Seconde 4 Repérage dans le plan Vecteurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Seconde 4 Repérage dans le plan Vecteurs"

Transcription

1 Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice : repères du plan coordonnées de points et de vecteurs Quadrillage à maille en parallélogramme 1) Dans le repère (O ; i ; j ), lire les coordonnées : a) des vecteurs u et v b) des points A, B, C et D ) Trouver les nombres x,y et z vérifiant : BE = x BD BF = y BA BG = z BC En déduire les coordonnées des points E, F et G. Exercice : calcul vectoriel et coordonnées Dans un repère, on donne les points A( ;-1), B(8 ;) et C(-1 ;5) Soit M un point de coordonnées (x ;y) 1 ) Calculer les coordonnées des vecteurs AB et AC ) Relier chaque égalité vectorielle au système qui lui correspond : a) AM = AB 1) (x-8)=- (y-)= b) BM = 1 AC ) x-6=5 y+= c) BM = MA ) (x-8)=-x (y-)=-1-y 1

2 Exercice : calculs de distances en repère orthonormal On donne les points A(-1 ;1) B(1 ;) et C( ;-). Placer ces points dans un repère. 1 ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle ABC. ) Donner le centre I et le rayon R du cercle C circonscrit au triangle ABC. ) Soit E( ;1). Montrer que E est un point du cercle C. ) Calculer cos ACB, d et en déduire une valeur arrondie de l angle ACB, d arrondi au degré près. Exercice 5 : relation vectorielle Soit ABC un triangle. Les points M et N sont définis par : BM = - BC et AN = CB 1 ) Faire la figure avec AB = 6 cm, BC = cm et AC = 5 cm. ) A l aide d un calcul vectoriel, exprimer le vecteur ) Démontrer que ANMC est un parallélogramme. Exercice 6 : vecteurs, translation et parallélogramme CM en fonction du vecteur CB. Dans le plan muni d un repère (O ; i ; j ), on considère les points A(- ;1) ; B(1 ;) ; C( ;-1). 1) Déterminer les coordonnées du point D tel que le quadrilatère ABCD est un parallélogramme. ) Déterminer les coordonnées du milieu I du segment [DC]. ) Déterminer les coordonnées du point E, symétrique du point B par rapport à C. ) Déterminer les coordonnées du point F défini par : BF = BI 5) Démontrer que le quadrilatère DCEF est un parallélogramme. 6) Déterminer les coordonnées du centre K, du parallélogramme ABCD, puis celles du point K, image du point K par la translation de vecteur AD. De quel parallélogramme le point K est-il le centre? On justifiera la réponse. Exercice : colinéarité Le plan est muni d un repère (O ; i ; j ). Les vecteurs u et v sont-ils colinéaires? Si oui, trouver k tel que v = k u a) u (1 ;-) et v (-0,5 ;) b) u = 1 i c) d) j et v = 1 i j u = (1 + ) i - j et v = i + (1 - ) j u ( + 1 ; ) et v (1 ; 1 - )

3 Exercice 8 : colinéarité Dans le plan muni du repère (O ; i ; j ), on considère les points : A(6 ;) B(- ;0) C(5 ;) et D(-1 ;1) 1 ) Montrer que (OA) et (BC) sont parallèles. ) Les points B, C et D sont-ils alignés? Justifier ) Trouver x tel que M(5 ;x) soit aligné avec A et B. ) Soit E(- ;m). Pour quelle(s) valeur(s) de m, le quadrilatère DOAE est-il un trapèze?

4 Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v a) A(- ;) B(1 ;6) C( ;-1) D(10 ;) E(, ;1) b) u ( ;-1) v (- ;-5) Exercice : repères du plan coordonnées de points et de vecteurs Quadrillage à maille en parallélogramme 1) Dans le repère (O ; i ; j ), lire les coordonnées : a) des vecteurs u et v b) des points A, B, C et D ) Trouver les nombres x,y et z vérifiant : BE = x BD BF = y BA BG = z BC En déduire les coordonnées des points E, F et G. 1) a) u ( ;) v (-6 ;-) b) A( ;-) B(6 ;) C(1 ;) D(-5 ;-1) ) x = 5 = 9 0, y = ,15 z = 0,59

5 L égalité BE = x BD donne les égalités x E 6 = x (-5 6) et y E - = x(-1 ) Soit x E = = ,1 et y E = 9 = 0,6 L égalité BF = y BA donne les égalités xf 6 = y ( 6) et y F - = y(--) Soit x F = 6 5 = ,5 et y F = = ,1 L égalité BG = z BC donne les égalités x G 6 = z (1 6) et y G - = z(-) Soit x G = = 8 et y FG= + 16 = 0,6 Exercice : calcul vectoriel et coordonnées Dans un repère, on donne les points A( ;-1), B(8 ;) et C(-1 ;5) Soit M un point de coordonnées (x ;y) 1 ) Calculer les coordonnées des vecteurs AB et AC ) Relier chaque égalité vectorielle au système qui lui correspond : a) AM = AB 1) (x-8)=- (y-)= b) c) 1 BM = AC ) x-6=5 y+= BM = MA ) (x-8)=-x (y-)=-1-y 1 ) AB (8- ;+1) AC (-1- ;5+1) AB (5 ;) AC (- ;6) ) a) ) b) 1) c) ) Exercice : calculs de distances en repère orthonormal On donne les points A(-1 ;1) B(1 ;) et C( ;-). Placer ces points dans un repère. 1 ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle ABC. ) Donner le centre I et le rayon R du cercle C circonscrit au triangle ABC. ) Soit E( ;1). Montrer que E est un point du cercle C. ) Calculer cos ACB, d et en déduire une valeur arrondie de l angle ACB, d arrondi au degré près. 5

6 1 ) AB² = (1+1)² + (-1)² = + 1 = 5 AB = 5 BC² = (-1)² + (--)² = + 16 = 0 BC = 0 CA² = (-1-)² + (1+)² = = 5 CA = 5 CA² = AB² + BC². Selon la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B. ) Le centre du cercle circonscrit est le milieu de [AC] et le rayon de ce cercle est AB Soit I( (-1+) R = 5 ; (1-) ) I(1 ; - 1 ) ) IE² = (-1)² + (1 + 1 )² = + 9 = 5 IE = 5 IE = R donc E appartient au cercle ) cos ACB d = BC AC = 0 5 d ACB 6

7 Exercice 5 : relation vectorielle Soit ABC un triangle. Les points M et N sont définis par : BM = - BC et AN = CB 1 ) Faire la figure avec AB = 6 cm, BC = cm et AC = 5 cm. ) A l aide d un calcul vectoriel, exprimer le vecteur ) Démontrer que ANMC est un parallélogramme. CM en fonction du vecteur CB. 1 ) ) CM= CB + BM= - BC BC = - BC ) AN= CB = - CM= MC On e n déduit que ANMC est un parallélogramme. Exercice 6 : vecteurs, translation et parallélogramme Dans le plan muni d un repère (O ; i ; j ), on considère les points A(- ;1) ; B(1 ;) ; C( ;-1). 1) Déterminer les coordonnées du point D tel que le quadrilatère ABCD est un parallélogramme. ) Déterminer les coordonnées du milieu I du segment [DC]. ) Déterminer les coordonnées du point E, symétrique du point B par rapport à C. ) Déterminer les coordonnées du point F défini par : BF = BI 5) Démontrer que le quadrilatère DCEF est un parallélogramme. 6) Déterminer les coordonnées du centre K, du parallélogramme ABCD, puis celles du point K, image du point K par la translation de vecteur AD. De quel parallélogramme le point K est-il le centre? On justifiera la réponse.

8 1) Soit D(x ;y) Si ABCD est un parallélogramme alors Soit 1 (-) = x et 1 = -1 y x = = - y = - D(- ;-) ) I( - ;-1- ) I(0 ;-) ) Soit E(x ;y) C est le milieu de [BE] Soit = 1 + x et -1 = + y Soit : x = et y = -5 E( ;-5) AB = DC ) Soit F(x ;y) Si BF = BI alors x 1 = (0-1) et y = (--) x = -1 et y = -9 F(-1 ;-) DC (+ ;-1+) DC ( ;) FE ( + 1 ; -5 + ) FE ( ; ) 5) 6) K est le milieu de [AC] : K( -+ ;1-1 ) K(-1 ;0) Soit K (x ;y) KK = AD x + 1 = - + et y 0 = - 1 x = 1 et y =- K ( 1 ;-) K est le centre du parallélogramme ECDF car ECDF est l image de ABCD par la translation de vecteur AD. 8

9 9

10 Exercice : colinéarité Le plan est muni d un repère (O ; i ; j ). Les vecteurs u et v sont-ils colinéaires? Si oui, trouver k tel que v = k u a) b) u (1 ;-) et 1 u = i v (-0,5 ;) 1 j et v = i j c) u = (1 + ) i - j et v = i + (1 - ) j d) u ( + 1 ; ) et v (1 ; 1 - ) a) -0,5 1 = -0,5 et - = -0,5 donc v = -0,5 u Les vecteurs u et v sont colinéaires. 1 b) = 1 1 = - et - = = donc v = 0,5 u Les vecteurs u et v sont colinéaires. 1 c) 1+ = 1-1- colinéaires. d) = -1 et = -1 donc v = ( -1) u. Les vecteurs u et v sont 1 +1 = -1-1 = -1 et 1- Exercice 8 : colinéarité -1 Dans le plan muni du repère (O ; i ; j ), on considère les points : A(6 ;) B(- ;0) C(5 ;) et D(-1 ;1) 1 ) Montrer que (OA) et (BC) sont parallèles. ) Les points B, C et D sont-ils alignés? Justifier ) Trouver x tel que M(5 ;x) soit aligné avec A et B. Les vecteurs u et v ne sont pas colinéaires. ) Soit E(- ;m). Pour quelle(s) valeur(s) de m, le quadrilatère DOAE est-il un trapèze? 1 ) OA (6 ;) et BC (5+ ;-0) Soit BC (8 ;) BC = OA. Les vecteurs BC et OA sont colinéaires. Donc les droites (OA) et (BC) sont parallèles. ) BD (-1+ ;1-0) Soit BD ( ;1) BC = BD. Les vecteurs BC et BD sont colinéaires. Donc les points B, C et D sont alignés. ) AB (--6 ;0-) Soit AB (-9 ;-) 10

11 AM(5-6 ;x-). Soit AM(19 ;x-) Les points A, B et M sont alignés ssi les vecteurs Soit : 19 = (x-) Soit 19 = x 9 Soit x = 8 AM et AB sont colinéaires. ) Le quadrilatère DOAE est un trapèze si les droites (DO) et (EA) sont parallèles ou bien si les droites (OA) et (DE) sont parallèles. 1 er cas : (DO) // (EA) OD(-1 ;1) AE (- -6 ;m-) soit AE (- 5 ;m-) (DO) // (EA) ssi les vecteurs Soit 5 = m Soit m = OD et AE sont colinéaires. ème cas : (OA) // (DE) OA (6 ;) DE (- +1 ;m-1) Soit DE (- ; m 1) (OA) // (DE) ssi les vecteurs OA et DE sont colinéaires. Soit = (m-1) Soit = m Soit m = Soit m = 1 On vérifie que dans ce cas, le quadrilatère DOAE est croisé et ne peut être un trapèze. La seule valeur possible de m pour que DOAE soit un trapèze est. 11

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace M- SE - ST Géométrie dans l'espace Exercice Dans l'espace muni du repère orthonormé O, i, j, k, on considère les points : A; ; -, B; ; C; -; 0. - Calculer les coordonnées des vecteurs AB, AC AB AC. Les

Plus en détail

Devoir surveillé n 10 AD, BF. BC et CG

Devoir surveillé n 10 AD, BF. BC et CG evoir surveillé n 10 Exercice 1 ( 7 points) : Soit un parallélogramme 1 Placer les points E, F et G tels que E =, F = et G = 2 8 Le but de l exercice est de montrer, par deux méthodes différentes, que

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs TRANSLATION et VECTEURS : Composition de deux symétries centrales 1 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2 I VECTEURS 1. Définition Un vecteur est défini par une direction,

Plus en détail

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs)

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Leçons : 4 Colinéarité de vecteurs 4-1- Rappel Soit u et v deux vecteurs non nuls. On dit que u et v sont

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

Géométrie _ Equations de droites

Géométrie _ Equations de droites Géométrie _ Equations de droites Exercice 1 : Cinéma et concert Sous thème : Coordonnées d un point, droites (livre Maths, 2 nde, Nathan 2010) Un groupe d amis, dont certains sont étudiants, va au cinéma.

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet. Composition n 1 de Mathématiques NOM : Prénom : Seconde... 3 novembre 2011 Note : /20 Signature : Observations : La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir.

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

GEOMETRIE ANALYTIQUE

GEOMETRIE ANALYTIQUE 1 Session du brevet 1996 GEMETRE ANALYTQUE Afrique 96 La liste suivante contient les équations de dix droites : y = 1 2 x + 4 y = 1 2 x 4 y = 1 2 x + 4 y = 1 2 x 4 y = x + 4 y = x 4 y = 2x + 4 y = 2x 4

Plus en détail

5. Exercices et corrigés

5. Exercices et corrigés 5. Exercices et corrigés Rappels et questions-tests p.166 1) ABC est un triangle. Placez les points D et E tels que : BD = AC et AE = BA. Quelle est la nature du quadrilatère ADCE? ) ABC est un triangle.

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère

Bases et repères. Coordonnées d'un vecteur dans une base, d'un point dans un repère I Les vecteurs du plan, de l'espace Dans le plan P Soit O un point du plan, i et j deux vecteurs non colinéaires. On dit que : i, j est une base du plan vectoriel P O, i, j est un repère de P Bases et

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

EXERCICES CORRIGES DE MATH

EXERCICES CORRIGES DE MATH EXERCICES CORRIGES DE MATH PAR Ahmed Mowgli, PROFESSEUR DE MATH ET PHYSIQUE-CHIMIE Ce document est la propriété de son auteur, vous avez le droit de l utiliser, de le lire et même de le travailler! Je

Plus en détail

Produit d un vecteur par un réel, classe de seconde

Produit d un vecteur par un réel, classe de seconde , classe de seconde F.Gaudon http://mathsfg.net.free.fr 8 avril 2012 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux

Plus en détail

CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES

CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES THEME : CALCUL VECTORIEL COMPOSANTES D UN VECTEUR - EXERCICES Exercice 1 : Dans le plan muni d'un repère ( O, I, J ), placer les points : A( - 2 ; 2 ) ; B( 3 ; 5 ) ; C( - 3 ; - 1 ) ; D( 4 ; - 2 ) et E(

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1 THEME : Correction MILIEUX ET PARALLELES DANS UN TRIANGLE CORRECTION(s) EXERCICES SERIE 1 Exercice : Soit ABC un triangle. Soit D le milieu de [BC]. Soit M le milieu de [AD]. Les parallèles à la droite

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la Vecters I. Notion de vecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe point D tel qe les segments

Plus en détail

NOM : ANGLES ET ROTATIONS 1ère S

NOM : ANGLES ET ROTATIONS 1ère S Exercice 1 ABC est un triangle de sens direct rectangle en A. On construit à l extérieur du triangle les carrés ACDE et BCF G. Démontrer que les droites (BD) et (AF ) sont perpendiculaires, et que BD =

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note :

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note : Seconde 2009-2010 sujet 1 NOM : Prénom : Exercice 1 : (3 points) Dire pour chaque affirmation, si elle est vraie ou fausse. 1) ABCD est un parallélogramme a) AB = CD Vrai Faux b) BC = AD Vrai Faux c) AC

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS HOOTHÉTIES - TRASLATIOS - ROTATIOS I s - Propriétés On appelle translation de vecteur u, l'application qui à un point associe l'unique point tel que = u On la note souvent t u (ou simplement t lorsqu'il

Plus en détail

Première S Exercices : vecteurs et variations des fonctions associées

Première S Exercices : vecteurs et variations des fonctions associées Exercice 1 : vecteurs et alignement de points ABC est un triangle. Le plan est muni du repère (A; AB, AC) et on considère les points R(-1;0) et Q(0;a) où a est un nombre réel différent de -1. 1) a) Prouver

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

Coordonnées dans le plan

Coordonnées dans le plan Coordonnées dans le plan. Repérer un point donné du plan, placer un point connaissant ses coordonnées.. Repères du plan (vidéo ) Repère quelconque : y Repère orthogonal : 0 y 0 y Repère orthonormal : 0

Plus en détail

CONTRÔLE N 2. Exercice 2 : (sur la copie double)

CONTRÔLE N 2. Exercice 2 : (sur la copie double) NOM : Prénom : Classe : 2nde CONTRÔLE N 2 Consignes : - l utilisation de la calculatrice est autorisée - sauf mention contraire, toutes les réponses devront être soigneusement justifiées. Le tableau suivant

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail

Exercice 1 (5,5 points)

Exercice 1 (5,5 points) Devoir commun de mathématiques Durée : heures SUJET A Exercice 1 (5,5 points) QCM questions 1 à 6 (réponse exacte +0,75 point, pas de réponse 0 point, réponse fausse 0,5 point) Sachant que une et une seule

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION 1) On donne les points A et A', construire à l'aide du quadrillage les points B' et C' tels que AA'B'B et AA'C'C soient des parallélogrammes. 2) On donne les

Plus en détail

Exercices supplémentaires Géométrie plane

Exercices supplémentaires Géométrie plane Exercices supplémentaires Géométrie plane Partie A : Coordonnées de vecteurs, colinéarité Exercice 1 Dans un repère, on considère 6; 1, ; 1, 15; 4 et ; 2. 1) Les points, et sont-ils alignés? Justifier.

Plus en détail

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF. Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED 85 36 75-196 599 599 77 mm Exercice

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010)

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) Introduction : Figure 1 : Figure 1 bis : On a effectué une translation de vecteur u, c'est-à-dire un déplacement de la figure, sans la tourner ni la

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

Vecteurs et droites. u = 0 et on dit que

Vecteurs et droites. u = 0 et on dit que Vecteurs et droites ) Rappels sur les vecteurs Généralités Définitions : ) Un vecteur u ou B est défini par : une direction (la droite (B)) un sens (de vers B) une longueur : la norme du vecteur u ou B

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Géométrie dans l' espace

Géométrie dans l' espace Exercice 1 Le repère ( A, AB, AD,AF ) formé sur le cube ABCDEFGH est orthonormé direct Calculer les produits vectoriels suivants AB AD, AB AC, AC BD et AC FH Dans tous les exercices qui suivent, l espace

Plus en détail

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Avril 2013 Durée : 2h Mme Hobraiche Prénom : La calculatrice est autorisée. Le sujet, noté sur 30, comporte 4 exercices indépendants les uns des autres. La note

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES CHAPITRE I GÉOÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES 1) Le plan étant muni d un repère ( O, i, j ) 4 u 6 et v Calculez les coordonnées de : 1 2,4 a) AB d) u + v b) 2 CA c) BC, on donne A( 5; 7,3), ( 9;0)

Plus en détail

Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan

Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan Exercice :1 Exercices de mathématiques sur vecteurs, translations et coordonnées dans le plan Démontrer que les points B et D sont confondus sachant que : Exercice :2 ABCD est un parallélogramme de centre

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010

BREVET DE TECHNICIEN SUPÉRIEUR. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT F de 2004 à 2010 Design d espace 2004.................................... 3 Design d espace 2005....................................

Plus en détail

RAPPELS SUR LES VECTEURS

RAPPELS SUR LES VECTEURS RAPPELS SUR LES VECTEURS 1 re S Ce chapitre est constitué d une part de rappels de Seconde (les exemples y seront donc limités et les propriétés ne seront par re-démontrées) et d autre part d exercices

Plus en détail

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

Thème 1 : Calculs dans un repère et vecteurs

Thème 1 : Calculs dans un repère et vecteurs SAVOIR-FAIRE ÉLÉMENTAIRES EN MATHÉMATIQUES pour aborder la classe de première Lycée ascan : séries S et STID Thème : Calculs dans un repère et vecteurs Exercice (résolu) Dans un repère orthonormé (O; I,

Plus en détail

Barycentre. Table des matières

Barycentre. Table des matières 1 Barycentre Table des matières 1 Rappels sue les vecteurs 2 1.1 Définition................................. 2 1.2 Opérations sur les vecteurs....................... 2 1.2.1 Somme de deux vecteurs....................

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

Chapitre 5 GE0 3. Produit Vectoriel

Chapitre 5 GE0 3. Produit Vectoriel Chapitre 5 GE Produit Vectoriel À la fin de ce td, vous devez être capable de : Savoir tracer une courbe paramétrée définie par des fonctions polynomiales. Établir le tableau des variations conjointes

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun.

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun. Chapitre 8 : Droites et plans de l espace - Vecteurs I Positions relatives de droites et de plans Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires

Plus en détail

NOM : BARYCENTRES 1ère S

NOM : BARYCENTRES 1ère S Exercice 1 ABCD est un quadrilatère et G est le barycentre de (A ; 1), (B ; 1), (C ; 3) et (D ; 3). Construire le point G. Expliquer. D. LE FUR 1/ 50 Exercice 2 ABC est un triangle. 1) G est le barycentre

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

Géométrie analytique plane

Géométrie analytique plane Exercice 1 EXERCICES SUR LE CHAPITRE 8 Géométrie analytique plane Soit ( O, i ) un repère d une droite d (1) Placer sur cette droite les points I ( 1), A ( 3) et B( 2) (2) Déterminer l abscisse du point

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Exercice 1 : Longueur d un chemin Soient A, B, C, D et E des points tels que : D appartient à [AB] et E appartient à [AC].

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail