Introduction aux algorithmes de bandit

Dimension: px
Commencer à balayer dès la page:

Download "Introduction aux algorithmes de bandit"

Transcription

1 Mater MVA: Apprentiage par renforcement Lecture: 3 Introduction aux algorithme de bandit Profeeur: Rémi Muno muno/mater-mva/ Référence bibliographique: Peter Auer, Nicolo Cea-Bianchi, and Paul Ficher. Finite-time analyi of the multi-armed bandit problem. Machine Learning, 47(2/3): , Auer, Cea-Bianchi, Freund, Schapire. The nontochatic multi-armed bandit problem T. L. Lai and Herbert Robbin. Aymptotically efficient adaptive allocation rule. Advance in Applied Mathematic, 6:4-22, 985. Le bandit tochatique à K bra Conidéron K bra (action, choix) défini par de ditribution (ν k ) kk à valeur dan [0, ], de loi inconnue. A chaque intant, l agent choiit un bra I t {,..., K} et oberve une récompene x t ν It, réaliation indépendante (de récompene paée) générée elon la loi du bra I t. Son objectif et de maximier la omme de récompene qu il reçoit, en epérance. Noton µ k = E X νk [X] l epérance de récompene de chaque bra, et µ = max k µ k la valeur moyenne du meilleur bra. Si l agent connaiait le loi, il choiirait alor le meilleur bra à chaque intant et obtiendrait une récompene moyenne µ. Comme il ne connait pa le loi initialement, il doit explorer le différent bra pour acquérir de l information (exploration) qui lui ervira enuite pour agir optimalement (exploitation). Cela illutre le compromi exploration-exploitation. Pour évaluer la performance d une tratégie donnée, on va définir à quelle vitee cette tratégie permet d atteindre un taux de récompene moyen optimal. Pour cela on définit le regret cumulé à l intant n: R n = nµ x t, qui repréente la différence en récompene cumulée entre ce qu il a obtenu et ce qu il aurait pu obtenir en moyenne il avait joué optimalement dè le début. On intéree à définir de tratégie qui ont un petit regret cumulé moyen ER n. Remarquon que ER n = nµ E µ It = E T k (n)(µ µ k ) = E T k (n) k, où k = µ µ k et le gap entre le bra optimal et le bra k, et où T k (n) = n {I t = k} et le nombre de foi que le bra k a été tiré juqu à l intant n. Aini un bon algorithme de bandit devra tirer peu ouvent le bra ou-optimaux.

2 2 Introduction aux algorithme de bandit. Stratégie UCB La tratégie UCB (pour Upper Confidence Bound) [Auer et. al, 2002] conite à choiir le bra: 2 log t I t = arg max B t,tk (t )(k), avec B t, (k) = ˆµ k, +, k où ˆµ k, = i= x k,i et la moyenne empirique de récompene reçue en ayant tiré le bra k (i.e., x k,i et la i-ème récompene reçue en ayant tiré le bra k). Il agit d une tratégie dite optimite dan l incertain. La valeur B t,tk (t )(k) repréente une borne upérieure de µ k en forte probabilité. Aini on choiit le bra qui erait le meilleur i le valeur de bra étaient le meilleure poible (en forte proba), achant ce qui a été obvervé. En effet, rappelon l inégalité de Chernoff-Hoeffding: Soient X i [0, ] variable aléatoire indépendante de moyenne µ = EX i. Alor P ( i= X i µ ɛ ) e 2ɛ2, et P ( X i µ ɛ ) e 2ɛ2. () i= Donc pour t fixé, 2 log t P(ˆµ k, + µ k ) e 4 log(t) = t 4. (2) Et aui: 2 log t P(ˆµ k, µ k ) e 4 log(t) = t 4. (3) Propoition. Chaque bra ou-optimal k et tiré en moyenne au plu ET k (n) 8 log n foi. Donc le regret cumulé moyen d UCB et borné elon ER n = k k ET k (n) 8 + π2 3 k: k >0 log n k Ce réultat établit que le regret cumulé moyen et logarithmique en n. + K π2 3. Proof. Intuition de la preuve: uppoon qu à l intant t le moyenne empirique de bra ont dan leur intervalle de confiance repectif, c et à dire 2 log t (a) (b) 2 log t µ k ˆµ k, µ k +. (4) pour = T k (t ). Alor oit k un bra ou-optimal et k un bra optimal. Si le bra k et tiré à l intant t, cela ignifie que B t,tk (t )(k) B t,tk (t )(k ), oit 2 log t 2 log t ˆµ k, + ˆµ k, +, (5) pour = T k (t ) et 2 log t = T k (t ) donc d aprè (4), µ k + 2 µ, c et à dire 8 log t.

3 Introduction aux algorithme de bandit 3 Maintenant, pour tout entier u, nou avon: T k (n) u + {I t = k; T k (t) > u} u + t=u+ t=u+ { : u < t, : t, B t, (k) B t, (k )} (6) Maintenant, d aprè le raionnement précédent, l évènement {B t, (k) B t, (k )} (c et à dire (5)) implique que 8 log t ou bien qu une de deux inégalité (a) ou (b) dan (4) n et pa atifaite. Donc en choiiant u = 8 log(n), on en déduit que (a) ou (b) n et pa atifaite. Mai d aprè (2), l inégalité (a) n et pa atifaite avec une probabilité t 4, et d aprè (3) l inégalité (b) n et pa vraie avec une probabilité t 4. En prenant l epérance de deux coté de (6), E[T k (n)] 8 log(n) 8 log(n) + t=u+ + π2 3 [ t =u+ t 4 + t = t 4] Propoition 2. Nou avon la borne uniforme ur le regret Proof. Par Cauchy-Schwarz, ER n 8Kn(log n + π2 3 ) ER n = k k ETk (n) ET k (n) ET k(n) ET k (n) k k 8Kn(log n + π2 3 )..2 Borne inférieure Nou avon la borne inférieure aymptotique (pour une clae de ditribution aez riche) [Lai et Robbin, 985] fonction de ditribution: ET k (n) lim up n log n KL(ν k ν ), avec la ditance de Kullback Leibler KL(ν ν ) = dν log(dν/dν ). Donc ER n = Ω(log n). Nou avon aui une borne inférieure minimax non-aymptotique (voir par exemple [Cea-Bianchi et Lugoi, Prediction, Learning, and Game, 2006]): inf up R n = Ω( nk). Algo Problème

4 4 Introduction aux algorithme de bandit.3 Amélioration Utiliation de la variance empirique pour affiner le intervalle de confiance [Audibert, Muno, Szepevari, Ue of variance etimation in the multi-armed bandit problem, 2008]. Borne minimax améliorée [Audibert, Bubeck, Minimax Policie for Adverarial and Stochatic Bandit, 2009]. On obtient la borne inf Kn. Application au online learning (claification ou régreion en-ligne) avec information partielle..4 Extenion Il exite de nombreue extenion au problème du bandit tochatique à K bra: Bandit dan un MDP [Jakch, Ortner, Auer. Near-optimal regret bound for reinforcement learning, 200]. Stratégie d exploration optimite dan l incertain (baée ur UCB) pour explorer un Proceu de déciion markovien. > poibilité de mini-projet Bandit avec information contextuelle. A chaque intant t, on oberve une information x t X et on prend une déciion a t A. La récompene et une foncion de a t et de x t. On e compare à une clae de tratégie π : X A. Bandit avec un nombre de bra dénombrable. [Wang, Audibert, Muno, Algorithm for inifinitely many-armed bandit, 2008]. Chaque nouveau bra a une probabilité ɛ β d être ɛ-optimal. Compromi entre exploration - exploitation - découverte. > poibilité de mini-projet Bandit linéaire [Dani, Haye, Kakade, Stochatic Linear Optimization under Bandit Feedback, 2008] On choiit un bra x t X R d. La récompene moyenne et une fonction linéaire r t = x t α, où α R d et un paramètre inconnu. On e compare à max x X x α. > poibilité de mini-projet Bandit en epace métrique [Kleinberg, Slivkin, Upfal, Multi-armed bandit in metric pace, 2008], [Bubeck, Muno, Stoltz, Szepevari, Online optimization in X-armed bandit, 2008]. On choiit un bra x t X dan un epace métrique. La récompene moyenne f(x t ) et uppoée Lipchitz. On e compare à up x X f(x). Il agit d un problème d optimiation online. Bandit hiérarchique Algorithme UCT [Koci et Szepevari. Bandit baed monte-carlo planning., 2006], BAST [Coquelin et Muno, Bandit algorithm for tree earch, 2007], HOO [Bubeck, Muno, Stoltz, Szepevari, Online optimization in X-armed bandit, 2008]. Application au jeu de go (programme MoGo) [Gelly, Wang, Muno, Teytaud. Modification of UCT with pattern in monte-carlo go, 2006]. Utiliation d algorithme de bandit de manière hiérarchique pour effectuer une recherche dan de grand arbre. > poibilité de mini-projet 2 Le bandit contre un adveraire Ici le récompene ne ont plu néceairement i.i.d. mai choiie arbitrairement par un adveraire. Dan ce ca, on ne peut plu epérer faire aui bien que i on avait connu à l avance le récompene (car l adveraire n a aucune envie de e laier dévoiler). Mai on peut comparer le performance obtenue par notre algorithme aux performance obtenue par une clae de tratégie de comparaion, et tenter de faire prequ aui bien que la meilleure tratégie dan cette clae.

5 Introduction aux algorithme de bandit 5 Nou pouvon ditinguer 2 type de problème elon l information reçue à chaque round: information parfaite ( full information ) ou information partielle ( bandit information ). Voici un modèle de bandit contre un adveraire: On dipoe de K bra. A chaque intant t =..., n, L adveraire choii de récompene x t (),..., x t (K) (uppoée à valeur dan [0, ], an le dévoiler au joueur Le joueur choiit un bra I t Dan le ca information parfaite, le joueur oberve le récompene de tou le bra x t (k), pour k =..., K. Dan le ca information partielle, le joueur n oberve que la récompene du bra choii: x t (I t ). La clae de tratégie de comparaion et l enemble de tratégie contante. Aini le regret par rapport à la tratégie contante k et défini elon R n (k) = x t (k) x t (I t ). La tratégie du joueur pouvant être aléatoire, on conidère le regret moyen pour la meilleure tratégie contante: R n = max ER n(k), kk et l on déire contruire un algorithme qui oit bon pour toute équence de récompene fournie par l adveraire, i.e. tel que up x,...,x n R n oit petit. 2. Information complete Conidéron l algorithme EWF (Exponentially Weighted Forecater): On initialie l algorithme avec w (k) = pour tout k =,..., n. A chaque intant t =,..., n, le joueur choiit le bra I t p t, où p t (k) = où > 0 et un paramètre de l algorithme. w t (k) = e P t = x(k), w t(k) P K i= w t(i), avec Propoition 3. Soit. On a Aini, en choiiant = 8 log K n, il vient R n log K + n 8. n log K R n. 8

6 6 Introduction aux algorithme de bandit Preuve. Noton = K w k(t). On a + = w k (t)e x t(k) = p k (t)e xt(k) [ = E I pt e x ] t(i) = e E[x t(k)] E I pt [ e (x t (I) E J pt [x t (J)]) ] e E[xt(I)] e 2 /8, par le lemme de Hoeffding Donc Maintenant log W n+ W E [ n x t (I t ) ] + n 2 8. log W n+ W = log e P n xt(k) log K x t (k) log K, pour n importe quel k =,..., n. Aini pour tout k, on a x t (k) E [ n x t (I t ) ] log K + n 8. Remarque: Borne inf du même ordre: R n = Ω( n log K). Dépendance logarithmique en K Poibilité d avoir un algorithme anytime (qui ne néceite pa la connaiance de l horizon temporel n) en choiiant un pa t = O( log K t ). Prédiction à bae d expert [Lugoi and Cea-Bianchi, 2006]. 2.2 Information partielle Conidéron l algorithme EXP3 (Exploration-Exploitation uing Exponential weight): > 0 et β > 0 ont deux paramètre de l algorithme. On initialie l algorithme avec w (k) = pour tout k =,..., n. A chaque intant t =,..., n, le joueur choiit le bra I t p t, où w t (k) p t (k) = ( β) K i= w t(i) + β K, avec où x (k) = x (k) p (k) {I = k}. w t (k) = e P t = x (k),

7 Introduction aux algorithme de bandit 7 Propoition 4. Soit, et β = K. On a Aini, en choiiant = log K (e )nk, il vient R n log K + (e )nk. R n 2.63 nk log K. Preuve. Noton = K w k(t). Remarquon que E I p [ x (k)] = K i= p (i) x (k) p (k) {i = k} = x (k), que E I p [ x (I )] = K i= p (i) x (i) p (i) K. On a + = w k (t)e x t(k) = p k (t) β/k e x t(k) β p k (t) β/k ( + x t (k) + (e 2) 2 x t (k) 2 ), β puique x t (k) K/β =, et e x + x + (e 2)x 2 pour x. Mai on a aui + + β log + log W n+ W log W n+ W = log β β p k (t)( x t (k) + (e 2) 2 x t (k) 2 ), p k (t)( x t (k) + (e 2) 2 x t (k) 2 ), p k (t)( x t (k) + (e 2) 2 x t (k) 2 ). e P n x t(k) log K x t (k) log K, pour n importe quel k =,..., n. l algorithme), on a pour tout k, En prenant l epérance (par rapport à la randomiation interne de [ E ( β) x t (k) i= [ n E x t (k) ] p i (t) x t (i) ] x t (I t ) E[R n (k)] log K ( β) log K βn + log K [ n + (e 2)E + (e 2)nK + (e )nk p k (t) x t (k) 2] Remarque: Borne inf R n 20 nk (voir [Auer et al., 2002]).

8 8 Introduction aux algorithme de bandit Algorithme INF [Audibert et Bubeck 2009] obtient un regret O( nk). Exp3 donne un regret en epérance en O( nk log K) mai le regret peut être grand ur certaine réaliation de l algorithme. En effet le récompene repondérée x t (k) ont d ordre /p t (k) ce qui peut être (en négligeant la dépendance en K) aui grand que n pour le valeur de β conidérée, ce qui entraîne un regret dont la variance et en n 3/2 et aini le regret peut être en n 3/4. On ne peut donc pa obtenir de regret en n avec forte probabilité. Cependant en modifiant légèrement l algorithme afin d augmenter l exploration (en uretimant le récompene reçue), on obtient un algorithme EXP3.P [Auer et al., 2002] qui dépend d un paramètre δ > 0 tel que max kk x t (k) x t (I t ) = O( nk log(kn/δ)). (7) 2.3 Equilibre de Nah Conider a 2-player zero-um repeated game: A and B play action: or 2 imultaneouly, and receive the reward (for A): A \ B (A like conenu, B like conflict) Nah equilibrium: (mixed) trategy (p, q ) for both player, uch that no player ha incentive for changing unilaterally hi own trategy: for any p and q, r A (p, q ) r A (p, q ) and r B (p, q) r B (p, q ). Ar Here the Nah i: A play with probability p A = /2, B play with probability p B = /4. B=2 2 A Now, let A and B be bandit algorithm, aiming at minimizing their regret, i.e. for player A: R n (A) def = max r A (a, B t ) r A (A t, B t ). and that of B accordingly. a {,2} In the cae of zero-um game (i.e. r A = r B ), the value of the game V i defined a V = inf up q [0,] p [0,] r A (p, q) = up inf r A(p, q) q [0,] p [0,] B=

9 Introduction aux algorithme de bandit 9 (minimax Theorem). Note that there may exit everal Nah equilibria (p, q ) but their value r A (p, q ) i unique and equal V. Indeed: V = up p [0,] inf r A(p, q) q [0,] inf r A(p, q) = r A (p, q ) = up r A (p, q ) q [0,] p [0,] inf r A(p, q) = V. q [0,] Propoition 5. If both player perform a (Hannan) conitent regret-minimization trategy (i.e. R n (A)/n 0 and R n (B)/n 0), then the average value of the received reward converge to the value of the game: lim n n r A (A t, B t ) = V. In addition, the empirical frequencie of choen action of both player converge to a Nah equilibrium. (Note that EXP3.P i conitent!). Preuve. Write p n def A = n n A and p n def B = n n B the empirical frequencie of played action. Write r A (p, q) def = E A p,b Q r A (A, B). Player A play a Hannan-conitent regret-minimization trategy, thu lim up max r A (a, B t ) r A (A t, B t ) n a {,2} n n 0 lim up up r A (p, B t ) r A (A t, B t ) n n n 0 p [0,] ince p r A (p, q) i a linear mapping. Thu V = inf q up r A (p, q) lim inf p n n r A (A t, B t ). Now, ince player B doe the ame, we alo have that lim up r A (A t, B t ) up inf n n r A(p, q) = V. p q Thu lim n n n r A(A t, B t ) = V. We alo have that the empirical joint ditribution (p q) n (a, b) = n n {A t = a, B t = b} converge to the et of Nah equilibria {(p, q )} ince the et of joint ditribution i compact (ince we conider a finite number of action) and any (p, q ) uch that r A (p, q ) = V i a Nah equilibrium: r A (p, q ) inf r A(p, q) V up r A (p, q ) r A (p, q ). q [0,] p [0,] Example: Texa Hold em Poker In the 2-player Poker game, the Nah equilibrium i intereting (zero-um game) A policy: information et (my card + board + pot) probabilitie over deciion (check, raie, fold) Space of policie i huge!

10 0 Introduction aux algorithme de bandit Idea: Approximate the Nah equilibrium by uing bandit algorithm aigned to each information et. Thi method provided the world bet Texa Hold em Poker program for 2-player with pot-limit [Zinkevitch et al., 2007]. Extenion: In non-zero um game or in game with more than 2 player, there are general convergence reult toward correlated equilibrium [Foter and Vohra, 997].

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

1 Première étape : le cas des processus simples, bornés

1 Première étape : le cas des processus simples, bornés Univerité Deni Diderot Pari 7 Martingale onentielle Rappelon le cadre de l exercice, et on objectif. Dan la uite, B t ) t déigne un mouvement brownien relativement à une filtration F t ) t. Par ailleur,

Plus en détail

Problèmes de bandits et applications

Problèmes de bandits et applications Problèmes de bandits et applications Aurélien Garivier, avec Sarah, Eric, Olivier, Emilie... CNRS & Telecom ParisTech Mardi 3 juillet 2012 Plans d expériences séquentiels Plan de l exposé 1 Plans d expériences

Plus en détail

Estimation d un ratio

Estimation d un ratio Chapitre 6 Etimation d un ratio Dan ce chapitre, nou étudion l etimation d un ratio qui et une fonction non linéaire de deux totaux L etimation ur un domaine qui et un exemple d application de l etimation

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Marges de stabilité et performances des systèmes linéaires asservis

Marges de stabilité et performances des systèmes linéaires asservis UV Cour 5 Marge e tabilité et performance e ytème linéaire aervi ASI 3 Contenu! Robutee e la tabilité " Notion e robutee e la tabilité " Marge e tabilité marge e gain et e phae! Performance e ytème aervi

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité SYPOSIU DE GENIE ELECTRIQUE (SGE 4) : EF-EPF-GE 04, 8-0 JUILLET 04, ENS CACHAN, FRANCE Paramètre clé pour la conception d une machine pentaphaée à aimant à double polarité Huein ZAHR,, Franck SCUILLER,

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

Changement de fréquence, effet Doppler

Changement de fréquence, effet Doppler N 804 BULLETIN DE L'UNION DES PHYSICIENS 869 Changement de fréquence, effet Doppler par Yve BAIMA, André JORANDON, Sylvie MORLEN et Marc VINCENT Lycée La Martinière Monplaiir - 69372 Lyon Cedex 08 RÉSUMÉ

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years.

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years. Linja Game Rules 2 players Ages 8+ Published under license from FoxMind Games NV, by: FoxMind Games BV Stadhouderskade 125hs Amsterdam, The Netherlands Distribution in North America: FoxMind USA 2710 Thomes

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Agrégation séquentielle d'experts

Agrégation séquentielle d'experts Agrégation séquentielle d'experts avec application à la prévision de consommation électrique Pierre Gaillard pierre-p.gaillard@edf.fr avec Yannig Goude (EDF R&D) et Gilles Stoltz (CNRS, HEC Paris) 27 août

Plus en détail

[ ] [ ] Krigeage dual. Avantages et désavantages du krigeage dual. k F. = f. = f. k f. avec

[ ] [ ] Krigeage dual. Avantages et désavantages du krigeage dual. k F. = f. = f. k f. avec rigeage dual et rigeage avec dérive externe rigeage dual Il et intéreant de reormuler le rigeage ou une orme diérente que l on appelle rigeage dual. Conidéron le ytème de rigeage habituel ou orme matricielle

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIULATIONS DE ONTE CARLO. Déenfant *, N. Ficher *, B. Blanquart **, N. Bédiat** *Laboratoire national de métroloie et d eai (LNE) ** Centre Technique de Indutrie

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Stéphane Adjemian Le 27 juin 2016 à 15:06

Stéphane Adjemian Le 27 juin 2016 à 15:06 CROISSANCE (CORRECTION DE LA FICHE DE TD N 2) Stéphane Adjemian Le 27 juin 2016 à 15:06 EXERCICE 1 (1) Nou avon déjà montré dan la fiche de travaux dirigé n 1 que la dynamique du tock de capital par tête

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

APP SUMMARY. ShareTime

APP SUMMARY. ShareTime Synape Team, Sénégal APP SUMMARY ShareTime ü Vivre enemble, ce n'et pa donné d'emblée : cela 'apprend. Beaucoup de collectif démarrent an grande expérience de la vie de groupe : dan le phae de démarrage

Plus en détail

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse...

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse... Comment choisir sa pizza? Test A/B Introduction à l apprentissage par renforcement Guillaume Wisniewski guillaume.wisniewski@limsi.fr Université Paris Sud LIMSI J aime beaucoup les «4 Est-ce que je dois

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003 200 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 200 1. When a father distributes a number of candies among his children, each child receives 15 candies and there is one left

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 2. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 2. Philippe PRIAULET MODELES DE LA COURBE DES TAUX D INTERET UNIVERSITE d EVRY Séance Philippe PRIAULET Plan de la Séance Le modèle de recontitution de la courbe de taux Introduction, Rappel et Notation La courbe d Etat Sélection

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Calcul de la taille d un échantillon

Calcul de la taille d un échantillon Calcul de la taille d un échantillon Pr. A. ILIADIS LaboratoiredePharmacocinétique U.F.R. de Pharmacie, Univerité de la Méditerranée iliadi@pharmacie.univ-mr.fr http://pharmapk.pharmacie.univ-mr.fr/ Réumé

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1 Béton armé et précontraint I VERIFICATIONS E.L.S. Jean Marc JAEGER Setec TPI E.N.P.C. module B.A.E.P.1 ENPC Module BAEP1 Séance 3 1 ENPC Module BAEP1 Séance 3 2 3. ETATS LIMITES DE SERVICE : Définition

Plus en détail

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Mathématiques en mouvement 2014 Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Bertrand MICHEL (LSTA - Upmc & INRIA Saclay équipe GEOMETRICA ) Introduction Beaucoup

Plus en détail

ETUDE DE L INFORMATION AVANCEE AVEC FENÊTRE DE TEMPS

ETUDE DE L INFORMATION AVANCEE AVEC FENÊTRE DE TEMPS 5 e Conférence Francophone de MOdéliation et SIMulation Modéliation et imulation pour l analye et l optimiation de ytème indutriel et logitique MOSIM 04 du 1 er au 3 eptembre 004 - Nante (France ETUDE

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Précipitation - Produit de solubilité

Précipitation - Produit de solubilité Précipitation Produit de olubilité A Introduction : Lor de l addition de certain ion ( O H, Cl,...) dan une olution contenant de cation métallique, nou contaton qu il apparaît une phae olide. L apparition

Plus en détail

Il existe plusieurs coefficients qui permettent de mieux évaluer une distribution. Nous en examinons les principaux dans les lignes qui suivent.

Il existe plusieurs coefficients qui permettent de mieux évaluer une distribution. Nous en examinons les principaux dans les lignes qui suivent. Le coefficient Il exite pluieur coefficient qui permettent de mieux évaluer une ditribution. Nou en examinon le principaux dan le ligne qui uivent. Le coefficient de variation (CV) Le coefficient de variation

Plus en détail

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard La déciion dan l incertain préférence, utilité et probabilité Philippe Bernard Table de matière 1 Le rique 1 2 L epérance morale 2 3 Préférence et utilité 10 3.1 L approche parétienne... 10 3.2 Loterie

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Commande d un système linéaire.

Commande d un système linéaire. PSI Brizeux Ch. E4: Commande d un ytème linéaire - Le ocillateur à boucle de réaction 43 CHAPITRE E4 Commande d un ytème linéaire. Le ocillateur à boucle de réaction On peut claer le ytème en deux catégorie

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

MAXI SPEED-ROLL Course à boules

MAXI SPEED-ROLL Course à boules Course à boules Notice de montage 1. Posez le jeu à plat sur une table. 2. A l aide de la clé de service, dévissez les vis qui maintiennent la plaque de plexiglas et déposez la. 3. Dévissez les 4 vis fixant

Plus en détail

Les colos, bien plus que s! des Vacance

Les colos, bien plus que s! des Vacance , o l o c Le plu que bien cance! a V de 4 partir bonne raion de en Colo! L exigence du réeau De équipe formée et ayant le qualification néceaire (Bafa, Bafd, urveillant de baignade etc.) Un temp de préparation

Plus en détail

Platine d expérimentation MicroMAG : à la découverte de la machine synchrone autopilotée

Platine d expérimentation MicroMAG : à la découverte de la machine synchrone autopilotée Platine d expérimentation MicroMAG : à la découverte de la machine ynchrone autopilotée. NOGAREDE, D. HARRIEY, Y. LEFEVRE, F. PIGACHE ertrand.nogarede@laplace.univ-tle.fr INPT/ENEEIHT, 2 rue Camichel,

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Rapport sur l administration de la Loi sur la protection des renseignements personnels 2013-2014

Rapport sur l administration de la Loi sur la protection des renseignements personnels 2013-2014 Rapport ur l adminitration de la Loi ur la protection de reneignement peronnel 213-214 TITRE DU RAPPORT 1 PUBLIÉ PAR Agence de développement économique du Canada pour le région du Québec Montréal (Québec)

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des ghhhf hhfhhj gbbj bghh hfhh bbb bbghhhf ;y dpi L'IDENTIFICATION DES SYMBOLES Chapitre 3 CHAPITRE 3 L IDENTIFICATION DES SYMBOLES Il exite depui longtemp dan no ociété une tendance à utilier de igle pour

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Examen du cours de Mesures de risque en finance

Examen du cours de Mesures de risque en finance Examen du cours de Mesures de risque en finance Mercredi 15 Décembre 21 (9h-11h) Seul document autorisé: une feuille A4 manuscrite recto-verso. Important : rédiger sur une même copie les exercices 1 et

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire Rapport de tage Développement et élaboration d outil de vérification de modèle numérique en utiliant l imagerie atellitaire Siham SBII Direction de la météorologie Nationale Marocaine Mr. Joël STEIN METEO-France

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Analyse de l état des flux de trésorerie

Analyse de l état des flux de trésorerie École de Haute Étude Commerciale Analye de l état de flux de tréorerie Document pédagogique rédigé par Louie St-Cyr et David Pinonneault Copyright 1997. Réviion 2000. École de Haute Étude Commerciale (HEC),

Plus en détail

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud Stratégies de décision dans les arbres de recherche pour jeux basées sur des informations incomplètes Application au bridge : Apprentissage statistique des enchères et jeu de la carte optimal Sébastien

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

Travaux Pratiques d Electronique d Instrumentation I & II

Travaux Pratiques d Electronique d Instrumentation I & II TP1 : Caractériation de l ampliop réel (Chapitre I du cour d électronique d intrumentation) Le but de cette éance de TP et de d illutrer quelque caractéritique de l ampliop réel à traver l étude d un montage

Plus en détail

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste

Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Problèmes et Algorithmes Fondamentaux III Algorithme distribué probabiliste Arnaud Labourel Université de Provence 12 avril 2012 Arnaud Labourel (Université de Provence) Problèmes et Algorithmes Fondamentaux

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

Projet dans le cadre du cours de Machine Learning

Projet dans le cadre du cours de Machine Learning Projet dans le cadre du cours de Machine Learning Objectifs Prévoir les vainqueurs des matchs de tennis se déroulant lors d un tournoi du circuit ATP (ici à Dubaï), en se basant sur des prédictions d

Plus en détail

How to Deposit into Your PlayOLG Account

How to Deposit into Your PlayOLG Account How to Deposit into Your PlayOLG Account Option 1: Deposit with INTERAC Online Option 2: Deposit with a credit card Le texte français suit l'anglais. When you want to purchase lottery products or play

Plus en détail

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées

Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées Jonathan Louëdec 1,2 Max Chevalier 1 Aurélien Garivier 2 Josiane Mothe 1 1 Institut de Recherche

Plus en détail

Les sondes d oscilloscopes

Les sondes d oscilloscopes Le onde d ocillocope /6 I Decription Il exite troi grande catégorie de onde: - Le onde paive (, L, C, atténuatrice ou non, avec de rapport d atténuation de,, ou (Sonde X, X, X, X. - 2 Le onde active, qui

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

CATALOGUE DE FORMATIONS

CATALOGUE DE FORMATIONS ce formation coneil getion de carrière CATALOGUE DE FORMATIONS 2015 Cabinet de coneil aux entreprie et organime de formation. QUI SOMMES-NOUS? CEOS (anciennement Atout Majeur) et un cabinet de coneil aux

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L OBTENTION DU DOCTORAT EN GÉNIE Ph.D. PAR Côn TRAN ADAPTATION DE CAPACITÉ

Plus en détail

1. Introduction THÉORÈMES LIMITES POUR CERTAINES FONCTIONNELLES ASSOCIÉES AUX PROCESSUS STABLES SUR L ESPACE DE HÖLDER

1. Introduction THÉORÈMES LIMITES POUR CERTAINES FONCTIONNELLES ASSOCIÉES AUX PROCESSUS STABLES SUR L ESPACE DE HÖLDER Publ. Mat. 45 (), 37 386 THÉOÈMES LIMITES POU CETAINES FONCTIONNELLES ASSOCIÉES AUX POCESSUS STABLES SU L ESPACE DE HÖLDE M. Ait Ouahra et M. Eddahbi Abtract In thi paper we tudy the Hölder regularity

Plus en détail

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Exercice : Calcul des délais dans une réseau

Exercice : Calcul des délais dans une réseau Exercice : Calcul de délai dan une réeau L objectif principal de cet exercice et de comprendre le calcul du délai de bout en bout d un meage (délai de tranfert) dan un réeau en terme de : - délai de tranmiion

Plus en détail

GAME CONTENTS CONTENU DU JEU OBJECT OF THE GAME BUT DU JEU

GAME CONTENTS CONTENU DU JEU OBJECT OF THE GAME BUT DU JEU GAME CONTENTS 3 wooden animals: an elephant, a Polar bear and an African lion 1 Playing Board with two tree stumps, one red and one blue 1 Command Board double sided for two game levels (Green for normal

Plus en détail

Une approche pour un contrôle non-linéaire temps réel

Une approche pour un contrôle non-linéaire temps réel Une approche pour un contrôle non-linéaire temps réel L. Mathelin 1 L. Pastur 1,2 O. Le Maître 1 1 LIMSI - CNRS Orsay 2 Université Paris-Sud 11 Orsay GdR Contrôle des décollements 25 Nov. 2009 Orléans

Plus en détail

Le pire des cas dans le choix de la copule

Le pire des cas dans le choix de la copule Comment éviter le pire Département de Mathématique Université de Bretagne Occidentale 29200 Brest Solvency 2 impose aux assureurs une analyse des risques accumulés sur plusieurs produits d assurances.

Plus en détail

2 Rendements. 2.1 Prix et rendements CLM 1.3, 1.4. CLM Intro 10, 10.1. Prix des actifs. Il y a n actifs et T périodes.

2 Rendements. 2.1 Prix et rendements CLM 1.3, 1.4. CLM Intro 10, 10.1. Prix des actifs. Il y a n actifs et T périodes. 1 Références Références CLM 1.3, 1.4 CLM Intro 10, 10.1 2 Rendements 2.1 Prix et rendements Prix des actifs Il y a n actifs et périodes. Le prix de l actif i à moment t est P it. On suprime l indice i

Plus en détail

CHAPTER2. Le Problème Economique

CHAPTER2. Le Problème Economique CHAPTER2 Le Problème Economique Les Possibilités de Production et Coût d Opportunité La courbe des possibilités de production représente (CPP) représente la limite entre les différentes combinaisons en

Plus en détail

Estimation et intervalle de confiance

Estimation et intervalle de confiance Estimation et intervalle de confiance S. Robin robin@agroparistech.fr AgroParisTech, dépt. MMIP 8 octobre 2007 A lire : Chapitre 3 Estimation de paramètre du livre Statistique Inférentielle, Daudin, R.,

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail