Correction du bac blanc mars 2012 Terminales S- Exercice I (6 points) Commun à tous les candidats

Dimension: px
Commencer à balayer dès la page:

Download "Correction du bac blanc mars 2012 Terminales S- Exercice I (6 points) Commun à tous les candidats"

Transcription

1 Correction du bac blanc mars 202 Terminales S- Exercice I (6 points) Commun à tous les candidats Partie A La fonction f est définie sur l intervalle [0 ; + [ par f x = 20x 0 e 2 x On note C la courbe représentative de la fonction f dans un repère orthonormal O i, j (unité graphique cm).. Établir que f x = 40 2 x e 2 x 0e 2 x. f x = 20x 0 e 2 x =20xe 2 x 0e 2 x =40 2 xe 2 x 0 e 2 x En déduire la limite de la fonction f en +. lim f x =0 car lim 40 x x 2 x e 2 x = lim 40 X e X =0 et lim 0e 2 x =0 X x 2. Étudier les variations de la fonction f et dresser son tableau de variations. f ' x = 20x 0 ' e 2 x 20x 0 e 2 x '=20 e 2 x 2 20x 0 e 2 x = 0x 5 e 2 x Tracer la courbe C. 4. Prouver que l équation f (x) = 0 a une unique solution strictement positive α dans l intervalle ]0 ; + [. Donner une valeur décimale approchée à 0 3 près de α. f est une fonction continue et strictement décroissante sur [,5;5[, de plus f(,5)>0>f(5) donc il existe une seule valeur α telle que f(x)=0 sur [,5;5] et 4,673 < α < 4,674 car f(4,673)> 0 > f( 4,674) Partie B On note y(t ) la valeur, en degrés Celsius, de la température d une réaction chimique à l instant t, t étant exprimé en heures. La valeur initiale, à l instant t = 0, est y(0) = 0. On admet que la fonction qui, à tout réel t appartenant à l intervalle [0 ; + [ associe y(t ), est solution de l équation différentielle (E) : y' 2 y=20e 2 t.. Vérifier que la fonction f étudiée dans la partie A est solution de l équation différentielle (E) sur l intervalle [0 ; + [ et que f vérifie aussi y(0)=0. f ' x 2 f x = 0x 5 e 2 x 2 20x 0 e 2 x =20e 2 x Donc f est solution de E et plus f(0)=0. 2. On se propose de démontrer que cette fonction f est l unique solution de l équation différentielle (E), définie sur l intervalle [0 ; + [, qui prend la valeur 0 à l instant 0. a. Démontrer que «si g est une solution quelconque de l équation différentielle (E) alors la fonction g f est solution, sur l intervalle [0 ; + [, de l équation différentielle : E ' : y' 2 y=0.» g sol de E donc g' 2 g=20e 2t et f solution de E donc f ' 2t f =20e 2

2 g f ' 2 g f =g' f ' 2 g 2 f =g' 2 g f ' 2 f =20e 2 x 20e 2 x =0 Réciproquement, démontre que «si h est une solution de l'équation différentielle E ' : y' 2 y=0 alors h+f est solution de l'équation différentielle (E)» si h solution de E' alors h ' 2 h=0 et donc h f ' 2 h f =h' f ' 2 h 2 f =h ' 2 h f ' 2 f =0 20e 2 x =20e 2 x b. Résoudre l équation différentielle (E' ). Les solutions de E' sont les solutions de y '= 2 y et donc les fonctions c. Conclure sur les solution de (E). donc les solutions de E sont les fonctions de la forme f x C e 2 x donc h+f solution de E. Et comme on veut que la solution prenne la valeur 0 à l instant 0, il faut que f 0 C e 0 =0 et donc C=0 (puisque f(0)=0). Finalement f(x) est donc bien la seule solution. 3. Au bout de combien de temps la température de cette réaction chimique redescend-t-elle à sa valeur initiale? Le résultat sera arrondi à la minute. D'après la partie, la valeur est environ 4,673h ce qui signifie 4h et 4 minutes Exercice II Commun à tous les candidats. L'équation e 2x 3 e x 4=0 admet dans R : Réponse b) (étudier la fonction ) a: 0 solution b: solution c: 2 solutions d: plus de deux solutions 2. L'expression e x : Réponse b) (l'exponentielle est toujours positive donc moins l'exponentielle est toujours négative) a: n'est jamais négative b: est toujours négative c: n'est négative que si x est positive d: n'est négative que si x est négative e 2x 3. lim x e x 2 = réponse d) e 2x lim x e x 2 = lim e 2x e 2x x e x 2 e x = lim x a: 2 b. c. 2 d: e x e 2x = 2 e x 4. L'équation différentielle y = 2 y ' - a pour solutions: Réponse d) (cours f x =e ax b a ) a: f x =e 2x avec R b: f x =e 2 x avec R c: f x =e 2 x avec R d: f x =e 2x 2 avec R

3 Exercice III Partie A : On pose z=x+iy. On rappelle que z = x² + y² ) z z=(x+iy) (x iy)=x²+y²= z 2 2) z+ z=(x+iy)+(x iy)=2x qui est un réel. 3) z z=(x+iy) (x iy)=2iy qui est un imaginaire pur. Partie B : ) z z'=(2 3i)( i 2)= 7+4i z z' = i z² z' ² = (z+z')(z z') =z z '=4 2i z+z ' z+z ' 3 i 2) () : = 3, les deux racines sont : z '= 3 2 (2) z= 4+2i =+2i 2i Partie C : et 3+i 3 z '= 2 Calculons les trois distances AB, AC et BC : AB= a b = 3i = 0 AC= a c = 2 4i = 20 BC= b c = 3 i = 0 Le triangle est isocèle de sommet B (AB=BC). AB²+BC²=AC²=20, donc d'après la réciproque de la propriété de Pythagore, le triangle est aussi rectangle en B. Le triangle ABC est donc isocèle rectangle de sommet B.

4 Exercice IV ) 2) La suite semble être croissante et converger vers 2. 3) Démontrons par récurrence que la suite est bornée par - et 2 : u n 2 Initialisation : u 0 =-, donc la propriété est vraie au rang 0. Hypothèse de récurrence : on suppose cette propriété vraie pour une valeur : u < u + 2 < u + 2 < 4 u + 2 < 4 car la fonction racine carrée est croissante u < 2 + u + < 2 La propriété est héréditaire (vérifiée au rang +), elle est donc vraie pour tout entier naturel n. 4) Prouvons par récurrence que la suite est strictement croissante : un < un+ Initialisation : les deux premiers termes sont - et donc la propriété est vraie pour n=0 Hypothèse de récurrence : on suppose cette propriété vraie pour une valeur : u < + u + 2 < u u + 2 < u + 2 car la fonction racine carrée est croissante u + u + < u + 2 La propriété est héréditaire (vérifiée au rang +), elle est donc vraie pour tout entier naturel n. 5) La suite est strictement croissante et majorée par 2 : elle converge donc. Appelons sa limite l. l vérifie l'équation l=f(l). On va résoudre cette équation O l = l + 2 l² = l + 2 et l > 0 On va donc chercher à résoudre l équation du second degré : l²-l-2=0. Son discriminant est 9 et ses deux racines sont - et 2. La limite est donc l=2

5 Exercice V Pour les élèves faisant la spécialité Math (5 points) Étant donné un entier naturel n 2, on se propose d'étudier l'existence de trois entiers naturels x, y et z tels que x² y² z² 2 n modulo 2 n. Partie A : Etude de deux cas particuliers. Dans cette question on suppose n = 2. Montrer que, 3 et 5 satisfont à la condition précédente. ² 3² 5²= 9 25=35= modulo 4 2. Dans cette question, on suppose n = 3. a) Soit m un entier naturel. Reproduire et compléter le tableau ci-dessous donnant le reste r de la division euclidienne de m par 8 et le reste R de la division euclidienne de m² par 8. r R b) Peut-on trouver trois entiers naturels x, y et z tels que x² + y² + z² 7 modulo 8? Aucune somme de trois nombres parmi 0 4 ne peut faire 7 modulo 8 Partie B : Etude du cas général où n 3. Supposons qu'il existe trois entiers naturels x, y et z tels que x² + y² + z² 2 n - modulo 2 n.. Justifier le fait que les trois entiers naturels x, y et z sont tous impairs ou que deux d'entre eux sont pairs. Si x² + y² + z² 2 n - modulo 2 n alors x² + y² + z² N* 2 n + 2 n - = 2 n (N+) - = impair Pour faire un impaire en ajoutant 3 nombres il faut que ces 3 nombres soient impairs ou que deux seulement le soient. Cela signifie que x², y² et z² sont impairs tous les 3, c'est à dire que x, y et z soient impairs tous les trois (Car si x² impair alors x impair) OU BIEN que seulement 2 parmi x²,y², et z² sont pairs et dans ce cas cela signifie que seulement 2 parmi x, y et z sont pairs (même raisons). 2. On suppose que x et y sont pairs et que z est impair. On pose alors x = 2q, y = 2r, z = 2s + où q, r, s sont des entiers naturels. a) Montrer que x² + y² +z² modulo 4. x² + y² + z²= (2q)²+(2r)²+(2s+)²= 4q²+4r²+4s² +4s + = 4(q²+r²+s²+s) + modulo 4. b) Montre que «si 3 nombres entiers naturels vérifient x² + y² + z² 2 n - modulo 2 n avec n entier et n 3 alors» Si x² + y² + z² 2 n - modulo 2 n alors x² y² z²=n 2 n 2 n =2 n N =4 2 n 2 N modulo 4 c) En déduire une contradiction. Conclure. On ne peut pas avoir x² + y² + z² qui est congru à et - modulo 4 donc on ne peut pas avoir x et y sont pairs et que z est impair. 3. On suppose que x, y, z sont impairs. a) Prouver que, pour tout entier naturel non nul, ² + est divisible par 2.

6 4. ²+=(+) est le produit de deux nombres consécutifs donc d'un pair et d'un impair, donc ²+ est pair. b) En déduire que x² + y² + z² 3 modulo 8. x² + y² + z²= (2q+)²+(2r+)²+(2s+)²= 4q² + 4q + +4r² +4r + +4s² +4s + = 4(q² +q +r²+ r+s²+s) + 3 = 4 (2a+2b+2c)+3=8(a+b+c)+3 3 modulo 8. c) Montre que si «si 3 nombres entiers naturels vérifient x² + y² + z² 2 n - modulo 2 n avec n entier et n 3 alors x² + y² + z² - modulo 8» Si x² + y² + z² 2 n - modulo 2 n alors x² y² z²=n 2 n 2 n =2 n N =8 2 n 3 N modulo 8 d) Conclure. On ne peut pas avoir x² + y² + z² qui est congru à 3 et - modulo 4 donc on ne peut pas avoir x et y et z impairs tous les 3 non plus. Conclusion: x² y² z² 2 n modulo 2 n n'a pas de solution pour n 3

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales Terminale S Problème de synthèse n n est un entier naturel, n. On note f n la fonction définie sur I = ] ;+ [ par f n (x) = (ln x)n et C x² n.sa courbe représentative dans un repère orthonormal (O; i ;

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

TERMINALE S : Correction du bac blanc = e i 5π

TERMINALE S : Correction du bac blanc = e i 5π Exercice 1 : TERMINALE S : Correction du bac blanc 014 Partie 1 : 1 ) (+i)( i) = 1 = 1, donc faux. ) On considère les points : A(4 i) ; B(1+5i) et C(,5+i). Alors le vecteur AB a pour affixe -+8i et le

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S

Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S 008 009 Généralités et raisonnement Classe de Terminale S (Option Maths) Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S Dernière mise à jour : Jeudi 4 Septembre 008 Vincent OBATON,

Plus en détail

Lycée Jehan de Chelles Février 2011

Lycée Jehan de Chelles Février 2011 Seconde Contrôle commun Lycée Jehan de Chelles Février 2011 Nom Prénom :... Classe :... Exercice 1 : (10 points) On donne ci-contre la courbe représentative d une fonction f A l aide du graphique, répondre

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

2nde - Maths - CORRECTION D.S Commun (SUJET B)

2nde - Maths - CORRECTION D.S Commun (SUJET B) nde - Maths - CORRECTION D.S Commun (SUJET B) Jeudi 18 février - 1h30 Exercice 1 (5,5 points) Variations, signes et fonctions affines La courbe C fournie ci-dessous est la représentation graphique d une

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats ayant suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE : Calculatrice

Plus en détail

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012 TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 01 Exercice n 1 : 1. On transforme l expression de cette façon : 4 = 4 = 1 = 4 = 4 = 41 + 1 1 + = 41 + = + 1. L équation + 4 = 0 est une équation du

Plus en détail

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4

Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 1 Soit N un entier naturel non nul. On considère l algorithme ci-contre Initialiser en donnant à A et à I la valeur de N. 1 Pour tout entier naturel N on note A N le nombre affiché à l étape 4 Tant que

Plus en détail

Exercice N 1 : (5.5 points)

Exercice N 1 : (5.5 points) Le sujet est composé de quatre exercices indépendants sur trois pages dont une annexe à rendre avec la copie. La présentation, la qualité de la rédaction, la rigueur et la clarté des résultats entreront

Plus en détail

EXERCICES SUJETS DE BAC. Rédigé par

EXERCICES SUJETS DE BAC. Rédigé par MATHEMATIQUES EXERCICES SUJETS DE BAC Rédigé par SANGARE SOULEYMANE Elève Ingenieur en Informtique de Gestion Au Centre Universitaire Professionnalise (ABIDJAN COCODY) sangsoulinter@yahoo.fr sangsoulci@hotmail.com

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z Bibliothèque d exercices Énoncés L1 Feuille n 6 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Combien 15! admet-il de diviseurs? Exercice 2 Trouver le reste de la division par 13

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Nombres réels. Exercice 3 : Déterminer les ensembles suivants, mettre ces ensemble sous la forme d un intervalle de R ou une réunion d intervalles.

Nombres réels. Exercice 3 : Déterminer les ensembles suivants, mettre ces ensemble sous la forme d un intervalle de R ou une réunion d intervalles. Nombres réels Exercice 1 : Si a et b sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : a + b a + b Exercice : Montrer que pour tous réels a et b strictement positifs 1 a +

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE 1 ORDRE ET INTERVALLES Exercice 1 Compléter le tableau suivant : Intervalle Inégalité Représentation graphique Lecture de l intervalle Borné ou non

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Corrigé du baccalauréat S Amérique du Sud 22 novembre 2016

Corrigé du baccalauréat S Amérique du Sud 22 novembre 2016 Corrigé du baccalauréat S Amérique du Sud novembre 06 A P M E P EXERCICE Commun à tous les candidats 5 points Les courbes C f O, ı, j et C g données en annexe sont les représentations graphiques, dans

Plus en détail

Corrigé du bac blanc TS 2008

Corrigé du bac blanc TS 2008 Corrigé du bac blanc TS 008 Exercice Conjectures D après la figure donnée sur le sujet, il semble que : f est strictement croissante sur [ 3; ], la courbe représentative de f est en dessous de l axe x

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 EXERCICE 0 points Commun à tous les candidats Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes c et c 2 représentatives de deux fonctions f et f 2 définies

Plus en détail

Multiples. Division euclidienne Congruence Algorithme

Multiples. Division euclidienne Congruence Algorithme dernière impression le 15 septembre 2014 à 10:52 Multiples. Division euclidienne Congruence Algorithme Multiples et diviseurs Exercice 1 Dresser la listes des diviseurs de : 150 et 230 Exercice 2 Déterminer

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

π π ; 2 π tel que z = 1 + e i θ.

π π ; 2 π tel que z = 1 + e i θ. EXERIE 1 (5 points) Dans le plan complexe muni d'un repère orthonormal (O ; u, v ) (unité graphique : cm), on considère les points, et d'affixes respectives a, b 1 i et c 1 + i. 1. a. Placer les points,

Plus en détail

Divisibilité, nombres premiers, division euclidienne et congruences

Divisibilité, nombres premiers, division euclidienne et congruences 1 Divisibilité, nombres premiers, division euclidienne et congruences DIVISIBILITÉ DANS Z Définition Soient a et b deux entiers relatifs On dit que a divise b (ou que a est un diviseur de b, ou que b est

Plus en détail

/1 point n, c est-à-dire que

/1 point n, c est-à-dire que Externat Notre Dame Devoir n Tle S) Samedi 5 octobre 204 Proposition de corrigé Exercice : / point Restitution organisée de connaissances Dans cet exercice n désigne un entier naturel. On définit une suite

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne Exo7 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Sachant que l on a 96842 = 256 375+842, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

2 Plus grand commun diviseur

2 Plus grand commun diviseur 2 Plus grand commun diviseur PGCD DE DEUX ENTIERS NATURELS Définition Soit deux nombres entiers naturels a et b non nuls. Un nombre entier naturel δ qui divise chacun de ces nombres est appelé diviseur

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

Exercices ouverts en TS

Exercices ouverts en TS Exercices ouverts en TS Exercice : Exemple historique! Thème : Divers. Origine : n 0 de la banque 2004 d exercice TS. SoitΓun cercle de rayon 4 cm. Quelle est l aire maximale d un rectangle dont les sommets

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

1 Arithmétique : nombres premiers et division euclidienne

1 Arithmétique : nombres premiers et division euclidienne 1 Arithmétique : nombres premiers et division euclidienne 1. MULTIPLES ET DIVISEURS D'UN ENTIER 1.1. Définition Soit a et b deux entiers relatifs. Dire que b divise a signifie qu'il existe un entier relatif

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

2_ limites en, + en 3 en en + 5_ Ω ( 3)

2_ limites en, + en 3 en en + 5_ Ω ( 3) Exercice n 1. La fonction f est définie par f (x)= x2 +3 x 1 Méthode. On commence par tracer la fonction sur la calculatrice et on conjecture les réponses. Attention. N'oubliez pas les parenthèses en écrivant

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

Exercice 1 : Commun à tous les candidats

Exercice 1 : Commun à tous les candidats LIBAN BACCALAUREAT S 2003 Retour vers l'accueil Exercice 1 : Commun à tous les candidats Une urne contient 4 boules noires et 2 boules blanches. Soit n un entier naturel supérieur ou égal à 2. On répète

Plus en détail

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj DÉRIVATION I. Rappels Vidéos ttps://www.youtube.com/playlist?listplvudmbpupcaoy7qiladhc9-rbgvrgwj ) Fonction dérivable Définition : On dit que la fonction f est dérivable en a s'il existe un nombre réel

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Ces exercices sont à traiter directement sur la feuille d énoncé

Ces exercices sont à traiter directement sur la feuille d énoncé Nom : Prénom : Seconde 14 Appréciation : Contrôle du 6 novembre 010 (durée : 1h ) Sujet A /0 Evaluation des compétences : Ensemble de déinition Image Antécédents Tableau de signe Tableau de variations

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

Corrigé du bac blanc du 19 mars 2013

Corrigé du bac blanc du 19 mars 2013 Corrigé du bac blanc du 9 mars 203 Eercice (4 points) Pour chaque question, deu propositions sont énoncées. Il s agit de dire, sans le justifier, si chacune d elles est vraie ou fausse. Le candidat indiquera

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n.

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n. 6 Arithmétique dans Z 6.1 L anneau Z des entiers relatifs On désigne par Z l ensemble des entiers relatifs, soit : Z = {, n,, 2, 1, 0, 1, 2,, n, }. On note Z l ensemble Z privé de 0. On rappelle que l

Plus en détail

LA FONCTION " CARRÉ " et LE SECOND DEGRÉ

LA FONCTION  CARRÉ  et LE SECOND DEGRÉ Index I- Définition... 1 I-1 Rappel... 1 I-2 Définition:... 2 II- Une propriété de la fonction carré:... 2 II-1 Observation... 2 Remarque et définition:... 2 II-2 Interprétation graphique de cette propriété...

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Suite récurrente définie par une fonction

Suite récurrente définie par une fonction Suite récurrente définie par une fonction Rédigé par un enseignant et un élève de l Ecole Polytechnique (Vincent Langlet). Niveau : Approfondir la Terminale S ou Première Année post bac Difficulté : Exercice

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Cours: Quelle est la différence entre le nombre dérivé et la fonction dérivée?

Cours: Quelle est la différence entre le nombre dérivé et la fonction dérivée? Nom : Sujet N 1 Le : 12 octobre 2010 Cours: Quelle est la différence entre le nombre dérivé et la fonction dérivée? Exercice: Déterminer l'ensemble des points M d affixe z, du plan, tels que : Im(Z)=0

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

Baccalauréat S Amérique du Sud Novembre 2010

Baccalauréat S Amérique du Sud Novembre 2010 Durée : 4 heures Baccalauréat S Amérique du Sud Novembre 21 Exercice 1 points On admet que si D et D sont deux droites non coplanaires, il existe une unique droite perpendiculaire à D et D. Si coupe D

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Correction du Baccalauréat S Centres étrangers 10 juin 2015

Correction du Baccalauréat S Centres étrangers 10 juin 2015 urée : 4 heures Correction du Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 4 points Commun à tous les candidats Tous les résultats demandés dans cet exercice seront arrondis au

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL BACCALAUREAT GENERAL Session de juin 9 MATHEMATIQUES - Série S - Enseignement de Spécialité France métropolitaine EXERCICE 1 1) a) Soit n un entier naturel. v n+1 u n+1 6 1 u n + 4 6 1 u n 1 (u n 6) 1

Plus en détail

Baccalauréat S Polynésie septembre 2000

Baccalauréat S Polynésie septembre 2000 Baccalauréat S Polynésie septembre 2000 EXERCICE 1 Commun à tous les candidats On dispose d un dé cubique dont les faces sont numérotées de 1 à 6. On désigne par p k la probabilité d obtenir, lors d un

Plus en détail

CORRECTION DEVOIR D'ENTREE EN 1èreS

CORRECTION DEVOIR D'ENTREE EN 1èreS CORRECTION DEVOIR D'ENTREE EN 1èreS Exercice 1: Voici trois formes d'une même fonction f : f (x)=2( x 2)( x+4) f (x)=2 (x+1) 2 18 f (x)=2 x 2 +4 x 16 1) Choisir l'expression la mieux adaptée et calculer

Plus en détail

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3 Corrigé - Baccalauréat blanc TS - 03 EX : (4poi nt s Commun à tous les candidats ( 6 points Partie A - Étude d une fonction. On considère la fonction f définie sur R par f (x = (x + e x.. Déterminer la

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Spécialité Terminale S IE2 congruences S

Spécialité Terminale S IE2 congruences S a) Quels sont les restes possibles de la division euclidienne d un carré par 8. b) Montrer que tout entier de la forme 8k + 7 (avec k entier) n est pas la somme des carrés de trois entiers. a) Montrer

Plus en détail

démonstrations exigibles au baccalauréat

démonstrations exigibles au baccalauréat démonstrations exigibles au baccalauréat fonction exponentielle (1/2) propriété : Il existe une unique fonction dérivable sur telle que ' = et (0) = 1 1 L'existence de la fonction est admise conformément

Plus en détail