Fonction carrée Problèmes du second degré

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fonction carrée Problèmes du second degré"

Transcription

1 Fonction carrée Problèmes du second degré Année scolaire 2015/2016 Table des matières 1 Quelques rappels Les identités remarquables Développement Factorisation Fonction carrée Définition Parité Variations Courbe représentative Application à des encadrements Fonctions polynômes du second degré Définition Sens de variation Table des figures 1 Fonction paire Courbe représentative de la fonction carrée Encadrements (fonction carrée) Exemple Encadrements (fonction carrée) Exemple Encadrements (fonction carrée) Exemple Liste des tableaux 1 Tableau de valeurs de la fonction carrée Variations d un trinôme du second degré

2 1 QUELQUES RAPPELS 1 Quelques rappels 1.1 Les identités remarquables Les identités remarquables : Si a et b sont deux réels quelconques, alors : Carré de la somme : (a + b) 2 = a 2 + 2ab + b 2 Carré de la différence : (a b) 2 = a 2 2ab + b 2 Différence de deux carrés : a 2 b 2 = (a b) (a + b) Remarque : les identités remarquables sont à connaître par cœur, et dans les deux sens. 1.2 Développement Développer, c est transformer un produit en somme. Remarques : Quelques erreurs à éviter 1. Ne pas oublier le double-produit dans le cas du développement d un carré (A + B) 2 = A 2 +2AB + B 2 (A B) 2 = A 2 2AB + B 2 2. Lorsqu on a su signe devant un parenthèse, il faut changer tous les signes (A + B C) = A B+C Exemples : (tiré de l exercice 5 page 70 [TransMath]) A = (2x + 1) (x 4) = (2x) x x 8 = 4x 2 + 4x x 8 = 4x 2 + 6x 7 B = (3x 2) 2 4 (x + 2) = (3x) 2 2 3x x 8 = 9x 2 12x + 4 4x 8 = 9x 2 16x 4 Exercices : 1, 2, 4, 5, 6 page 70 et 55, 58 page 81 1 [TransMath] 1.3 Factorisation Factoriser, c est transformer une somme en produit. Voici les questions à se poser, dans l ordre, pour factoriser une expression : 1. Est-elle déjà factorisée? Dans ce cas, il faut rendre la factorisation optimale... Exemple à terminer : A (x) = (5x 1) ( 3x 2 x ) 2. Reconnaît-on une identité remarquable? Exemple résolu : 1. Développement. B (x) = x 2 (3x 2) 2 = [x (3x 2)] [x + (3x 2)] = (x 3x + 2) (x + 3x 2) = ( 2x + 2) (4x 2) 2

3 2 FONCTION CARRÉE Exemple à terminer : C (x) = (5x 2) 2 4 (x 3) 2 3. Dans tous les termes de la somme, a-t-on le même facteur commun? Souligner ce facteur commun, le mettre en facteur, puis écrire entre crochets ce qui n est pas souligné. Exemple résolu : D (x) = (2x 1) (x + 4) + (x + 4) 2 = (2x 1) (x + 4) + (x + 4) (x + 4) = (x + 4) [(2x + 1) + (x + 4)] = (x + 4) (2x x + 4) = (x + 4) (3x + 5) Exemple à terminer : E (x) = (x 2) (2x + 1) 2 (x 2) 2 Quelques erreurs à éviter (a) Ne pas oublier le facteur 1 dans une factorisation : (x + 2) 2 + x + 2 = (x + 2) (x + 2) + (x + 2) 1 = (x + 2) [(x + 2) +1] = (x + 2) (x ) = (x + 2) (x + 3) (b) Le facteur commun est parfois implicite. Il faut alors le faire apparaître : (3x 1) 2 3x + 1 = (3x 1) (3x 1) (3x 1) = (3x 1) [(3x 1) 1] = (3x 1) (3x 1 1) = (3x 1) (3x 2) Exemples à terminer : F (x) = 3 x + (3 x) 2 et G (x) = (2x 5) (x + 6) 2x Peut-on factoriser une partie de l expression? Après l avoir factorisée, essayer de terminer à l aide d un facteur commun. Exemple résolu : H (x) = 4x 2 1 (3x + 5) (2x 1) }{{} = (2x) (3x + 5) (2x + 1) = (2x 1) (2x + 1) (3x + 5) (2x + 1) = (2x + 1) [(2x 1) (3x + 5)] = (2x + 1) (2x 1 3x 5) = (2x + 1) ( x 6) Exemple à terminer : I (x) = (x 3) (x + 2) (x + 2) 2 + 2x 2 + 4x 5. Si rien ne marche, essayez de développer l expression... Mais ceci a vraiment peu de chances d aboutir. Exemple à terminer : J (x) = (4x 1) 2 (4x 2) (4x + 1) Exercices : 8, 9, 10 page , 12, 13 page 71 et 61, 62, 63, 65 page , 15 page 71 et 66, 68 page page 71et 58 page 81 5 [TransMath] 2 Fonction carrée 2.1 Définition Parité Définition : La fonction carrée est la fonction f définie sur R par : 2. Premières factorisations. 3. Factorisations. 4. Choix d expressions. 5. Un problème d aires. f : x x 2 3

4 2.2 Variations Courbe représentative 2 FONCTION CARRÉE Remarque : Pour tout x R, ( x) 2 = x 2. On a donc f ( x) = f (x). On dit que la fonction carré est paire. Sa courbe est symétrique par rapport à l axe des ordonnées (voir figure 1). Figure 1 Fonction paire On peut donc limiter l étude de ses variations à l intervalle [0 ; + [. 2.2 Variations Courbe représentative Propriété : La fonction carrée est croissante sur l intervalle [0 ; + [. La fonction carrée est décroissante sur l intervalle ] ; 0] Démonstration : - Soient a, b [0 ; + [ avec a b. f (b) f (a) = b 2 a 2 = (b a) (b + a) Comme a b, b a est positif. Comme a 0 et b 0, b + a est positif. Par suite, f (b) f (a) 0, c est-à-dire f (a) f (b). L ordre est conservé donc f est croissante sur [0 ; + [. - Soient a, b ] ; 0] avec a b. f (b) f (a) = b 2 a 2 = (b a) (b + a) Comme a b, b a est positif. Comme a 0 et b 0, b + a est négatif. Par suite, f (b) f (a) 0, c est-à-dire f (a) f (b). L ordre est inversé donc f est décroissante sur [0 ; + [. Remarque : On a donc le tableau de variations suivant : x 0 + x 2 0 Courbe représentative de la fonction carrée : Il suffit de faire un tableau de valeurs et de tracer la courbe sur l intervalle [0 ; + [. L autre partie de la courbe se déduit par symétrie par rapport à l axe des ordonnées (voir tableau 1 et figure 2). x 0 0, x 2 0 0, Table 1 Tableau de valeurs de la fonction carrée La courbe représentative de la fonction carrée est une parabole. 4

5 2.3 Application à des encadrements 2 FONCTION CARRÉE Figure 2 Courbe représentative de la fonction carrée 2.3 Application à des encadrements Propriété : Pour des nombres positifs, le passage au carré conserve l ordre. Si a 0 ; b 0 et a b alors a 2 b 2 Pour des nombres négatifs, le passage au carré inverse l ordre. Si a 0 ; b 0 et a b alors a 2 b 2 Exemples : 1. On suppose que 1 x 4. Encadrer au mieux x 2. La fonction carrée est croissante sur l intervalle [1 ; 4], donc elle conserve l ordre (voir figure 3). On a donc : 1 x Figure 3 Encadrements (fonction carrée) Exemple 1 2. On suppose que 3 x 2. Encadrer au mieux x 2. La fonction carrée est décroissante sur l intervalle [ 3 ; 2], donc elle inverse l ordre (voir figure 4). On a donc : 4 x

6 2.3 Application à des encadrements 2 FONCTION CARRÉE Figure 4 Encadrements (fonction carrée) Exemple 2 3. On suppose que 2 x 4. Encadrer au mieux x 2. La fonction carrée est n est pas monotone sur l intervalle [ 2 ; 4]. Elle est décroissante sur l intervalle [ 2 ;, 0] et croissante sur l intervalle [0 ; 4] On utilise la courbe représentative de la fonction carrée pour déterminer le minimum et le maximum sur l intervalle [ 2 ; 4] (voir figure 5). On a donc : 0 x Figure 5 Encadrements (fonction carrée) Exemple 3 Remarque : On peut aussi utiliser le tableau de variations de la fonction carrée (adapté à l intervalle donné) pour résoudre ces problèmes d encadrements. Exercices : 17, 18, 19, 20, 21 page , 24, 26, 27, 28 page , 30, 31 page 74 et 32, 34 page , 78 page page 79 et 80, 81 page page 79 ; 94, 95 page 84 et 98 page [TransMath] 6. Utilisation des variations de la fonction carrée. 7. Utiliser le tableau de variations de la fonction carrée. 8. Résolution d équations et d inéquations. 9. Comparaison de nombres. 10. Comparer graphiquement. 11. Mettre un problème en équation. 6

7 3 FONCTIONS POLYNÔMES DU SECOND DEGRÉ 3 Fonctions polynômes du second degré 3.1 Définition Définition : On appelle fonction polynôme du second degré toute fonction f définie sur R pouvant s écrire sous la forme f (x) = ax 2 + bx + c, avec a 0. Exemples : 1. f (x) = 3x 2 x + 1 est un polynôme du second degré (a = 3 ; b = 1 et c = 1) 2. g (x) = (3x 2) (1 x) est un polynôme du second degré : En développant, on obtient : g (x) = 3x 2 + 5x 2 (a = 3 ; b = 5 et c = 2) 3. h (x) = 2 (x + 1) est un polynôme du second degré : En développant, on obtient : h (x) = 2 ( x 2 + 2x + 1 ) + 3 = 2x 2 4x + 1 (a = 2 ; b = 4 et c = 1) 4. h (x) = 3x 2 est un polynôme du second degré (a = 3 ; b = 0 et c = 0) 5. Par contre, les fonctions suivantes ne sont pas des polynômes du second degré : j : x 3x 1 (car le coefficient de x 2 doit être non nul) k : x x (car cette fonction n est pas définie sur R) 3.2 Sens de variation d un polynôme du second degré Activité : Activité 1 page [TransMath] Le tableau 2 donne le sens de variations des fonctions polynômes du second degré. Ces résultats seront montrés en classe de Première. On note α = b 2a et β = f (α). a > 0 a < 0 Tableau de variations de f x α + f (x) β x α + β f (x) Courbe représentative de f Table 2 Variations d un trinôme du second degré Remarques : 12. Trajectoire parabolique. 7

8 RÉFÉRENCES RÉFÉRENCES 1. La courbe représentative d un trinôme du second degré est appelée parabole. 2. Le sommet de la courbe est le point S (α ; β). Si a > 0, elle est tournée vers le haut. Si a < 0, elle est tournée vers le bas. 3. Dans tous les cas, la droite verticale passant par le sommet S de la parabole est un axe de symétrie de la courbe. Exercices : 39, 40, 41, 42 page , 84 page , 88 page page 79 ; 97 page 85 et 100 page [TransMath] Exercices de synthèses : 107, 108, 110 page et 109 page [TransMath] Références [TransMath] Transmath Seconde, Nathan (édition 2010). 2, 3, 6, 7, Étudier une fonction polynôme du second degré. 14. Reconnaissance de courbes. 15. Identifications. 16. Problèmes d optimisation. 17. Des problèmes d aire. 18. Choix d expression. 8

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Second degré Équations et inéquations

Second degré Équations et inéquations Second degré Équations et inéquations Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Fonction trinôme du second degré 1.1 Définition et rappels sur le sens de variation..............................

Plus en détail

LA FONCTION " CARRÉ " et LE SECOND DEGRÉ

LA FONCTION  CARRÉ  et LE SECOND DEGRÉ Index I- Définition... 1 I-1 Rappel... 1 I-2 Définition:... 2 II- Une propriété de la fonction carré:... 2 II-1 Observation... 2 Remarque et définition:... 2 II-2 Interprétation graphique de cette propriété...

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2 ETUDES DE FONCTIONS I. Fonctions polynômes de degré 1. Définition Une fonction polynôme de degré f est définie sur IR par des nombres réels donnés et a 0. ax bx c, où a, b et c sont Exemples : - f x x

Plus en détail

Variations des fonctions associées

Variations des fonctions associées Variations des fonctions associées Année scolaire 2014/2015 Table des matières 1 Quelques rappels 3 1.1 Sens de variation d une fonction..................................... 3 1.2 Fonctions affines.............................................

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

Bilans Révisions pour la 1 S

Bilans Révisions pour la 1 S Bilans Révisions pour la 1 S Fonctions Intervalles Déterminer l ensemble de définition d une fonction Déterminer l image d un nombre a par une fonction Déterminer les antécédents éventuels d un nombre

Plus en détail

Chapitre 7 Fonction du second degré, algèbre, équations

Chapitre 7 Fonction du second degré, algèbre, équations Chapitre 7 Fonction du second degré, algèbre, équations TABLE DES MATIÈRES page -1 Chapitre 7 Fonction du second degré, algèbre, équations Table des matières I Exercices I-1 1................................................

Plus en détail

Polynômes du second degré et fonctions homographiques 2nde

Polynômes du second degré et fonctions homographiques 2nde Fonctions de référence Polynômes du second degré et fonctions homographiques 2nde Table des matières I. Fonctions homographiques...1 A. La star de la famille : La fonction inverse (Normalement vous connaissez

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

La forme canonique. Quand on ne sait pas!

La forme canonique. Quand on ne sait pas! La forme canonique Quand on ne sait pas! La plupart des polynômes du second degré peuvent s écrire sous 3 formes : développée, factorisée et canonique. EXEMPLE Ax ( ) EXEMPLE ( ) = æ x 3 ö ç +. çè Ici,

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES Ph DEPRESLE 6 juin 05 Table des matières Fonction carré. Fonction x x..................................... Fonction x ax, a 0...............................

Plus en détail

Chapitre 3 : Second degré et fonction polynôme

Chapitre 3 : Second degré et fonction polynôme Lycée Jean Durand, Castelnaudary Classe de 1 ère S Chapitre 3 : Second degré et fonction polynôme D. Zancanaro C. Aupérin 2009-2010 Télécharger c est tuer l industrie, tuons les tous Thurston Moore Dernière

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O.

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O. Chapitre 9 : fonctions du second degré descriptives I. La fonction carré I. 1 Définition Définition La fonction carré est la fonction qui, à tout nombre réel x, associe son carré x. Si on note f la fonction

Plus en détail

POLYNOME DU SECOND DEGRE

POLYNOME DU SECOND DEGRE POLYNOME DU SECOND DEGRE 1 Fonctions polynômes Définition 1.1 On appelle fonction polynôme de degré n toute fonction P définie sur R de la forme : P () =a n n + a n1 n1 + + a p p + + a 2 2 + a 1 + a 0

Plus en détail

Mathématiques en première S Second degré

Mathématiques en première S Second degré Mathématiques en première S Second degré Table des matières Introduction La forme canonique Définitions 4 Factorisation des trinômes 4 5 Racines d un polynôme du second degré 4 6 Signe d un polynôme du

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Rappels sur les fonctions. Fonctions polynômes du second degré

Rappels sur les fonctions. Fonctions polynômes du second degré Semaine 4 Rappels sur les fonctions. Fonctions polynômes du second degré 1. Rappels : étude de fonctions Généralités Fonctions de référence Études. 2. Fonction polynôme du second degré. Tableau de variation.

Plus en détail

Second degré (1ESL) Page 1/9

Second degré (1ESL) Page 1/9 TRINÔME DU SECOND DEGRÉ Activité de recherche : Résoudre un problème démographique A l issue d une étude, des démographes font des projections concernant la population de deux villages A et B de la campagne

Plus en détail

Chapitre IX Fonctions de référence

Chapitre IX Fonctions de référence Chapitre IX Fonctions de référence I. La fonction carré Définition : La fonction carré est la fonction qui, à tout nombre réel, associe son carré ². C est donc la fonction f définie sur par : f Eemple

Plus en détail

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n POLYNOMES Table des matières I Fonction polynôme 1 I.1 Fonction polynôme de degré n.................................. 1 I.2 Egalité de deux polynômes................................... 1 I.3 Racine d un

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² -

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² - 1 ère ES1 Le second degré Introduction à la factorisation feuille n 1 Partie 1 : correction 1) Factoriser les expressions suivantes : x² - 8x + 16 x² + 6x + 9 16x² - 81 ( 4x 1 )² - 9 ( 2x 1 )² - ( x +

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

Second degré. Exercice 3: Relier chaque trinôme à sa forme canonique :

Second degré. Exercice 3: Relier chaque trinôme à sa forme canonique : Second degré Eercice 1: Les fonctions ci-dessous sont-elles des fonctions polynômes de degré? 1 f) = +1)+) 1 g) = 3 1) +3 3 k) = 3 +1 4 l) = + + Eercice : Les fonctions ci-dessous sont des fonctions polynômes

Plus en détail

Seconde. Eric Leduc 2014/2015

Seconde. Eric Leduc 2014/2015 Seconde Lycée Jacquard 2014/2015 Rappel du plan 1 2 3 4 Signe de ax+b Propriété n o 1 Soit a et b nombres réels avec a 0. La définie sur R par f(x) = ax + b s annule et change de signe une fois dans son

Plus en détail

Formules importantes pour la fonction quadratique

Formules importantes pour la fonction quadratique Formules importantes pour la fonction quadratique Avec la forme générale f(x) = ax 2 + bx + c 1- Orientation de la parabole Si a> 0, la parabole sera ouverte vers le haut Si a

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8 Polynômes D. CRESSON 15 octobre 2008 D. CRESSON () Cours Première STL 15 octobre 2008 1 / 8 I fonction polynôme On appelle monôme, une expression du type ax n, où n est un entier naturel, a une constante

Plus en détail

Chapitre 3. Généralités sur les fonctions numériques. 3.1 Généralités

Chapitre 3. Généralités sur les fonctions numériques. 3.1 Généralités Chapitre 3 Généralités sur les onctions numériques 3.1 Généralités Déinition 3.1 Une onction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note (x). On note : :

Plus en détail

Seconde 3 DS4 fonctions de référence Sujet

Seconde 3 DS4 fonctions de référence Sujet Seconde 3 DS4 fonctions de référence Sujet 1 29-21 Exercice 1 : fonction carré (3 points) On considère trois carrés de côtés respectifs x ; 2x et 3x. 1) Pour chacun d un, exprimer en fonction de x, le

Plus en détail

Seconde Module : EXPRESSIONS ALGEBRIQUES (a + b)² = a² + 2ab + b². - d = n d. B = (x 3)² - 4x(x 1) B =

Seconde Module : EXPRESSIONS ALGEBRIQUES (a + b)² = a² + 2ab + b². - d = n d. B = (x 3)² - 4x(x 1) B = 1. Développement et factorisation. Développement ❶ Ne pas oublier le double produit dans le développement d un carré. (a + b)² = a² + 2ab + b² ❷ Lorsqu on a un signe «-» devant une parenthèse, il faut

Plus en détail

Chapitre 4 : Fonctions de référence (1)

Chapitre 4 : Fonctions de référence (1) La notion de fonction a été vue au chapitre 1. Cette leçon met l'accent sur certaines fonctions que l'on retrouve au lycée : fonction carrée, fonction inverse, fonction racine carrée,... etc. La deuxième

Plus en détail

Leçon : Les fonctions

Leçon : Les fonctions Leçon : Les fonctions 1. Notion de fonction et généralités 1.a) Fonction Soit D une partie R. Définir une fonction sur un ensemble D, c est associer à chaque réel x de D, un unique réel, appelé image de

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Chapitre 1 Le second degré

Chapitre 1 Le second degré Chapitre 1 Le second degré I. Polynôme du second degré 1) Forme d'une fonction trinôme Forme réduite Définition : On appelle polynôme du second degré (ou trinôme) toute expression qui peut s'écrire sous

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

1 Equation du second degré ax 2 + bx+ c = 0, a 0

1 Equation du second degré ax 2 + bx+ c = 0, a 0 1 Equation du second degré ax 2 + bx+ c = 0, a 0 1.1 Trinôme : Définition Définition 1. Un polynôme du second degré est une fonction x ax 2 + bx+ c, où a,b,c sont des réels avec a 0. On dit aussi trinôme.

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Les fonctions de référence ( En première S )

Les fonctions de référence ( En première S ) Les fonctions de référence En première S ) Dernière mise à jour : Jeudi 01 Septembre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Année 2006-2007) -1- J aimais et j aime encore les mathématiques

Plus en détail

Chapitre II : Fonctions polynômes du second degré

Chapitre II : Fonctions polynômes du second degré Chapitre II : Fonctions polynômes du second degré Extrait du programme : I. Forme canonique d un polynôme du second degré Définition : Dire qu une fonction f définie sur est une fonction polynôme de degré

Plus en détail

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2 Lcée JANSON DE SAILLY 04 septembre 014 SECOND DEGRÉ 1 re STID I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie surrpar f)=a + b+c où a, b, c sont des réels

Plus en détail

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Exercice 1 Partie A Correction (non officielle) de l épreuve de Mathématiques et de Statistiques du 29/01/2013 Nicolas ZERR 1)

Plus en détail

Chapitre 7 : Exercices d approfondissement

Chapitre 7 : Exercices d approfondissement Chapitre 7 : Exercices d approfondissement Corrigés des exercices du chapitre 7 Exercice I Dans chaque cas, on va travailler avec la forme la plus adaptée aux données. Ici, on connaît le sommet S (3 ;

Plus en détail

NOTIONS DE BASE SUR LES FONCTIONS

NOTIONS DE BASE SUR LES FONCTIONS NOTONS DE BASE SUR LES FONCTONS 1. GENERALTES 1. Notations, définitions On dit qu une fonction f est définie sur une partie de un nombre réel et un seul y noté f ( x ). quand, à tout x de on associe est

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Fonctions exponentielles Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Fonctions x q x, avec q > 0 2 1.1 Fonction exponentielle de base q.................................... 2 1.2

Plus en détail

Trinômes du second degré

Trinômes du second degré Trinômes du second degré A. Fonctions trinômes du second degré On appelle fonction trinôme une fonction qui à tout réel associe a + b + c, avec a, b et c réels et a non nul. a + b + c est la forme développée

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

Fonctions polynômes Définition et factorisation Exercices corrigés

Fonctions polynômes Définition et factorisation Exercices corrigés Fonctions polynômes Définition et factorisation Exercices corrigés Exercice 1 (1 question) Niveau : facile Les fonctions numériques suivantes sont-elles des fonctions polynômes? Correction de l exercice

Plus en détail

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents.

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents. FONCTIONS AFFINES 1. Vocabulaire Soit D une partie de l ensemble des nombres réels R. Une fonction f définie sur D associe à tout nombre réel x de D un unique nombre réel noté f(x). D est appelé ensemble

Plus en détail

Exercices de mathématiques Première Pro. François BINET

Exercices de mathématiques Première Pro. François BINET Exercices de mathématiques Première Pro François BINET 6 janvier 8 BINET Première PRO Exercices de mathématiques 7 - Table des matières Premier degré. Exercices préliminaires de calcul.......................................

Plus en détail

Chapitre 3 Compléments sur les fonctions

Chapitre 3 Compléments sur les fonctions A) Rappels Chapitre 3 Compléments sur les fonctions 1) Fonctions affines f(x) = a x + b La courbe est une droite, de coefficient directeur a et d'ordonnée à l'origine b. b est l'ordonnée du point d'intersection

Plus en détail

Fonctions de référence

Fonctions de référence Fonctions de référence 1. Rappel sens de variation d'une fonction Soit f une fonction définie sur un intervalle I de R f est croissante sur I si pour tout nombre a et b de I tels que a < b alors f(a)

Plus en détail

2 FONCTIONS CARREES 1.0

2 FONCTIONS CARREES 1.0 FONTIONS ARREES Exercices de base : Soit f la fonction carrée. alculer les images par f des nombres réels : 5 00 0 0. 5 6 7 8 9 0 5 5 5 5 9 5 0 6 8x0 7 5 0 8 + 9 8 0 6 Soit f la fonction carrée. Déterminer

Plus en détail

(IN)ÉQUATIONS DU SECOND DEGRÉ

(IN)ÉQUATIONS DU SECOND DEGRÉ Lycée Thiers IN)ÉQUATIONS DU SECOND DEGRÉ Exemple introductif 1 Etant donnés deux réels L, l > 0 tels que L > l, on considère un «grand» rectangle de longueur L et de largeur l, que l on partage en un

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient Mathématiques Préparation à la 1 ère ES - L - STMG Le programme de 1 ère s appuie sur les notions étudiées en 2 nde. L acquisition de ces bases est donc essentielle à la réussite en 1 ère. Pour faciliter

Plus en détail

Seconde 7 Chapitre 3 : Equations, inéquations 1

Seconde 7 Chapitre 3 : Equations, inéquations 1 Seconde 7 Chapitre 3 : Equations, inéquations 1 Chapitre 3 : Equations et inéquations dans IR 1 Equations dans IR 1.1 Vérifier qu un nombre est solution d une équation Dans chaque cas, dire si le réel

Plus en détail

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS Premières fonctions de référence Les fonctions linéaires, qui traduisent la proportionnalité des grandeurs, et les fonctions affines, qui traduisent

Plus en détail

Leçon 6 Les fonctions numériques, généralités

Leçon 6 Les fonctions numériques, généralités Leçon 6 Les fonctions numériques, généralités Il faut revoir les fonctions de référence car ce cours prolonge évidemment ce qui a été vu en seconde. Il y a en premier lieu les fonctions affines par morceaux.

Plus en détail

SECOND DEGRE (Partie 2)

SECOND DEGRE (Partie 2) 1 SECOND DEGRE (Partie ) I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme ax + bx + c 0 où a, b et c sont des réels avec a 0. Une solution

Plus en détail

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré.

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré. Module L algèbre (10 cours) 3. Exploiter les relations mathématiques pour analyser des situations diverses, faire des prédictions et prendre des décisions éclairées. RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE L équipe des professeurs de mathématiques Lycée Stendhal J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. Stendhal

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE 1 LES FONCTIONS DE REFERENCE I Fonctions affines et fonctions linéaires 1 Définitions Une fonction affine f est définie sur R par f() x = ax+ b, où a et b sont deux nombres réels Lorsque b = 0, la fonction

Plus en détail

Comportement asymptotique

Comportement asymptotique 1 Comportement asymptotique Table des matières 1 Limite infinie en l infini 2 1.1 Limite positive infinie en + l infini................... 2 1.2 Limite négative infinie en + l infini...................

Plus en détail

1S Le 19 septembre 2014 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45

1S Le 19 septembre 2014 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45 1S Le 19 septembre 14 Corrigé du D.S de Mathématiques n 1 Calculatrice autorisée Durée : 1 h 45 EXERCICE 1 Le barème est donné à titre indicatif sur 5 (1 points) A compléter sur l énoncé La courbe (C)

Plus en détail

CHAPITRE 14 : FONCTIONS. Exercice 1 : soit la fonction f : Z Q et la fonction g : R R x 2 x 5x

CHAPITRE 14 : FONCTIONS. Exercice 1 : soit la fonction f : Z Q et la fonction g : R R x 2 x 5x CHAPITRE 14 : FONCTIONS. I GENERALITES : 1.1 Définition : Définition : soit deux ensembles E et F respectivement ensemble de départ et ensemble d arrivée. Une fonction f de E dans F est une relation qui

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre 1 Fonctions de référence...2 I Fonctions affines...2 a) Signe d'une fonction affine...2 II

Plus en détail

CHAPITRE 4 : Etudes de fonctions

CHAPITRE 4 : Etudes de fonctions CHAPITRE 4 : Etudes de fonctions 1 Sens de variation d une fonction... 2 2 Fonctions de référence... 3 2.1 Fonctions affines... 3 2.2 Fonction carré... 4 2.3 Fonction inverse... 5 2.4 Fonction valeur absolue...

Plus en détail

Chapitre 1 - L algèbre de base

Chapitre 1 - L algèbre de base Mathématique d appoint 4 e édition Table des matières Chapitre 1 - L algèbre de base 1.1 Les ensembles de nombres 1.2 Les intervalles 1.3 Les relations entre deux ensembles 1.4 Les opérations sur les ensembles

Plus en détail

Equations, inéquations et fonctions affines

Equations, inéquations et fonctions affines Equations, inéquations et fonctions affines A) Fonctions affines 1 Définition d une fonction affine Définition : f est une fonction affine, si et seulement si, il existe deux réels a et b tels que : pour

Plus en détail

Second degré et polynômes Résolution d équation, inéquations et problèmes du second

Second degré et polynômes Résolution d équation, inéquations et problèmes du second Second degré et polynômes Résolution d équation, inéquations et problèmes du second degré Y. Morel Table des matières 1 Trinôme du second degré 1 1.1 Equations du second degré...............................

Plus en détail

SECOND DEGRE ACTIVITES

SECOND DEGRE ACTIVITES SECOND DEGRE ACTIVITES Activité 1 : Forme canonique d un polynôme de degré 2. Définition : f est une fonction polynôme de degré 2 définie sur par : f ( x) ax² bx c ( a 0 ). Nous montrerons à la fin de

Plus en détail

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde - Passage en 1reES Année scolaire :

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde - Passage en 1reES Année scolaire : TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES Classe de Seconde - Passage en rees Année scolaire : 06-07 Exercice Les quatre parties sont indépendantes I) Résoudre dans R: ) ( x) 4 x ; ) x < π ; ) ( x) (

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS LES FONCTIONS : GENERALITES ET VARIATIONS I. Vocabulaire et notations 1. Exemple d introduction : Avec une ficelle de longueur 10 cm, on fabrique un rectangle. On désigne par x la longueur d un côté de

Plus en détail

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré DERNIÈRE IMPRESSION LE 4 octobre 016 à 8:57 Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré....................... 1. Quelques exemples de formes canoniques...............

Plus en détail

Bloc 2 Régularité et algèbre (+- 22 cours)

Bloc 2 Régularité et algèbre (+- 22 cours) Bloc Régularité et algèbre (+- cours) 3 Exploiter les relations mathématiques pour analyser des situations diverses, faire des prédictions et prendre des décisions éclairées. RÉSULTATS D APPRENTISSAGE

Plus en détail

Classe: 2 4 DS8 Jeudi 2 avril 2015

Classe: 2 4 DS8 Jeudi 2 avril 2015 Exercice 1 Fonction du second degré On donne les trois écritures de la même expression algébrique de. 5 points = x² + 2x 63 forme développée = (x 7)(x + 9) forme factorisée = (x + 1)² 64 forme canonique

Plus en détail

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Exercice 1 (1 question) Niveau : facile Résoudre dans les équations suivantes

Plus en détail

Index Prérequis :... 1

Index Prérequis :... 1 1S Second degré 014-015 Index Prérequis :... 1 Remarques :... I- Fonction polynôme du second degré ou trinôme du second degré... I-1- Définitions... I-- Exemples... Remarques:... I-3- Forme canonique...

Plus en détail

Chapitre 7. Fonction carrée Fonctions trinômes. 7.1 Activités. Sommaire

Chapitre 7. Fonction carrée Fonctions trinômes. 7.1 Activités. Sommaire Chapitre 7 Fonction carrée Fonctions trinômes Sommaire 7.1 Activités............................................ 77 7.2 Fonction carrée........................................ 78 7.3 Fonctions trinômes......................................

Plus en détail

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE PBP Chapitre M4(A7) Page 1/15 Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE Capacités Utiliser les TIC pour compléter un tableau de valeurs, représenter graphiquement, estimer le maximum ou le minimum

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

CHAPITRE 7 Fonctions de référence

CHAPITRE 7 Fonctions de référence CHAPITRE 7 Fonctions de référence A) Les Fonctions Affines (rappels et compléments) ) Définition a et b étant deu réels donnés, on appelle fonction affine une fonction du type f() = a + b. Lorsque b =

Plus en détail

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11 Table des matières Chapitre 1 Les trinômes du second degré 11 I. Les trinômes du second degré : caractérisation... 1 II. Variations des fonctions trinôme du second degré... 13 III. Représentation graphique...

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail