

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Fiches d exercices R.Duperray Oscillateur harmonique en régime libre Lycée F.BUISSON PTSI Mécanique série n 4: Oscillateurs harmoniques libres Exercice: Détermination d un coefficient

Plus en détail

8 v 7.1 Oscillations 1

8 v 7.1 Oscillations 1 8 Oscillations v 7.1 Mouvement oscillatoire exemples d'oscillations : pendule de Galilée corde d'une guitare, air dans une flûte, dans un tuyau d'orgue propagation du son dans la matière vibrations des

Plus en détail

Chapitre 5 Travail & Énergie

Chapitre 5 Travail & Énergie Chapitre 5 Travail & Énergie Sidi M. Khef Département de Physique EPST Tlemcen 16 décembre 2012 I. Travail Dénition : Le travail élémentaire dw eectué par une force F sur une masse ponctuelle m pendant

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Mouvement Harmonique Simple (MHS) + + =. Projection sur [ ) : = + = Equation différentielle régissant le mouvement du dispositif {solide-ressort} Les solutions sont de la forme

Plus en détail

Oscillations forcées en mécanique

Oscillations forcées en mécanique Oscillations forcées en mécanique I. Oscillateur amorti soumis à une excitation Lorsque l'oscillateur ( amorti par frottement fluide ) est soumis à une force excitatrice () son équation différentielle

Plus en détail

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé,

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé, FICHE TD PREMIER PRINCIPE DE LA MECANIQUE CLASSIQUE EXERCICE N 1 Un sismographe est un appareil destiné à enregistrer les vibrations de la surface terrestre sous l action d un séisme. Son S g principe

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS 1 ière Partie: VIBRATIONS Chapitre 3: Mouvement amorti à un degré de liberté Dr Fouad BOUKLI HACENE E P S T T L E M C E N A N N É E 1 5-16 Objectifs: 1. L équation différentielle d un mouvement amorti.

Plus en détail

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens.

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens. I - Systèmes oscillants et mouvement sinusoïdal 1) Système mécanique oscillant Oscillateurs On appelle système mécanique oscillant un système matériel pouvant évoluer de part et d'autre d'une position

Plus en détail

TRAVAUX DIRIGÉS DE S 1

TRAVAUX DIRIGÉS DE S 1 Travau Dirigés S 1 Correction PCSI 2016 2017 TRAVAUX DIRIGÉS DE S 1 Eercice 1 : Homogénéité 1. ontrer que l epression obtenue en cours ω = k est homogène. m 2. n trouve epérimentalement ω = 250 /min, convertir

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

Mécanique du Point Matériel

Mécanique du Point Matériel (1) (1) Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2013/2014 Chapitre VII : Oscillateur harmonique 1 Introduction 2 3 Chapitre VII: Oscillateur harmonique

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

1. DYNAMIQUE DU POINT MATÉRIEL

1. DYNAMIQUE DU POINT MATÉRIEL . DYNAMIQUE DU PINT MATÉRIEL.. Grandeurs cinétiques fondamentales Pour un point matériel M, de masse m, animéd une vitesse v par rapport à un référentiel R donné, on définit les grandeurs cinétiques suivantes

Plus en détail

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1 ) «Evoluer de façon alternative et périodique» signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par P12-OSCILLATIONS MECANIQUES TRAVAUX DIRIGÉS TERMINALEE S 1 Oscillateur mécanique horizontal Un oscillateur mécanique est constitué d'un ressort à spires non jointives de raideur k dont une extrémité est

Plus en détail

Chapitre II Oscillations libres amorties des systèmes à un seul degré

Chapitre II Oscillations libres amorties des systèmes à un seul degré Chapitre II Oscillations libres amorties des systèmes à un seul degré de liberté 1. Introduction : Oscillations libres amortis des mouvements oscillatoires dont l amplitude diminue au cours du temps jusqu

Plus en détail

Dynamique et Vibrations

Dynamique et Vibrations Plan du cours Chapitre 5: Vibrations Institut Montpelliérain Alexander Grothendieck Université de Montpellier Cours HLME 301 2015-2016 Plan du cours Introduction 1 Introduction 2 Motivations Introduction

Plus en détail

Généralités sur les phénomènes de propagation

Généralités sur les phénomènes de propagation Chapitre 6 Généralités sur les phénomènes de propagation 6.1 Propagation à une dimension 6.1.1 Equation de propagation Dans les phénomènes vibratoires traités dans les chapitres précédents, nous nous sommes

Plus en détail

Biomécanique. Chapitre 3. Dynamique

Biomécanique. Chapitre 3. Dynamique Biomécanique Chapitre 3 Dynamique 1 Introduction La dynamique est l étude des mouvements des corps en relation avec les causes, appelées forces, qui les produisent Les lois physiques sur lesquelles elle

Plus en détail

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique.

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. LES OSCILLATIONS Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. Exemples d oscillations : la balancoire, cordes d une guitare... molécules d air qui transmettent

Plus en détail

M 3 : Aspect énergétique et problèmes à un degré de liberté

M 3 : Aspect énergétique et problèmes à un degré de liberté : Aspect énergétique et problèmes à un degré de liberté PCSI 015 016 I Travail et puissance d une force 1. Travail d une force dans un référentiel 1.a. Travail élémentaire Définition : le travail élémentaire

Plus en détail

Oscillateur harmonique - Régime libre

Oscillateur harmonique - Régime libre Mécanique 2 - Oscillations libres page 1/9 Oscillateur harmonique - Régime libre Table des matières 1 Oscillateur harmonique 1 2 Oscillations libres 2 2.1 Pulsation propre - Isochronisme des oscillations........

Plus en détail

Ch.3 Potentiel Électrique

Ch.3 Potentiel Électrique Ch.3 Potentiel Électrique CUT-IST 07.04.2010 K.Demmouche (cours 3 E&M) Une particule chargée placée dans un champ électrique est soumise à la force selon la loi de Coulomb. Dans le cas d un champ uniforme

Plus en détail

B. Théorème de l énergie cinétique, énergie potentielle.

B. Théorème de l énergie cinétique, énergie potentielle. Mouvement du centre de masse A. Théorème de la résultante cinétique. Le théorème de la résultante cinétique (ou théorème du centre d inertie) donne un intérêt tout particulier à la mécanique du point.

Plus en détail

M9 DYNAMIQUE DANS UN

M9 DYNAMIQUE DANS UN OBJECTIFS M9 DYNAMIQUE DANS UN ÉFÉENTIEL NON GALILÉEN «Enfermez-vous avec un ami dans la cabine principale à l intérieur d un grand bateau et prenez avec vous des mouches, des papillons, et d autres petits

Plus en détail

- La force est-elle vraiment à l origine du déplacement entre deux points? Mieux : - Quelle est sa contribution au déplacement entre A et B?

- La force est-elle vraiment à l origine du déplacement entre deux points? Mieux : - Quelle est sa contribution au déplacement entre A et B? Chapitre 5 Energie des systèmes mécaniques Introduction Les deux premières lois de Newton nous ont permis d accepter le lien entre force et mouvement d un système matériel, la relation directe se faisant

Plus en détail

LE MOUVEMENT DES PLANÈTES ET DES SATELLITES

LE MOUVEMENT DES PLANÈTES ET DES SATELLITES Partie 4 L'OBSERVATION, LA CONQUÊTE ET LA COMPRÉHENSION DE L'ESPACE Chapitre 1 LE MOUVEMENT DES PLANÈTES ET DES SATELLITES sciences physiques et chimiques - Terminale S http://cedric.despax.free.fr/physique.chimie/

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

Principe Fondamental de la Dynamique

Principe Fondamental de la Dynamique Cours - PFD CPGE MP Principe Fondamental de la Dynamique Sommaire Principe Fondamental de la Dynamique Principe Fondamental de la Dynamique Référentiel Galiléen Chronologie Enoncé du PFD 4 Théorèmes générau

Plus en détail

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes.

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cinématique Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cette discipline de la mécanique fait appel à la géométrie analytique et au calcul infinitésimal.

Plus en détail

V- Magnétisme. 1) Généralités. 2) Champ magnétique. A) Champ magnétique créé par une seule charge en mouvement

V- Magnétisme. 1) Généralités. 2) Champ magnétique. A) Champ magnétique créé par une seule charge en mouvement V- Magnétisme 1) Généralités Les phénomènes physiques faisant intervenir des forces magnétiques sont connues depuis longtemps : - attraction et répulsion des aimants, - existence d'un champ magnétique

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Afin de décrire le mouvement d un solide, il faut : Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 16 : Cinématique - Mouvement d un point au cours du temps. Comment décrire le

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document Examen de Mécanique Analytique Professeur: P. De Los Rios Epreuve du 2 février 27 - Durée: 4 heures - Sans document Exercice 1 Plan incliné (6 points On considère une masse m glissant sans frottement sur

Plus en détail

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler TS 1 / 6 Term S Chap 06 - Applications des lois de Newton et des lois de Kepler I ) Mouvement d un projectile dans un champ de pesanteur uniforme : 1) Poids et champ de pesanteur terrestre: Le poids d'un

Plus en détail

Mécanique Chapitre 1 : Cinématique du point matériel

Mécanique Chapitre 1 : Cinématique du point matériel Lycée François Arago Perpignan M.P.S.I. 2012-2013 Mécanique Chapitre 1 : Cinématique du point matériel On se place dans le cadre de la mécanique classique (newtonienne) qui convient très bien pour expliquer

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m LES OSCILLATEURS Rappels théoriques Quelques domaines concernés... Electromagnétisme, électronique Acoustique Microscope à force atomique, vibrations intramoléculaires Sismographie Marées : résonances

Plus en détail

Cinématique espace Chapitre 1 Plan du chapitre CHAPITRE 1. CINÉMATIQUE 7

Cinématique espace Chapitre 1 Plan du chapitre CHAPITRE 1. CINÉMATIQUE 7 CHAPITRE 1. CINÉMATIQUE 7 Chapitre 1 Cinématique Plan du chapitre La Cinématique est la partie de la Mécanique qui étudie la description des mouvements, sans se demander quelles en sont les causes (ce

Plus en détail

MECANIQUE. Secondaire (S, STI, STL)

MECANIQUE. Secondaire (S, STI, STL) MECANIQUE Secondaire (S, STI, STL) Quelques définitions Cinématique : partie de la mécanique qui étudie les mouvements des solides sans se préoccuper de leurs causes, les forces. Système : constitué par

Plus en détail

I. Première observation

I. Première observation PCSI1 Lycée Michelet L OSCILLATEUR HARMONIQUE Introduction Lorsqu une onde se propage (onde acoustique, onde à la surface de l eau), on observe localement un mouvement oscillant (oscillation des particules

Plus en détail

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel Mécanique I 1TPC Exercice 1 Définitions 1. Qu est-ce qu un référentiel? Pourquoi doit-on le définir avant de parler de mouvement? Qu est-ce qui distingue un repère et un référentiel? 2. Définir une base,

Plus en détail

DYNAMIQUE DE LA PARTICULE. TRAVAIL et ENERGIES

DYNAMIQUE DE LA PARTICULE. TRAVAIL et ENERGIES Physique Générale DYNAMIQUE DE LA PARTICULE TRAVAIL et ENERGIES TRAN Minh Tâm Table des matières Travaux et énergie 57 L énergie cinétique........................... 57 Le travail d une force..........................

Plus en détail

PLAN DE LECON DYNAMIQUE

PLAN DE LECON DYNAMIQUE PLAN DE LECON DYNAMIQUE Objectifs spécifiques : A la fin de la séance l étudiant doit être capable de : Déterminer le torseur Dynamique d un solide en mouvement par rapport à un repère. Appliquer le principe

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

1 Présentation expérimentale

1 Présentation expérimentale ycée Naval, Sup. Signaux Physiques. 7. Oscillateurs amortis Oscillateurs amortis Présentation expérimentale. Oscillateur mécanique, exemple d un pendule On s intéresse aux oscillations d un pendule en

Plus en détail

I. Les systèmes oscillants

I. Les systèmes oscillants CHAPITRE N 5 PARTIE B OSCILLATEURS MECANIQUES TS Introduction : Les points de certain système mécanique décrivent des trajectoires particulières, au cours desquels ils occupent une même position à des

Plus en détail

MATLAB TP n 3. Djelouah. 13 décembre Faculté de Physique Université des Sciences et de la Technologie Houari Boumediene Algérie.

MATLAB TP n 3. Djelouah. 13 décembre Faculté de Physique Université des Sciences et de la Technologie Houari Boumediene Algérie. Faculté de Physique Université des Sciences et de la Technologie Houari Boumediene Algérie 13 décembre 2009 Saisir des valeurs s Toute variable doit être saisie comme un élément d une matrice. Saisir des

Plus en détail

Chap8 : Travail et transferts énergétiques

Chap8 : Travail et transferts énergétiques 1. Travail d une force Diaporama : activité ma voiture est en panne Définition F B Le travail d une force constante dont le point d application se déplace de A vers B est égal au produit scalaire A Figure

Plus en détail

Chap.1 Cinématique du point matériel

Chap.1 Cinématique du point matériel Chap.1 Cinématique du point matériel 1. Point matériel et relativité du mouvement 1.1. Notion de point matériel 1.2. Relativité du mouvement - Notion de référentiel 1.3. Trajectoire dans un référentiel

Plus en détail

Révisions d électrocinétique

Révisions d électrocinétique TD 0 évisions d électrocinétique 3 harge d un condensateur On considère le circuit ci-contre À t = 0, on Dipôles et circuits du premier ordre met le circuit sous tension par l intermédiaire du générateur

Plus en détail

-I- Vibrations et oscillations :

-I- Vibrations et oscillations : BTS BTP 2 ème année Les oscillateurs mécaniques 1 Introduction : l'étude des oscillateurs mécaniques fait partie de la mécanique vibratoire. Cette partie de la physique étudie les vibrations dans les solides,

Plus en détail

M 4 Mouvement d une particule chargée dans un champ électrique E ou dans un champ magnétique B

M 4 Mouvement d une particule chargée dans un champ électrique E ou dans un champ magnétique B Mouvement d une particule chargée dans un champ électrique E ou dans un champ magnétique PCSI 2016 2017 I Produit vectoriel Le produit vectoriel d un vecteur u avec un vecteur donne un vecteur w noté u.

Plus en détail

PT Electronique Chapitre 1 Page 1

PT Electronique Chapitre 1 Page 1 CHAPITRE 1. STABILITE DES SYSTEMES LINEAIRES I. Qu est ce que la réponse harmonique d un système linéaire permanent?... 2 1. Réponse harmonique... 2 2. Système linéaire... 2 3. Critère de linéarité...

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

Travail - Puissance. Travail moteur, travail résistant

Travail - Puissance. Travail moteur, travail résistant Travail - Puissance -Travail : Le «travail» est la grandeur l action d une force qui déplace son point d application. Travail moteur, travail résistant travail résistant travail moteur si la force favorise

Plus en détail

1 Description d un système oscillant

1 Description d un système oscillant Notions et contenus Oscillations mécaniques Amortissement Oscillations libres Oscillations forcées Résonance Objectifs Décrire un système oscillant autour de sa position d équilibre Décrire l oscillateur

Plus en détail

TP Oscillateur de torsion

TP Oscillateur de torsion TP Oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Chapitre 2 : Introduction à la mécanique du point

Chapitre 2 : Introduction à la mécanique du point UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE U.F.R. de Mathématiques Pures et Appliquées Département de Mécanique Chapitre 2 : Introduction à la mécanique du point Introduction : la mécanique classique

Plus en détail

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire.

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire. Mécanique 5 Mouvement d un solide en rotation autour d un axe fixe Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI 1-2016-2017 Contenu du programme officiel : Notions et contenus Définition d un

Plus en détail

Opérateurs différentiels

Opérateurs différentiels Master Dynamique terrestre et risques naturels Mathématiques pour géologues Opérateurs différentiels On étudie en géosciences des fonctions scalaires des coordonnées d espace, comme la température, ou

Plus en détail

UNIVERSITÉ PAUL SABATIER L1 STS PC : PHYSIQUE

UNIVERSITÉ PAUL SABATIER L1 STS PC : PHYSIQUE UNIVERSITÉ PAUL SABATIER LICENCE STS Année universitaire 2008 2009 L1 STS PC : PHYSIQUE Devoir à la maison n 1 durée conseillée 1 heure Exercice I : Équations aux dimensions I.1. Dans les domaines de la

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

Introduction à la mécanique classique. cours ESAIP

Introduction à la mécanique classique. cours ESAIP Introduction à la mécanique classique cours ESAIP 13 avril 2006 Table des matières 1 Les vecteurs 2 1.1 Définition................................................. 2 1.2 Changement de base...........................................

Plus en détail

I. Comment choisir le référentiel d étude?

I. Comment choisir le référentiel d étude? CHAPITRE N 1 PARTIE B LES OUTILS DE LA MECANIQUE CLASSIQUE TS Introduction Afin de décrire le mouement d un objet, il faut définir le système étudié et préciser le référentiel d étude. On se limitera à

Plus en détail

Circuits linéaires du second ordre

Circuits linéaires du second ordre Circuits linéaires du second ordre Régimes périodique, pseudo périodique, critique et apériodique Introduction... I Oscillations électriques libres amorties dans un circuit RLC série...3 1 Montage et conditions

Plus en détail

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe OH2 Oscillateurs en régime sinusoïdal forcé Plan I- Signaux sinusoïdaux 1- Dénition 2- Grandeurs caractéristiques 3- Notation complexe d'un signal sinusoïdal 4- Application de la notation complexe à un

Plus en détail

2 ) Donner l expression la constante d équilibre relative à ce système. Donner son nom.

2 ) Donner l expression la constante d équilibre relative à ce système. Donner son nom. Série de révision SCIENCES PHYSIQUES Durée : 3 heures Coefficient : 4 Sections : MATHEMATIQUES + TECHNIQUES ET SCIENCES EXPERIMENTALES Chimie : (7 points) Exercice1 : (2.5 points) Les sources hydrothermales,

Plus en détail

Ce noyau est constitué de deux protons et de deux neutrons. Sa charge vaut donc deux fois celle du proton : q( 2 4 He) q. 2.e

Ce noyau est constitué de deux protons et de deux neutrons. Sa charge vaut donc deux fois celle du proton : q( 2 4 He) q. 2.e Exercice 3 page 0 Le schéma de cet exercice comporte une erreur. La particule alpha étant chargée positivement, la force électrique à laquelle elle doit être soumise doit lui permettre de se mouvoir dans

Plus en détail

L'essentiel en physique. u C = E + Vérifier que i = I 0 (1-e -t/τ ) est solution. i = E R+r

L'essentiel en physique. u C = E + Vérifier que i = I 0 (1-e -t/τ ) est solution. i = E R+r L'essentiel en physique Elec : circuit RC Elec: circuit RL Savoir τ = RC Continuité de la tension (sauf cas limite R = 0) charge : u C = U 0 (1-e -t/τ ) décharge : u C = U 0 e -t/τ τ = L/R Continuité du

Plus en détail

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155)

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) PARTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) Compétences exigibles : Connaître et exploiter les trois lois de Newton ; les mettre en

Plus en détail

Mécanique. , vecteur unitaire vertical) On peut donc schématiser chaque système de la façon suivante :

Mécanique. , vecteur unitaire vertical) On peut donc schématiser chaque système de la façon suivante : Mécanique La suspension d une automobile est assurée par quatre systèmes identiques indépendants, montés entre le châssis du véhicule et chaque arbre de roue, et constitués chacun : - d un ressort métallique

Plus en détail

Travail, énergie potentielle, énergie cinétique et énergie mécanique

Travail, énergie potentielle, énergie cinétique et énergie mécanique Cf log 2011-2012 Eercices Mécanique PTSI Travail, énergie potentielle, énergie cinétique et énergie mécanique ien regarder les fiches Méthodes M2/M3 E-M3.1 Chute verticale avec frottement : Une masse ponctuelle

Plus en détail

Les Nouveaux Précis Bréal sont conçus pour apporter aux étudiants des classes préparatoires

Les Nouveaux Précis Bréal sont conçus pour apporter aux étudiants des classes préparatoires Avant-propos Les Nouveau Précis Bréal sont conçus pour apporter au étudiants des classes préparatoires une aide efficace dans leur travail. Ils ont pour objectif de dégager, à travers des énoncés variés

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

En régime transitoire

En régime transitoire TD 08 - Oscillateurs amortis En régime transitoire 1 Analyse dimensionnelle 1. Donner et interpréter les trois temps que l'on peut dimensionnellement construire avec une résistance R, une inductance L

Plus en détail

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II Page 1 CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté Introduction : Le pendule élastique comme le pendule pesant, se comporte comme un oscillateur harmonique à la condition

Plus en détail