INTEGRALE DE LEBESGUE-ESPACES FONCTIONNELS

Dimension: px
Commencer à balayer dès la page:

Download "INTEGRALE DE LEBESGUE-ESPACES FONCTIONNELS"

Transcription

1 INTEGRALE DE LEBESGUE-ESPACES FONCTIONNELS Introduction: L intégrale de Riemann avait ontré ses limites,d abord sur le champ des fonctions intégrables(assez restreint) et surtout sur lespermutations des limites avec les intégrales. Henri Léon Lebesgue( ) définit dans sa thèse intitulée: Intégrale,longueur avec une nouvelle méthode de sommation appelée depuis intégrale de Lebesgue et qui est considérée come l une des réussites de l analyse mathématique moderne. Dans la théorie de Lebesgue, les théorèmes de permutation de limite avec intégrale ont un énnocé très simple et surtout très puissants.en outre,par lsa nature ême,l intégrale de Lebesgue est adapté aux fonctions d une seule variable que de plusieurs.le revers est que sa présentation réclamme de longs préliminaires théoriques. C est toujours un problème dans l enseignement actuel d essayer d introduire le plutot possible l intégrale de Lebesgue de façon à ettre ce formidable outil à la disposition des Sciences de l Ingénieur. L intégrale de Lebesgue a considérablement simplifié et amplifié l étude desséries trigonométriques et plus généralement toute l analyse de Fourier et le champ des Probabilités. I Intégrale de Lebesgue L intégralede Lebesgue est fondée non pas sur les fonctions continues par morçeaux mais sur la classe plus large de fonctions appelées mesurables qui seront définies dans le présent chapitre.l avantage est que le champ des fonctions intégrables va être considérablement élargi.des fonctions très discontinues comme l indicatrice de l enseble des nombres rationnels va être intégrable. Définition d une tribu : Définition: Un ensemble τ de parties de suivantes: 1)-Si une suite de parties de (A n ) n 1 (A 1,A 2,...,A n ) τ, alors 2)-Si A τ, alors:( \ A) τ. Conclusion: Une tribu est un ensemble de parties de et par passage au complémentaire. est appelé tribu lorsqu il posséde les propriétés n=1 A n τ. stable par réunion dénombrable Soit S Un ensemble de parties de,on considere toutes les tribus τ i contenant S alors τ = S τ i τ i est une tribu appelée tribu engendrée par S. CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 1/ 9

2 Définition de la tribu Borelienne: Si on prend S = { parties ouvertes de } alors τ = Borellienne de.on la note B N. S τ i τ i est une tribu appelée la tribu Définition : Soit τ une tribu de,une mesure sur est une application λ : τ [0, + ] telque :λ( A i ) = + λ(a i ) (les A i sont des parties de deux à deux disjoinctes). Définition de la mesure de Lesbegue sur Si On prend B N la tribu Borelienne de, la mesure de Lesbegue est l unique mesure λ telle que: λ([a 1,b 1 ]... [a N,b N ]) = Définition: N (b i ai). Soit P une propriete relative a des éléments de.on pose : N = {x /x ne vérifie pasp} On dit que P est vérifiée presque partout si λ (N) = 0 où λ est la mesure de Lesbegue sur. Définition d une fonction étagée : Soit f une fonction définie sur à valeurs dans R,on dit que f est étagée,si : 1)- A 1,...,A n Boréliens de 2 a 2 disjoincts tels que : = n A i 2)-f (x)= n λ i A i (x) avec { 1 si x A i A i (x) =, A 0 sinon i (x) est la fonction indicatrice de A i. Définition d une fonction mesurable : Une fonction f définie sur prenant des valeurs dans [+, ] est dite mesurable si pourtout λ R,l ensemble { x /f(x) λ } appartient a la tribu borélienne B N. 1)-Si f est mesurable alors: f l est aussi. 2)-Si f et g sont mesurable alors: g + f, f g,λf et 1/f. 3)-Si f n une suite de fonctions sur qui converge simplement vers f sur,alors f est aussi mesurable. CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 2/ 9

3 Soit f une fonction mesurable positive sur, alors: il existe une suite de fonctions étagées positives f n telle que 0 f n f et f n converge simplement vers f sur. Définition: Integrale d une fonction étagée : Soit f une fonction étagée positive,f(x) = n λ i A i (x),l integrale de f est la quantité notée f(x)dx = f(x 1,...,x N ) dx 1...dx N et définie par: f(x)dx = avec λ(a i ) est la mesure de Lesbegue de A i. n λ i λ(a i ) Définition: Intégrale d une fonction mesurable: 1)Soit f une fonction mesurable positive sur,on choisit une suite de fonctions étagées (f n ) telle que f n converge simplement vers f sur.on pose alors: f (x) dx = lim f n (x) dx n + Cette limite est finie ou égale a +.Lorsqu elleest finie,on dit que f est integrable au sens de lesbegue. 2) Dans le cas général d une fonction mesurable f définie sur, on dira que f est intégrale si f (x) dx est finie. 3) Soit f : C, on dira que f est mesurable (respectivement intégrable) si sa partie réelle et imaginaire sont mesurables(respectivement intégrable). 4) Soit A un ensemble Borélien et f : A C. On dit que f est mesurable(respectivement intégrable ) sur A si la fonction f définie par: { f(x) si x A f (x) = 0 sinon est intégrable. 1)- f,g : R, λ C : (f + λg) (x) dx = f (x) dx + λ g (x) dx 2)-0 f g = f (x) dx g (x) dx. 3) f (x) dx = 0 f = 0 presque partout sur. CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 3/ 9

4 Soit f une fonction bornée,positive et nulleen dehors d un ensemble borné,alors f est integrable. Théoréme: 1)-Soit f : [a,b] R integrable au sens de Riemann,alors:f est integrable au sens de Lebesgue et b f (x) dx = f (x) dx. a [a,b] 2)-Soit f : ]a,b[ R une fonction telque b f (x) dx est convergente,alors:f est a integrable sur ]a,b[ au sens de lebesgue et on a: f (x) dx = b f (x) dx. ]a,b[ a Remarque:Une fonction peut avoir une intégrale généralisée convergente sans qu elle soit intégrable au sens de Lebesgue.Il suffit de considérer la fonction:f(x) = x ) sin x 1 si x = 0 Théoréme:Convergence dominée de Lebesgue: Soit f n une suite de fonctions intégrables telles que f n converge simplement vers f presque partout. On suppose qu il existe une fonction g positive integrable tel que: f n (x) g (x) presque pour tout x.alors :f est intégrable et on a: lim f n (x) dx = lim f n (x) dx. Théoréme de Fubini: R M R Soit f : (x,y) f (x,y) une fonction intégrable c est à dire,telque: f (x,y) dxdy < R M +,alors: 1)-La fonction y R M f (x,y) est intégrable pour x fixésauf peut être des valeursde x fixées qui forment un ensemble de mesure nulle= La fonction F (x) = f (x,y) dy est définie R M presque partout. 2)-La fonction x F (x) est intégrable sur,et on a: [ ] f (x,y) dy dx = R M R M [ ] f (x,y) dx dy = f (x,y) dxdy R M CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 4/ 9

5 Théoreme de Fubini Tonnelli:(Réciproque du Théorème de Fubini) Soit f : R M R mesurable telle que l une des deux integrales [ ] [ ] f (x,y) dy dx et f (x,y) dx dy soit finie,alors f est intégrable sur R M et on a: [ ] [ ] f (x,y) dy dx = f (x,y) dx dy = f (x,y) dxdy R M R M R M II Application: Fonctions définies par une intégrale(intégrales dépendant d un paramètre Soit f : (x,t) f (x,t) définie sur ]α,β[ ]a,b[ à valeurs dans R.On suppose que pour tout x ]α,β[,la fonction : est bien définie. F (x) = ]a,b[ f(x,t) dt Théoreme de la continuité: Sous les hypothéses précédentes on suppose que f vérifie les hypothèses suivantes: 1)-f est séparement continue par rapport à x pour presque tout t ]a,b[. 2)- g 0 intégrable sur ]a,b[ telle que: f (x,t) g (t), x ]α,β[ et presque partout par rapport à t. alors f est continue sur ]α,β[. Théoréme de dérivabilité: On suppose que f : (t,x) f (t,x) vérifie les hypothéses suivantes: 1)- f (x,t) existe pour tout x ]α,β[ et pour presque tout t ]a,b[. x (x,t) est continue par rapport à x ]α,β[. 2)- f x 3)- g 0 intéegrable sur]a,b[, f (x,t) g (t), x ]α,β[ et presque partout par rapport à t x alors: F (x) est dérivable sur ]α,β[ et on a:. F (x) = ]a,b[ f (x,t) dt x CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 5/ 9

6 RAPPEL SUR LES ESPACES FONCTIONNELS Définition d une une norme: Soit un espace vectoriel sur K = R ou C,une norme sur E notée application de E dans [0, + [ satisfaisant à: a)- λf = λ. f λ C, f E. b)- f 1 + f 2 f 1 + f 2. c)- f = 0 f = 0. E est une Remarque:Si a et b sont vérifiées= Exemples: E est une semi norme. 1)-E = C ([ 1,1],R) : + f 1 = sup [ 1,1] f(x) est une norme appelée norme de la convergence uniforme. + f 2 = 1 1 f(t) 2 dt est une norme sur E. 2)-E = l 1 ( ) = {f : C,f integrable} : f E = f(x) dx c est une semi norme. f dx = 0 f = 0 presque partout. Définition: convergence,convergence de cauchy: E ): Soit f n une suite d éléments d un espace vectoriel normé (c est a dire:muni d une norme 1)-On dit que f n f f n f E 0 2)-E = l( ) = {f = C,f est integrable} f E = f(x) dx est une semi norme. f dx = 0 f = 0 presque partout. Définiton:convergence et convergence de cauchy: Soit f n une suite d éléments d un espace vectoriel E (c est a dire :muni d une norme E ): CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 6/ 9

7 1)-On dit que f n f f n f E 0 2)-On dit que (f n ) n est de cauchy ( ε > 0, N telque n,m N = f n f m ε) Remarque: U n est une Suite convergente= U n est une suite de cauchy. Définition d un espace de banach: Soit E un espace vectoriel normé,on dit que E est un espace de banach si toute suite de cauchy de E est convergente. Espaces L 1 ( ) et L 1 loc (RN ) : -L espace L 1 ( ) : Soient f,g l 1 ( ),on définit une relation R par:f Rg f = g presque partout c est une relation d équivalence. L espacequotient l 1 ( ) /R des classes d équivalence:. f= { g : C,g = f presque partout } est noté:l 1 ( ) L 1 ( ) est un espace vectoriel et l application: est une norme sur E. L 1 ( ) R + f f(x) dx l éspace L 1 loc (RN ) : Définition d une fonction localelement integrable: Une fonction f : C est dite localement integrable si elle est integrable sur tout compact K de c est a dire: K compact de, f(x) dx < +. K Exemple: Toute fonction borné sur est localement integrable. Définition :L 1 loc (RN ) : On note l 1 loc (RN ) :l espace des fonctions localement integrables sur. CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 7/ 9

8 On pose alors :L 1 loc (RN ) = l 1 ( )/ R avec R la relation d équivalence définie précédemment L 1 loc (RN ) est un espace vectoriel. Espace L p ( ),1 p + : Pour 1 p +,on définit l p ( ) = {f : C tel que f(x) p dx < + } Le cas de p = 2 est trés important,c est l espace des fonctions carrées integrables. On pose : L p ( ) = l p ( )/ R, et pour f L p ( ), f L p ( ) = ( f(x) p dx ) 1/p Inégalité de Holder: Soit f L p ( ) et g L q ( ) ( avec:1/p + 1/q = 1) alors: f g L 1 ( ) et on a f.g dx ( f(x) p dx ) 1/p ( g(x) q dx ) 1/q Le cas de p = q = 2 correspond a l inégalité de Cauchy-Schwartz: R n f.g ( f 2) 1/2 ( g 2) 2 Inegalité de Minkowski : Soient f et g L p ( ) alors: 1)-f + g L p ( ) 2)- ( f(x) + g(x) p dx ) 1/p ( f(x) p dx ) 1/p + ( g(x) p dx ) 1/p Corollaire: L p ( ) est un espace vectoriel sur C et l application : est une norme sur L p ( ). L p ( ) R + f f L p Définition: -On définit l ( ) = {f : C mesurable telle que: c > 0tel que f(x) c presque partout}. -On pose L ( ) = l ( ) /R,un élement de L est une classe d équivalence dont le representant f est une fonction presque partout bornée sur. Pour f L ( ),on pose f L = inf {c > 0 telle que f(x) c presque partout}. CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 8/ 9

9 Support d une fonction: Soit f : C une application (partout définie) Définition: Le support de f noté Supp f est l ensemble définie par : Suppf = {x = (x 1,...,x n ) /f(x) 0}. 1)-Supp f est le plus petit fermé en dehors duquel f est nulle. 2)-Supp (f + g) (Supp f) (Supp g) 3)-Supp (f g) (Supp f) (Supp g) 4)- λ C,Supp (λf) = Supp f 5)-Supp f (λx) = 1/λ Supp f λ R. L ensemble D (Ω) : Soit Ω un ouvert de, D (Ω) = { f : C / f de classe C sur Ω,Supp f est borné }. 1)- D (Ω) est un espace vectoriel. 2)- ϕ,ψ D (Ω) : ϕ Ψ D (Ω). Définition: Soit (f n ) n une suite de fonctions de D ( ),on dit que : 1)-f n 0 dans D ( ),si: n + a)- K compact tel que suppf n K n. b)-la suite f n et toutes ses derivées:d α f n convergent uniformement sur K vers 0 c est à dire : α ℵ N : sup D α f n 0 2)-f n f n + n +. dans D ( ) f n f 0 dans D ( ). n + CI1. S.A. 2012/13. ENSA TÉTOUAN. H. BENKADDOUR. 9/ 9

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Produits d espaces mesurés

Produits d espaces mesurés Chapitre 7 Produits d espaces mesurés 7.1 Motivation Au chapitre 2, on a introduit la mesure de Lebesgue sur la tribu des boréliens de R (notée B(R)), ce qui nous a permis d exprimer la notion de longueur

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Construction de l'intégrale de Lebesgue

Construction de l'intégrale de Lebesgue Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Mesures et Intégration

Mesures et Intégration Mesures et Intégration Marc Troyanov - EPFL - Octobre 2005 30 avril 2008 Ce document contient les notes du cours de Mesure et Intégration enseigné à l EPFL par Marc Troyanov, version 2005-2006. Table des

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Théorèmes du Point Fixe et Applications aux Equations Diérentielles Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel

INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel EDP - Cours de Maîtrise LBdM 1 INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel Ce polycopié regroupe les notes du cours d Équations aux dérivées partielle de la

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Equations aux Dérivées Partielles

Equations aux Dérivées Partielles Equations aux Dérivées Partielles Tony Lelièvre 29-2 Après avoir considéré dans le capitre précédent des équations d évolution pour des fonctions ne dépendant que du paramètre temps, nous nous intéressons

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

C1 : Fonctions de plusieurs variables

C1 : Fonctions de plusieurs variables 1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

HÖLDER CONTINUITY AND WAVELETS

HÖLDER CONTINUITY AND WAVELETS Laurent SIMONS HÖLDER CONTINUITY AND WAVELETS Dissertation présentée en vue de l obtention du grade de Docteur en Sciences Promoteurs : Françoise BASTIN Samuel NICOLAY 24 Juin 2015 Plan Partie I Continuité

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Yamina Yagoub-Zidi. Inconditionnalité et propriétés du point fixe dans les espaces de fonctions lisses

Yamina Yagoub-Zidi. Inconditionnalité et propriétés du point fixe dans les espaces de fonctions lisses MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI, TIZI-OUZOU FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES THESE DE DOCTORAT SPECIALITE : MATHEMATIQUES

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Introduction à la. Points Critiques. Otared Kavian. et Applications aux Problèmes Elliptiques. Springer-Verlag

Introduction à la. Points Critiques. Otared Kavian. et Applications aux Problèmes Elliptiques. Springer-Verlag Otared Kavian Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Avant propos

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Probabilités avancées. Florin Avram

Probabilités avancées. Florin Avram Probabilités avancées Florin Avram 24 janvier 2014 Table des matières 1 Mise en scène discrète 3 1.1 Espace des épreuves/résultats possibles, événements, espace probabilisé, mesure de probabilités, variables

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail