Chapitre 1 : Diviseurs et multiples.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1 : Diviseurs et multiples."

Transcription

1 Chapitre 1 : Diviseurs et multiples. 1. Chiffre et nombre : a. Chiffre : Ce sont les symboles utilisés pour écrire les nombres. Dans notre système (système décimal), il y a 10 chiffres distincts qui permettent de former un ensemble infini de nombres. Il s agit de 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. b. Nombre : Réunion de plusieurs chiffres. C est le rapport entre deux quantités prises comme terme de comparaison, c'est-à-dire comme unité. 2. Diviseurs d un nombre : a. Notation : L ensemble des diviseurs d un nombre n se note div n. div 24 1,2,3,4,6,8,12,24 Exemples : div 16 1,2,4,8,16 b. Propriétés : Le nombre un divise tout nombre naturel. 1 divise 8 car 8 = 1.8. Tout nombre naturel non nul n est son plus grand diviseur. 9 est le plus grand diviseur de 9 car 9 = Nombres particuliers : a. Nombres carrés : Définition : Un nombre carré est un nombre naturel qui possède un nombre impair de diviseurs. 16 est un nombre carré car il possède 5 diviseurs. Propriété : Un nombre carré peut s écrire sous la forme d un produit de deux facteurs égaux. On peut écrire que 16 = 4.4 = 4 2.

2 b. Nombres rectangles : Un nombre rectangle est un nombre naturel qui possède un nombre pair de diviseurs. 24 est un nombre rectangle car il possède 8 diviseurs. c. Nombres premiers : Un nombre premier est un nombre naturel qui n admet que deux diviseurs distincts : 1 et lui-même. 5 est un nombre premier car il ne possède que deux diviseurs distincts : 1 et 5. Contre-exemple : 8 n est pas un nombre premier car 8 est divisible par 1, 2, 4 et Multiples-Diviseurs : Si a, b et c sont des nombres naturels non nuls, alors a = b. c signifie que : b et c divisent a. b et c sont des diviseurs de a. a est divisible par b et c. a est un multiple de b et de c. 5. Propriétés de la divisibilité : a. Propriétés liant la divisibilité et les opérations : Si un nombre en divise deux autres, alors il divise leur somme. Formulation mathématique : a, b et c étant des nombres naturels : si a b et a c, alors a b+c. Si un nombre en divise deux autres, alors il divise leur différence. Formulation mathématique : a, b et c étant des nombres naturels : si a b et a c, alors a b-c. Si un nombre en divise un autre, alors il divise tous les multiples de cet autre. Formulation mathématique : a, b et c étant des nombres naturels : si a b, alors a b.n. b. Caractères de divisibilité : Un naturel est divisible par : 2 si le dernier chiffre est pair. 5 si le dernier chiffre est 0 ou si le dernier chiffre est 0. 4 si les deux derniers chiffres forment un multiple de si les deux derniers chiffres forment un multiple de si les deux derniers chiffres sont si les trois derniers chiffres forment un multiple de si les trois derniers chiffres forment un multiple de si les trois derniers chiffres sont si la somme des chiffres est un multiple de 3. 9 si la somme des chiffres est un multiple de 9.

3 6. Nombres figurés : a. Les nombres triangulaires : Les nombres triangulaires correspondent à la somme des nombres naturels successifs. ( Pour trouver le n ième nombre triangulaire, il faut utiliser la formule : T n = n+1 ) n T b. Les nombres carrés : Un nombre carré est égal à la somme de deux nombres impairs consécutifs. Pour trouver le n ième nombre carré, il faut utiliser la formule : C c. Les nombres impairs : Un nombre impair est un nombre qui n est pas divisible par 2. Cn 2 n. Pour trouver le n ième nombre impair, il faut utiliser la formule : I n = 2n-1. I

4 Chapitre 3 : Les entiers. 1. Valeur absolue et nombres opposés : - Sur la droite graduée, les nombres négatifs sont toujours placés à gauche du zéro, et les nombres positifs à droite du zéro. - La distance qui sépare un nombre entier du zéro sur la droite graduée est appelée valeur absolue. La valeur absolue de l entier x se code x. Exemples : -4 = 4-3 = 3 3 = 3 2 = 2 La valeur absolue d un entier est toujours positive. - Deux nombres sont opposés s ils ont la même valeur absolue et des signes contraires. Exemples : 2 et et et -100 La somme de deux nombres opposés est nulle. Exemples : = = = 0 2. Comparer des entiers : a. Comment comparer un entier négatif et un entier positif? L entier négatif est plus petit que l entier positif. -12 < 25. b. Comment comparer deux entiers positifs? Le plus grand est celui qui a la plus grande valeur absolue. 12 < 25. c. Comment comparer deux entiers négatifs? Le plus grand est celui qui a la plus petite valeur absolue. -25 < -12.

5 3. Addition et soustraction dans : a. Comment faire pour additionner et soustraire des entiers? - Pour additionner deux entiers de même signe, on additionne leurs valeurs absolues et on recopie le signe commun. Exemples : = (-3) = -7 - Pour additionner deux entiers de signes différents, on soustrait leurs valeurs absolues et on recopie le signe de l entier qui a la plus grande valeur absolue. Exemples : = = 1 - Pour soustraire un nombre, il suffit d ajouter son opposé. 2 5 = 2 + (-5) = -3 b. Propriétés de l addition dans : - L addition est commutative ce qui signifie que dans une somme d entiers, l ordre n a pas d importance. 2 ( 3) 1 ( 3) 2. Codage : si a et b sont deux entiers, a + b = b + a. - L addition est associative ce qui signifie que dans une somme de plus de deux termes entiers, la manière de les grouper n influence pas le résultat. (2 + (-3)) + (-4) = -5 = 2 + ((-3) + (-4)) = (2 + (-4)) + (-3). Codage : si a, b et c sont trois entiers, (a + b) + c = a + (b + c) = (a + c) + b. - 0 est le neutre pour l addition ce qui signifie qu additionner 0 à un nombre entier donne une somme égale à ce nombre = 2. Codage: a + 0 = a. - L addition est symétrisable ce qui signifie que tout nombre entier admet un opposé. si a = 2, -a = -2. Codage: si a est un entier, -a.

6 4. Multiplication dans : Le produit de deux entiers positifs est positif. Le produit de deux entiers négatifs est positif. Le produit d un entier positif et d un entier négatif est négatif. Le produit de n facteurs positifs est toujours positif. Le produit de n facteurs négatifs est positif si n est pair et négatif si n est impair. a. Comment faire? Pour multiplier des entiers, on regarde d abord quel sera le signe et ensuite on multiplie leur valeur absolue. Lorsqu il y a plusieurs opérations dans un même calcul, on effectue les calculs entre parenthèses puis on effectue dans l ordre les produits et puis les sommes. b. Propriétés de la multiplication : - La multiplication est commutative ce qui signifie que dans un produit d entiers, l ordre n a pas d importance. 2 (-3) = -6 = Codage : si a et b sont deux entiers, a.b = b.a - La multiplication est associative ce qui signifie que dans un produit de plus de deux facteurs, la manière de les grouper n influence pas le résultat. (2 (-3)) (-4) = 24 = 2 ((-3) (-4)) = (2 (-4)) (-3). Codage : si a, b et c sont trois entiers, (a.b).c = a.(b.c) = (a.c).b - 1 est le neutre pour la multiplication ce qui signifie que multiplier un nombre par 1 donne un produit égal à ce nombre. 1 (-2) = -2. Codage : si a est un entier, a.1 = a - 0 est absorbant pour la multiplication ce qui signifie que multiplier un nombre par 0 donne un produit égal à 0. 0 (-2) = 0. Codage : si a est un entier, a.0 = 0

7 Chapitre 5 : Les fractions. 1. Notation, définition : Une fraction représente un partage et un quotient. La forme générale d'une fraction est a b où a est le numérateur et b est le dénominateur. Le dénominateur détermine le nombre de parts égales par lequel l unité choisie est partagée. Le numérateur détermine le nombre de parts égales prélevées. Une fraction est le quotient d un entier par un entier non nul est une fraction dont le numérateur est 4 et dont le dénominateur est 11 4 et 11 sont les termes de la fraction. 2. Représentation de fractions : Une fraction est un nombre représentant l abscisse d'un point d'une droite. 3. Comparaison de fractions : Si deux fractions positives ont le même numérateur, la plus petite est celle qui a le plus grand dénominateur Si deux fractions positives ont le même dénominateur, la plus petite est celle qui a le plus petit numérateur Si deux fractions positives ont des numérateurs et des dénominateurs différents, il faut les réduire au même dénominateur. La fraction qui a le plus grand numérateur est alors la fraction la plus grande > 2 3 car et

8 4. Fractions égales : Pour trouver une fraction égale à une autre fraction donnée, il suffit de diviser (ou de multiplier) le numérateur et le dénominateur de la fraction par un même nombre non nul (différent de 0). a a. n Si a et sib, n 0, alors. b b. n Une fraction est nulle si le numérateur est nul Une fraction est égale à 1 si ses deux termes sont identiques. Exemples : Une fraction est égale à son numérateur si son dénominateur est Une fraction n existe pas si son dénominateur est nul Simplification de fractions : Pour simplifier une fraction, il suffit de diviser le numérateur et le dénominateur de la fraction par un même nombre non nul Une fraction qui ne peut pas (plus) être simplifiée est dite irréductible. 6. Les fractions décimales : Une fraction décimale est une fraction dont le dénominateur est une puissance de 10. Exemples : 0, /100 63, /1000

9 7. Opérations sur les fractions : a. L'addition et la soustraction de fractions : Pour additionner (ou soustraire) deux fractions, il faut : - Les simplifier si possible. - Les réduire au même dénominateur. - Additionner (ou soustraire) les nouveaux numérateurs en conservant le dénominateur. - Simplifier, si possible, la fraction ainsi obtenue. Quels que soient les nombres a, b et d ( d 0 ) on a : a b a b et a b a b d d d d d d b. La multiplication de fractions : Pour multiplier deux fractions, il faut : - Multiplier les numérateurs et les dénominateurs entre eux. - Simplifier, si possible, avant d effectuer les produits. Quels que soient les nombres a, b, c et d ( b 0 d 0 ) on a : a c a. c b d b. d

10 Chapitre 6 : Le calcul littéral. 1. Produit algébrique : Pour réduire un produit algébrique, il faut : - Multiplier les facteurs numériques entre eux. - Ecrire les facteurs littéraux dans l ordre alphabétique. 4 a.2 a.3b 24 2 a b 2. Somme algébrique : On appelle termes semblables des termes qui ont la même partie littérale. Pour réduire une somme algébrique de termes semblables, il faut : - Conserver la partie littérale. - Additionner les parties numériques (coefficients) a b a a b 3. La distributivité simple : Pour multiplier une somme par un nombre, il faut multiplier chaque terme de la somme par ce nombre et additionner les résultats obtenus. 2 a. 3y z 2 a.3y 2 a. z 6ay 2az 4. Double distributivité : Pour multiplier une somme par une autre somme, il faut multiplier chaque terme de la première somme par chaque terme de la deuxième somme et additionner les résultats a 5 b. 3a 2b 2 a.3a 2 a. 2b 5 b.3a 5 b. 2b 6a 4ab 15ab 10b 6a 11ab 10b 5. La mise en évidence : Lorsque tous les termes d une somme possèdent un (des) facteur(s) commun(s), on peut transformer cette somme en un produit de facteurs en mettant ce(s) facteur(s) commun(s) en évidence. On dit qu on a factorisé par la mise en évidence. 25 a a a 7

11 6. Suppression des parenthèses : Dans une somme algébrique, on peut supprimer des parenthèses et le signe + qui les précède sans rien changer. 4a 2b 3c 4a 2b 3c Dans une somme algébrique, on peut supprimer des parenthèses et le signe - qui les précède à condition de changer le signe de tous les termes compris dans les parenthèses. 5x 4y 2z 5x 4y 2z 5x 4y 2z

12 Chapitre 8 : Les équations. Une équation est une égalité qui peut être soit vraie soit fausse en fonction de la valeur donnée à l inconnue. Résoudre une équation, c'est trouver la ou les valeurs pour lesquelles l'égalité est vraie. Ces valeurs s'appellent les solutions de l'équation. Une équation du premier degré est une équation dans laquelle les puissances de l'inconnue sont de degré 0 et 1 uniquement. Pour résoudre un problème par mise en équation, il faut : - Poser l inconnue. - Coder le problème par une équation. - Résoudre l équation. - Répondre en français à la question posée.

13 Chapitre 9 : Repérage. 1. Lire les coordonnées d un point : Pour repérer un point dans le plan, il faut : - Tracer deux droites sécantes (souvent perpendiculaires). - Les repérer à partir de leur point d intersection : l origine O(0 ;0). Les deux droites ainsi graduées forment un repère cartésien du plan. La position d un point est connue grâce à un couple de nombres. Ces deux nombres sont appelés les coordonnées du point. La première coordonnée est appelée l abscisse du point ; elle se repère sur l axe horizontal (x). La seconde coordonnée est appelée l ordonnée du point ; elle se repère sur l autre axe (y). 2. Effets des transformations du plan sur les coordonnées d un point : La symétrie orthogonale d axe x remplace l ordonnée de tout point par son opposé. La symétrie orthogonale d axe y remplace l abscisse de tout point par son opposé. La symétrie centrale de centre O remplace les cordonnées de tout point par leurs opposés. La translation ajoute (retire) un même nombre à (de) l abscisse et un même nombre à (de) l ordonnée de tout point. 3. Milieu d un segment : Les coordonnées du milieu d un segment s obtiennent en calculant la moyenne arithmétique des abscisses et la moyenne arithmétique des ordonnées des extrémités du segment. xa xb ya yb Si A(X A ; Y A ) et B(X B ; Y B ) et M le milieu du segment [AB], alors M ; 2 2.

14 Chapitre 10 : Les proportions et les pourcentages. Deux grandeurs directement proportionnelles (x et y) sont deux grandeurs telles que le quotient d une valeur de y par la valeur correspondante de x est constant ; ce nombre est le coefficient de proportionnalité (k = y : x ou y = x.k). Lorsque deux grandeurs (x et y) sont directement proportionnelles, si l une d elle est multipliée (divisée) par un nombre, alors l autre est multipliée (divisée) par le même nombre. Une valeur de la deuxième grandeur (y) peut être calculée en multipliant la valeur correspondante de la première grandeur (x) par le coefficient de proportionnalité ou en utilisant un rapport interne. Une valeur de la première grandeur (x) peut être calculée en divisant la valeur correspondante de la deuxième grandeur (y) par le coefficient de proportionnalité ou en utilisant un rapport interne. Les points du graphique qui représentent une relation de proportionnalité directe sont sur une droite passant par l origine.1 L échelle est le rapport entre la longueur sur le plan et la longueur réelle, exprimées toutes deux dans les mêmes unités. L échelle est donc le coefficient de proportionnalité entre les deux grandeurs.

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Première - Objectifs de l année en mathématique

Première - Objectifs de l année en mathématique Première - Objectifs de l année en mathématique *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» Chapitres 1&2 : Calcul mental, diviseurs et multiples 1. Définir et distinguer

Plus en détail

a, c'est aussi un nombre rationnel. Les nombres irrationnels ne peuvent pas s'écrire sous forme de fractions, c'est le cas de 2 ; 15 ; π ;...

a, c'est aussi un nombre rationnel. Les nombres irrationnels ne peuvent pas s'écrire sous forme de fractions, c'est le cas de 2 ; 15 ; π ;... CALCUL NUMÉRIQUE 1) Ensembles de nombres Les nombres naturels sont: 0 ; 1 ; 2 ; 3 ; 4 ;... L'ensemble des nombres naturels est noté N. Les nombres entiers relatifs (ou simplement : nombres entiers) sont

Plus en détail

N27 Factoriser une expression en utilisant la distributivité simple 4 ème 3 ème 34 Développer une expression en utilisant la double.

N27 Factoriser une expression en utilisant la distributivité simple 4 ème 3 ème 34 Développer une expression en utilisant la double. N Thème Numéro Titre de la leçon Niveau Page Enchainement d'opérations Nombres relatifs Fractions Divisibilité Racines carrées Puissances Calcul littéral N1 Calculer une expression SANS parenthèses 5 ème

Plus en détail

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions.

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. 1 Expressions sans parenthèses OBJECTIF 1 PROPRIÉTÉ Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. s Calcul

Plus en détail

Chapitre 8 : Les nombres relatifs.

Chapitre 8 : Les nombres relatifs. Chapitre 8 : Les nombres relatifs. I Notion de nombre relatif. 1 Utilisation des nombres relatifs. Les nombres relatifs permettent de donner une réponse à toutes les soustractions de nombres décimaux.

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Troisième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

OPERATIONS. Tableau de la numération décimale.

OPERATIONS. Tableau de la numération décimale. A5 p6 Puissances A4 p5 Calculs avec des relatifs A6 p7 Equations A7 p8 Pourcentages A8a p9 Proportions (1) A8b p10 Proportions (2) A8c p11 Proportions (3) A9 p12 Calcul algébrique (1) A10 p13 Calcul algébrique

Plus en détail

1 Priorités sur les opérations

1 Priorités sur les opérations OBJECTIFS du chapitre Numéro Arithmétique Pour toi N1 Mener des calculs avec des expressions numériques N2 Mener des calculs avec des fractions N3 Utiliser les puissances de 10 et déterminer l écriture

Plus en détail

PROPORTIONS (3) CALCUL ALGEBRIQUE (1)

PROPORTIONS (3) CALCUL ALGEBRIQUE (1) PROPORTIONS (3) Représentation graphique Si on représente des suites de nombres par un graphique, on reconnaît des suites proportionnelles au fait que les points sont alignés avec l'origine. Ex x 4 5 8

Plus en détail

2 Calculer la valeur d une expression littérale

2 Calculer la valeur d une expression littérale 1 Expressions littérales OBJECTIF 1 DÉFINITION Une expression littérale est un calcul contenant une ou plusieurs lettres qui désignent des nombres. Une expression littérale peut servir à décrire une méthode

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail

EXPRESSIONS ALGEBRIQUES, POLYNOMES.

EXPRESSIONS ALGEBRIQUES, POLYNOMES. Chapitre 4 ALGEBRE EXPRESSIONS ALGEBRIQUES, POLYNOMES. 1 ) Notions de base en calcul algébrique. Une expression algébrique est une expression dans laquelle un (ou plusieurs) nombre(s) est remplacé par

Plus en détail

A] RÉFÉRENCES À L AIDE-MÉMOIRE

A] RÉFÉRENCES À L AIDE-MÉMOIRE Pour l examen, je dois être capable de Math 9CO Niveau 1 A] RÉFÉRENCES À L AIDE-MÉMOIRE Titre Où trouver? Ensembles de nombres (nombres naturels et entiers relatifs uniquement) AM p.10 Droite numérique

Plus en détail

168,18 est la différence. Attention: à l alignement des chiffres et de la virgule. Ne pas oublier les retenues

168,18 est la différence. Attention: à l alignement des chiffres et de la virgule. Ne pas oublier les retenues ème - 5ème Calculs POUR PRENDRE UN BON DÉPART Rappel 1) Additions, multiplications Définition 1: Le résultat d une addition s appelle une somme Ex : 73,45 + 94,73 1,1 ; 73,45 et 94,73 sont les termes de

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Calcul littéral, équations, inéquations

Calcul littéral, équations, inéquations Calcul littéral, équations, inéquations 1) Calcul littéral a. Égalités des expressions littérales Des expressions sont littérales quand elles sont écrites avec des lettres. Elles sont égales quand elles

Plus en détail

Programme de mathématiques de la classe de cinquième

Programme de mathématiques de la classe de cinquième Programme de mathématiques de la classe de cinquième L enseignement des mathématiques en classe de cinquième doit consolider et approfondir les acquis de la scolarité élémentaire et de la sixième et doter

Plus en détail

Cours 6º et 5º - Partie ALGÈBRE

Cours 6º et 5º - Partie ALGÈBRE Cours 6º et 5º - Partie ALGÈBRE Xavier MALEVILLE 10 de junio de 2010 Índice 1. LES NOMBRES ET LES OPÉRATIONS 3 1.1. Nomre décimal....................................... 3 1.2. Additions, soustractions

Plus en détail

Ecritures fractionnaires :

Ecritures fractionnaires : Ecritures fractionnaires : I) Ecritures fractionnaires d un quotient (Révision de 6e) 1) Définitions: La notation a b (b 0) est une écriture fractionnaire. Le nombre a est le numérateur. Le nombre b est

Plus en détail

SOMMAIRE du Cours de Mathématiques

SOMMAIRE du Cours de Mathématiques SOMMAIRE du Cours de Mathématiques Thème : NOMBRES ET CALCULS Chapitre 01 : NOMBRES DECIMAUX Fiche 1 : Fractions décimales et nombres décimaux Fiche 2 : Demi-droite graduée Fiche 3 : Comparer des nombres

Plus en détail

Pour démarrer calcul mental, calculer une expression algébrique. 1) Règles de suppression de parenthèses. 2 1 x. 2) Réduction d expression littérale

Pour démarrer calcul mental, calculer une expression algébrique. 1) Règles de suppression de parenthèses. 2 1 x. 2) Réduction d expression littérale CALCUL LITTERAL, EQUATIONS Compétences traitées : 4.N40 Calculer une expression littérale pour des valeurs numériques données. 4.N41 Réduire une expression littérale du premier ou second degré à une ou

Plus en détail

C3T3 PGCD - Puissances

C3T3 PGCD - Puissances Objectif 3-1 Division euclidienne C3T3 PGCD - Puissances Définition a r b q La division euclidienne de l'entier a par l'entier b est l'opération qui permet de trouver deux entiers naturels q et r tels

Plus en détail

Sixième Résumé de cours de mathématiques

Sixième Résumé de cours de mathématiques 1 Algèbre Sixième Résumé de cours de mathématiques 1.1 Les nombres entiers et décimaux Les nombres entiers sont composés de un ou plusieurs chiffres, il n'y a pas de virgule. De droite à gauche, dans le

Plus en détail

Programme Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490)

Programme Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490) Programme 2008 Mathématiques 4e S. ROUSTIT CLG F.RABELAIS L HOPITAL (57490) 4 E N1 NOMBRES RELATIFS - VOCABULAIRE 5 I QU EST CE QU UN NOMBRE RELATIF? 5 II PARENTHESES ET SYMBOLE «- E5 III OPPOSE D UN NOMBRE

Plus en détail

I. Quotient de deux nombres, priorités de calcul et distributivité :

I. Quotient de deux nombres, priorités de calcul et distributivité : 1 / 5 I. Quotient de deux nombres, priorités de calcul et distributivité : 1) Quotient de deux nombres entiers : Soient et b deux nombres avec b Le quotient de par b est le nombre qui, multiplié par b,

Plus en détail

Chapitre 5 : Calcul littéral et équations

Chapitre 5 : Calcul littéral et équations Chapitre 5 : Calcul littéral et équations I Rappels. Définition : Une expression littérale est une expression dans laquelle un ou plusieurs nombres sont désignés par des lettres. Si une même lettre apparaît

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

MATHÉMATIQUES CINQUIÈME

MATHÉMATIQUES CINQUIÈME Collège STANISLAS de QUÉBEC ( 2011-2012 ) MATHÉMATIQUES CINQUIÈME 1. OBJECTIFS. Acquérir des connaissances pratiques et utiles dans des situations de la vie pratique.. Acquérir des notions fondamentales

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 retenir : hapitre 1 1 * 1 Vocabulaire des 4 opérations. alcul Symbole Opération 1 e élément 2 e élément Résultat 15 + 3 = 18 + addition terme terme somme 15 3 = 12 - soustraction terme terme différence

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

Débrouillage pré-diagnostique. Mathématique. Secondaire III. Mat-3001 Mat Mat-3003

Débrouillage pré-diagnostique. Mathématique. Secondaire III. Mat-3001 Mat Mat-3003 Débrouillage pré-diagnostique Mathématique Secondaire III Mat-3001 Mat-300 Mat-3003 Conception originale : Mario Dumais Adaptation : Éric Malenfant Adaptation subséquente : Micheline Denis, Dominic Ducharme

Plus en détail

Nombres relatifs : L ensemble des nombres positifs (4 ; 0 ; 57 ; 19,1 ) et l ensemble des nombres négatifs forment les nombres relatifs.

Nombres relatifs : L ensemble des nombres positifs (4 ; 0 ; 57 ; 19,1 ) et l ensemble des nombres négatifs forment les nombres relatifs. Nombres relatifs : 0. Où trouve-t-on des nombres relatifs? températures (-10 C à Reims en Hiver) soldes (-20% sur tel article) compte bancaire (compte débiteur de 50 ) bourse (1,5% à la clôture) piles

Plus en détail

Progression 5e - MATHEMATIQUES

Progression 5e - MATHEMATIQUES PREMIER TRIMESTRE PRIORITE DES OPERATIONS (Chap1) I) Calculs sans parenthèses II) Calculs avec parenthèses Activités : Révision de l ODG, CALCUL MENTAL - Effectuer une succession d opérations donnée sous

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

1. Rappels de Cinquième

1. Rappels de Cinquième Classe de 4ème Chapitre 1 1. Rappels de Cinquième Calculs numériques Ecriture décimale 1.1. Addition de nombres relatifs. Règle 1: Pour additionner deu nombres relatifs de même signe : on additionne les

Plus en détail

Programme de mathématiques

Programme de mathématiques Enseignement Secondaire et Secondaire Technique 32 avenue de la Gare, L-9233 Diekirch boîte postale 39, L-9201 Diekirch www.lcd.lu Lycée classique de Diekirch t (+352) 26 807 210 f (+352) 80 95 84 Programme

Plus en détail

Révisions mathématique- 1 ère année

Révisions mathématique- 1 ère année Révisions mathématique- 1 ère année Chapitre 4 : Solides et objets dans l espace 1. Voici une série de solides. Objet 1 Objet 2 Objet 3 Objet 4 Nom des solides Est-ce un polyèdre? Est-ce un prisme droit?

Plus en détail

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble.

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. ENSEMBLE DE NOMBRES I. Rappels sur les ensembles 1. Définitions Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. Il est décrit : - par la liste de ces éléments (il est

Plus en détail

Outils algébriques et numériques 2 nde

Outils algébriques et numériques 2 nde Outils algébriques et numériques 1 Distributivité de la multiplication par rapport à l addition Propriété 1. En cinquième, vous avez appris que la multiplication est distributive par rapport à l addition

Plus en détail

Nombres-calcul algébrique

Nombres-calcul algébrique Les ensembles de nombres Notions de troisième et exemples. notations-symboles d appartenance et d inclusion L ensemble N = {0; ; ;...} est appelé ensemble des entiers naturels et se note N. L ensemble

Plus en détail

Comparaison des Connaissances et compétences associées Nombres et calculs

Comparaison des Connaissances et compétences associées Nombres et calculs Comparaison des Connaissances et compétences associées Nombres et calculs Dénombrer, constituer et comparer des collections. Utiliser diverses stratégies de dénombrement. Cycle 2 Cycle 3 Cycle 4 Procédures

Plus en détail

Chapitre 1 : CALCUL NUMERIQUE

Chapitre 1 : CALCUL NUMERIQUE Introduction. Ce chapitre a pour but de faire une révision complète et rapide sur l ensemble des connaissances calculatoire de l élève, supposées déjà acquises. Il est fondamental de maîtriser chaque règle

Plus en détail

Brevet : le minimum vital à connaître

Brevet : le minimum vital à connaître Brevet : le minimum vital à connaître Thème Cours Exemples Calcul Fractions Puissances Règles de priorité: On commence par les parenthèses, puis les multiplications ou division et enfin les additions ou

Plus en détail

Thème 9: Division de polynômes et fractions rationnelles

Thème 9: Division de polynômes et fractions rationnelles DIVISION DE POLYNÔMES ET FRACTIONS RATIONNELLES 15 Thème 9: Division de polynômes et fractions rationnelles 9.1 Valeur numérique d un polynôme Définition : On appelle valeur numérique d un polynôme p(x)

Plus en détail

Chapitre III : Développer - Factoriser pour résoudre

Chapitre III : Développer - Factoriser pour résoudre Chapitre III : Développer - Factoriser pour résoudre Extrait du programme : I Vocabulaire Définition 1 :Développer, c est transformer un produit de facteurs en somme de termes. Factoriser, c est transformer

Plus en détail

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS 1. La relation de divisibilité. Soient a e b deux entiers naturels. Si la division est exacte alors : o a est un MULTIPLE de b o b est un DIVISEUR de a Multiples d un nombre Les multiples d un nombre entier

Plus en détail

Les fractions. Maths 8 chapitre 2

Les fractions. Maths 8 chapitre 2 Maths 8 chapitre 2 . Introduction Une fraction est une division non effectuée de deux entiers relatifs n est appelé le numérateur d est appelé le dénominateur d 0 n d 2 2.Rappels sur l'addition L'addition

Plus en détail

Nombres relatifs cours 5e

Nombres relatifs cours 5e Nombres relatifs cours 5e F.Gaudon 23 octobre 2004 Table des matières 1 Repérage 2 1.1 Repérage sur une droite graduée................. 2 1.2 Repérage dans le plan...................... 2 2 Comparaison

Plus en détail

a qui se lit «a au carré», on peut a qui se lit «a au cube».

a qui se lit «a au carré», on peut a qui se lit «a au cube». Simplification d une expression littérale Convention d écriture : pour simplifier l écriture d une expression littérale, on peut supprimer le symbole devant une lettre ou devant une parenthèse. Rappels

Plus en détail

Date Dans notre calendrier, la date de la fondation de Rome est notée «-732», ce qui signifie «732 avant Jésus-Christ».

Date Dans notre calendrier, la date de la fondation de Rome est notée «-732», ce qui signifie «732 avant Jésus-Christ». LES NOMBRES RELATIFS I. Qu est-ce qu un nombre relatif? 1. Des exemples de nombres relatifs Température En hiver, les températures sont parfois négatives : -3 C ou 10 C, et parfois positives : +2 C. Il

Plus en détail

COMPETENCE (Pilier du socle commun) :

COMPETENCE (Pilier du socle commun) : COMPETENCE (Pilier du socle commun) : DOMAINE : Nombres et Calculs ATTITUDES Connaissances Capacités Préalables nécessaires 2.1 Nombres entiers et décimaux Désignation - Connaître et utiliser la valeur

Plus en détail

Opérations sur les nombres relatifs

Opérations sur les nombres relatifs Opérations sur les nombres relatifs I) Rappels : a) Définition : Un nombre relatif est un nombre écrit avec un signe + ou suivi d un nombre appelé partie numérique b) Définition : Un nombre relatif écrit

Plus en détail

Enchaînements d opérations

Enchaînements d opérations Enchaînements d opérations 1. Effectuer une succession d opérations : règles de priorités opératoires Dans une expression sans parenthèses, quand il y a uniquement des additions et des soustractions, on

Plus en détail

Nombres rationnels (Rappel)

Nombres rationnels (Rappel) Nombres rationnels (Rappel) I) Les nombres relatifs 1) Addition de deux nombre relatifs (rappel) Mêmes signes Signes différents Règles de calcul: On additionne les distances à zéro des deux nombres On

Plus en détail

Séquence 1 : Arithmétique (Nombres et calculs)

Séquence 1 : Arithmétique (Nombres et calculs) Séquence 1 : Arithmétique (Nombres et calculs) Plan de la séquence : I- Rappels de 4ème: 1) Calculs 2) Fractions 3) Nombres relatifs 4) Puissances a) Définition b) Propriétés c) Calculs d expressions d)

Plus en détail

Cours de 6ème. Jean Roussie

Cours de 6ème. Jean Roussie Cours de 6ème Jean Roussie 13 mai 2014 Chapitre 1 Nombres entiers et nombres décimaux 1.1 Les entiers naturels 1.1.1 Numérotation décimale Notre système de numérotation est composé de 10 symboles appelés

Plus en détail

Chapitre II Développer Factoriser pour résoudre. On développe x ( 5 + y ) = 5x + xy On factorise

Chapitre II Développer Factoriser pour résoudre. On développe x ( 5 + y ) = 5x + xy On factorise Chapitre II Développer Factoriser pour résoudre Extrait du programme : I. Vocabulaire Définitions : - «Développer» c'est transformer un produit de facteurs en somme de termes. - «Factoriser» c'est transformer

Plus en détail

Algorithmique. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme de calculs.

Algorithmique. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme de calculs. Voici le visuel du manuel actuellement utilisé dans notre collège en classe de 6 e.. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

1 Quelques règles algébriques importantes Fractions Puissances Priorité des opérations... 2

1 Quelques règles algébriques importantes Fractions Puissances Priorité des opérations... 2 Table des matières 1 Quelques règles algébriques importantes 2 1.1 Fractions........................................ 2 1.2 Puissances....................................... 2 1. Priorité des opérations................................

Plus en détail

Période : 7 semaines MARDI JEUDI VENDREDI

Période : 7 semaines MARDI JEUDI VENDREDI Période 1 2015-2016 : 7 semaines 1 1 2 2 3 3 4 4 5 5 6 6 7 7 01/09 03/09 04/09 08/09 Utiliser la calculatrice (1) Utiliser la calculatrice (1) 15/09 Utiliser la calculatrice (2) Utiliser la calculatrice

Plus en détail

Cours 2 nde D. CRESSON

Cours 2 nde D. CRESSON Cours 2 nde D. CRESSON 15 novembre 2008 Chapitre 1 LES NOMBRES I Ensembles de nombres 1 Dénomination On note N l ensemble des nombres entiers naturels N = {0; 1; 2; 3;...; 1643722;...} On note Z l ensemble

Plus en détail

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie)

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) I. Sens de l'écriture fractionnaire 1/ Rappels Définition a et b représentent deux nombres non nuls (différents de 0 ).

Plus en détail

Algèbre. Equations du premier degré à une inconnue

Algèbre. Equations du premier degré à une inconnue Equations du premier degré à une inconnue 1. Résolution graphique d équations Une méthode (pas toujours précise) pour résoudre une équation est de dessiner les graphes des fonctions représentées par le

Plus en détail

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base EXAMEN PROFESSIONNEL Adjoint technique territorial de ère classe MATHEMATIQUES TRAVAUX NUMÉRIQUES ère partie Nombres entiers Nombres décimaux Fractions Opérations de Base TRAVAUX NUMERIQUES - Nombres Entiers

Plus en détail

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES a.) Entiers naturels Les entiers naturels sont les entiers positifs et 0. Par exemple, 0, 1, 2 et 5676 sont des entiers naturels. Par contre 45 n'en est pas un.

Plus en détail

4e : Addition, soustraction et comparaison

4e : Addition, soustraction et comparaison Chapitre 1 4e : Addition, soustraction et comparaison 1.1 Addition de nombres décimaux 1 Calculer et rappeler les règles de calcul : -8+2 ;-3+(-5) ;7+(-2). 2 Compléter : + 9 6 5 7 3 12 20 3 Calculer et

Plus en détail

Progression en cycle 4

Progression en cycle 4 Progression en cycle 4 Nombres et calculs Sens des nombres Conforter la maitrise des procédures de calcul. Nombres rationnels de signe quelconque. Un même nombre peut avoir plusieurs écritures (notamment

Plus en détail

Chapitre 1 : Opération sur les nombres relatifs

Chapitre 1 : Opération sur les nombres relatifs Chapitre 1 : Opération sur les nombres relatifs I- Rappels Activité 1 : Activité 2 Activité 3 2 RETENONS : Comparaison de deux nombres relatifs Propriété : - Tout nombre positif est plus grand que tout

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

II. Expressions littérales

II. Expressions littérales Chapitre 3 Calcul littéral I. Activités Activité n 1 p.30 A et B. (voir cahier d exercices) Périmètre et aire d un carré. Périmètre et aire d un rectangle II. Expressions littérales 1) Expression numérique

Plus en détail

LEÇONS DE MATHEMATIQUES

LEÇONS DE MATHEMATIQUES LEÇONS DE MATHEMATIQUES NUMERATION N1 : Distinguer chiffre et nombre N2 : Lire, écrire et décomposer les nombres de 0 à 999 999 N3 : Comparer, encadrer et ranger les nombres de 0 à 999 999 N4 : Lire, écrire

Plus en détail

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème CYCLE 4 Thème 5ème 4ème 3ème Calcul numérique Calculer avec des parenthèses Calculer sans parenthèses Thème A NOMBRES et CALCULS Nombres relatifs Fractions Calcul littéral Puissance Racines carrées Equation

Plus en détail

Table des matières. 2. Définition... 23

Table des matières. 2. Définition... 23 Table des matières 1. Généralités... 7 1.1.Notations et codage en géométrie... 9 1.2.Quelques symboles mathématiques... 10 1.3.Verbes de consignes... 11 1.4.Proportionnalité... 13 1.5.Composition... 15

Plus en détail

Formulaire de mathématiques

Formulaire de mathématiques NOM : Prénom : Classe : Formulaire de mathématiques Ce formulaire contient l essentiel de la matière de 3 ème ainsi que des synthèses de 4 ème. Complète-le, prends-le avec toi au cours et au remédiations

Plus en détail

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS.

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. I DEVELOPPEMENT ET FACTORISATION : Rappelons que, dans une suite de calculs, les calculs dans les parenthèses sont prioritaires ; en cas d absence de

Plus en détail

Bilans Révisions pour la 1 S

Bilans Révisions pour la 1 S Bilans Révisions pour la 1 S Fonctions Intervalles Déterminer l ensemble de définition d une fonction Déterminer l image d un nombre a par une fonction Déterminer les antécédents éventuels d un nombre

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

Répartition annuelle

Répartition annuelle Année scolaire 2016-2017 Classe : EB5 Matière : Mathématiques Répartition annuelle Semaine Chapitre Titre Objectifs/Compétences 1/2 1 1 er trimestre Les entiers les multiples (révision) - Lire, écrire

Plus en détail

CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES. 1. Fractions. EXERCICE 1 : Hachurer la fraction du rectangle indiquée.

CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES. 1. Fractions. EXERCICE 1 : Hachurer la fraction du rectangle indiquée. CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES 1. Fractions EXERCICE 1 : Hachurer la fraction du rectangle indiquée. Exemples : 1 Le quotient de deux nombres relatifs ne change pas quand on multiplie

Plus en détail

CHAPITRE 1. Quelques rappels

CHAPITRE 1. Quelques rappels 2 CHAPITRE 1 Quelques rappels 1. Théorie des ensembles 1.1. Introduction. La théorie des ensembles joue un rôle important en calcul différentiel. On a qu à penser au domaine d une fonction qui est en réalité

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources N chapitre 1 5 Durée Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources heure s Proportionnalité calcul calculs (1) Valeur approchée Troncature Arrondi Critères de divisibilité

Plus en détail

Progression des apprentissages / Mathématique/5 e année

Progression des apprentissages / Mathématique/5 e année Progression des apprentissages / Mathématique/5 e année Étape 1 Étape 2 Étape 3 Arithmétique : Nombres naturels inférieurs à 1 000 000 : par ordre croissant ou décroissant + par bonds Arithmétique : Lire

Plus en détail

Enseigner les mathématiques aux élèves de SEGPA

Enseigner les mathématiques aux élèves de SEGPA Enseigner les mathématiques aux élèves de SEGPA E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH L enseignement des mathématiques en SEGPA a une triple visée : - consolider, enrichir et structurer les acquis de

Plus en détail

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs R.1. Additionner et soustraire des nombres relatifs R.2. Effectuer une somme algébrique. 4.1 Donner la règle des signes dans

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2021 CAHIER 2 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2021 CAHIER 2 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 01 ET CORRIGÉ MAT 01 TABLE DES MATIÈRES I 1.0 NOTIONS ALGÉBRIQUES... 1 1.1 Présenter le terme?algèbre... 1 1. Définir les termes de base... Exercice 1... 7 1.3 Calculer la

Plus en détail

Chapitre 2. Calcul littéral. Théorie. 2.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT 2.2 LES SIMPLIFICATIONS D ÉCRITURE

Chapitre 2. Calcul littéral. Théorie. 2.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT 2.2 LES SIMPLIFICATIONS D ÉCRITURE 7 Chapitre Calcul littéral Théorie.1 RAPPEL DE 8 e : DÉVELOPPER UN PRODUIT Le calcul littéral consiste à calculer avec des variables (c est-à-dire avec des lettres) comme on le ferait avec des nombres.

Plus en détail

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base PROGRESSION 3ème Algèbre PGCD Je sais Ne sais pas vocabulaire + Connaître la définition et donner un multiple, un diviseur d'un nombre, + divisibilité savoir si un nombre est divisible par 2 3 5 9 10 (rappel

Plus en détail

Chapitre 8 : Fonctions linéaires et fonctions affines

Chapitre 8 : Fonctions linéaires et fonctions affines Chapitre 8 : Fonctions linéaires et fonctions affines I Synthèse sur la proportionnalité. 1 Coefficient de proportionnalité. Définition : Deux listes de nombres sont proportionnelles lorsqu on obtient

Plus en détail

1 identités, équations

1 identités, équations 1 identités, équations 1 réduction de produits 2 réductions de sommes 3 distributivité 4 développer, réduire 5 équations de type ax+b=0 Identité découverte 1 carré d'une somme 2 carré d'une différence

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : Cours, Techniques et Exercices Algèbre Denis LE FUR Collège Zéphir, Cayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques

Plus en détail

Arithmétique. Nombres rationnels et opérations

Arithmétique. Nombres rationnels et opérations Nombres rationnels et opérations Nombres rationnels ou fractions Un nombre rationnel est le quotient de deux nombres entiers (le diviseur est différent de zéro) Exemple: : = 0,7 Au lieu d'écrire le résultat

Plus en détail

CALCUL LITTERAL Calculer la valeur d une expression littérale en donnant aux variables des valeurs numériques.

CALCUL LITTERAL Calculer la valeur d une expression littérale en donnant aux variables des valeurs numériques. 1 PROGRESSION 4 EME 1) OPERATIONS AVEC LES NOMBRES RELATIFS CALCUL NUMERIQUE Opérations (+,,, ) sur les nombres relatifs en écriture décimale. Enchainement d opérations. Calculer le produit de nombres

Plus en détail

Compétences (en référence au programme)

Compétences (en référence au programme) Séance N Lycée HONNORAT BARCELONNETTE Durée effectif 0 1h 29 Classes :5 e Planification prévisionnelle des enseignements de mathématiques Mise en œuvre des programmes de 5 ème à la rentrée 2011 Cette planification

Plus en détail

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012 Classe de Troisième CORRECTION DU BREVET BLANC Année 2012 MATHÉMATIQUE PARTIE NUMÉRIQUE EXERCICE N 1 : Un nombre entier : - Est compris entre 100 et 150 ; - Est divisible par 3 ; - N est pas divisible

Plus en détail