Introduction aux algorithmes de bandit

Dimension: px
Commencer à balayer dès la page:

Download "Introduction aux algorithmes de bandit"

Transcription

1 Mater MVA: Apprentiage par renforcement Lecture: 3 Introduction aux algorithme de bandit Profeeur: Rémi Muno muno/mater-mva/ Référence bibliographique: Peter Auer, Nicolo Cea-Bianchi, and Paul Ficher. Finite-time analyi of the multi-armed bandit problem. Machine Learning, 47(2/3): , Auer, Cea-Bianchi, Freund, Schapire. The nontochatic multi-armed bandit problem T. L. Lai and Herbert Robbin. Aymptotically efficient adaptive allocation rule. Advance in Applied Mathematic, 6:4-22, 985. Le bandit tochatique à K bra Conidéron K bra (action, choix) défini par de ditribution (ν k ) kk à valeur dan [0, ], de loi inconnue. A chaque intant, l agent choiit un bra I t {,..., K} et oberve une récompene x t ν It, réaliation indépendante (de récompene paée) générée elon la loi du bra I t. Son objectif et de maximier la omme de récompene qu il reçoit, en epérance. Noton µ k = E X νk [X] l epérance de récompene de chaque bra, et µ = max k µ k la valeur moyenne du meilleur bra. Si l agent connaiait le loi, il choiirait alor le meilleur bra à chaque intant et obtiendrait une récompene moyenne µ. Comme il ne connait pa le loi initialement, il doit explorer le différent bra pour acquérir de l information (exploration) qui lui ervira enuite pour agir optimalement (exploitation). Cela illutre le compromi exploration-exploitation. Pour évaluer la performance d une tratégie donnée, on va définir à quelle vitee cette tratégie permet d atteindre un taux de récompene moyen optimal. Pour cela on définit le regret cumulé à l intant n: R n = nµ x t, qui repréente la différence en récompene cumulée entre ce qu il a obtenu et ce qu il aurait pu obtenir en moyenne il avait joué optimalement dè le début. On intéree à définir de tratégie qui ont un petit regret cumulé moyen ER n. Remarquon que ER n = nµ E µ It = E T k (n)(µ µ k ) = E T k (n) k, où k = µ µ k et le gap entre le bra optimal et le bra k, et où T k (n) = n {I t = k} et le nombre de foi que le bra k a été tiré juqu à l intant n. Aini un bon algorithme de bandit devra tirer peu ouvent le bra ou-optimaux.

2 2 Introduction aux algorithme de bandit. Stratégie UCB La tratégie UCB (pour Upper Confidence Bound) [Auer et. al, 2002] conite à choiir le bra: 2 log t I t = arg max B t,tk (t )(k), avec B t, (k) = ˆµ k, +, k où ˆµ k, = i= x k,i et la moyenne empirique de récompene reçue en ayant tiré le bra k (i.e., x k,i et la i-ème récompene reçue en ayant tiré le bra k). Il agit d une tratégie dite optimite dan l incertain. La valeur B t,tk (t )(k) repréente une borne upérieure de µ k en forte probabilité. Aini on choiit le bra qui erait le meilleur i le valeur de bra étaient le meilleure poible (en forte proba), achant ce qui a été obvervé. En effet, rappelon l inégalité de Chernoff-Hoeffding: Soient X i [0, ] variable aléatoire indépendante de moyenne µ = EX i. Alor P ( i= X i µ ɛ ) e 2ɛ2, et P ( X i µ ɛ ) e 2ɛ2. () i= Donc pour t fixé, 2 log t P(ˆµ k, + µ k ) e 4 log(t) = t 4. (2) Et aui: 2 log t P(ˆµ k, µ k ) e 4 log(t) = t 4. (3) Propoition. Chaque bra ou-optimal k et tiré en moyenne au plu ET k (n) 8 log n foi. Donc le regret cumulé moyen d UCB et borné elon ER n = k k ET k (n) 8 + π2 3 k: k >0 log n k Ce réultat établit que le regret cumulé moyen et logarithmique en n. + K π2 3. Proof. Intuition de la preuve: uppoon qu à l intant t le moyenne empirique de bra ont dan leur intervalle de confiance repectif, c et à dire 2 log t (a) (b) 2 log t µ k ˆµ k, µ k +. (4) pour = T k (t ). Alor oit k un bra ou-optimal et k un bra optimal. Si le bra k et tiré à l intant t, cela ignifie que B t,tk (t )(k) B t,tk (t )(k ), oit 2 log t 2 log t ˆµ k, + ˆµ k, +, (5) pour = T k (t ) et 2 log t = T k (t ) donc d aprè (4), µ k + 2 µ, c et à dire 8 log t.

3 Introduction aux algorithme de bandit 3 Maintenant, pour tout entier u, nou avon: T k (n) u + {I t = k; T k (t) > u} u + t=u+ t=u+ { : u < t, : t, B t, (k) B t, (k )} (6) Maintenant, d aprè le raionnement précédent, l évènement {B t, (k) B t, (k )} (c et à dire (5)) implique que 8 log t ou bien qu une de deux inégalité (a) ou (b) dan (4) n et pa atifaite. Donc en choiiant u = 8 log(n), on en déduit que (a) ou (b) n et pa atifaite. Mai d aprè (2), l inégalité (a) n et pa atifaite avec une probabilité t 4, et d aprè (3) l inégalité (b) n et pa vraie avec une probabilité t 4. En prenant l epérance de deux coté de (6), E[T k (n)] 8 log(n) 8 log(n) + t=u+ + π2 3 [ t =u+ t 4 + t = t 4] Propoition 2. Nou avon la borne uniforme ur le regret Proof. Par Cauchy-Schwarz, ER n 8Kn(log n + π2 3 ) ER n = k k ETk (n) ET k (n) ET k(n) ET k (n) k k 8Kn(log n + π2 3 )..2 Borne inférieure Nou avon la borne inférieure aymptotique (pour une clae de ditribution aez riche) [Lai et Robbin, 985] fonction de ditribution: ET k (n) lim up n log n KL(ν k ν ), avec la ditance de Kullback Leibler KL(ν ν ) = dν log(dν/dν ). Donc ER n = Ω(log n). Nou avon aui une borne inférieure minimax non-aymptotique (voir par exemple [Cea-Bianchi et Lugoi, Prediction, Learning, and Game, 2006]): inf up R n = Ω( nk). Algo Problème

4 4 Introduction aux algorithme de bandit.3 Amélioration Utiliation de la variance empirique pour affiner le intervalle de confiance [Audibert, Muno, Szepevari, Ue of variance etimation in the multi-armed bandit problem, 2008]. Borne minimax améliorée [Audibert, Bubeck, Minimax Policie for Adverarial and Stochatic Bandit, 2009]. On obtient la borne inf Kn. Application au online learning (claification ou régreion en-ligne) avec information partielle..4 Extenion Il exite de nombreue extenion au problème du bandit tochatique à K bra: Bandit dan un MDP [Jakch, Ortner, Auer. Near-optimal regret bound for reinforcement learning, 200]. Stratégie d exploration optimite dan l incertain (baée ur UCB) pour explorer un Proceu de déciion markovien. > poibilité de mini-projet Bandit avec information contextuelle. A chaque intant t, on oberve une information x t X et on prend une déciion a t A. La récompene et une foncion de a t et de x t. On e compare à une clae de tratégie π : X A. Bandit avec un nombre de bra dénombrable. [Wang, Audibert, Muno, Algorithm for inifinitely many-armed bandit, 2008]. Chaque nouveau bra a une probabilité ɛ β d être ɛ-optimal. Compromi entre exploration - exploitation - découverte. > poibilité de mini-projet Bandit linéaire [Dani, Haye, Kakade, Stochatic Linear Optimization under Bandit Feedback, 2008] On choiit un bra x t X R d. La récompene moyenne et une fonction linéaire r t = x t α, où α R d et un paramètre inconnu. On e compare à max x X x α. > poibilité de mini-projet Bandit en epace métrique [Kleinberg, Slivkin, Upfal, Multi-armed bandit in metric pace, 2008], [Bubeck, Muno, Stoltz, Szepevari, Online optimization in X-armed bandit, 2008]. On choiit un bra x t X dan un epace métrique. La récompene moyenne f(x t ) et uppoée Lipchitz. On e compare à up x X f(x). Il agit d un problème d optimiation online. Bandit hiérarchique Algorithme UCT [Koci et Szepevari. Bandit baed monte-carlo planning., 2006], BAST [Coquelin et Muno, Bandit algorithm for tree earch, 2007], HOO [Bubeck, Muno, Stoltz, Szepevari, Online optimization in X-armed bandit, 2008]. Application au jeu de go (programme MoGo) [Gelly, Wang, Muno, Teytaud. Modification of UCT with pattern in monte-carlo go, 2006]. Utiliation d algorithme de bandit de manière hiérarchique pour effectuer une recherche dan de grand arbre. > poibilité de mini-projet 2 Le bandit contre un adveraire Ici le récompene ne ont plu néceairement i.i.d. mai choiie arbitrairement par un adveraire. Dan ce ca, on ne peut plu epérer faire aui bien que i on avait connu à l avance le récompene (car l adveraire n a aucune envie de e laier dévoiler). Mai on peut comparer le performance obtenue par notre algorithme aux performance obtenue par une clae de tratégie de comparaion, et tenter de faire prequ aui bien que la meilleure tratégie dan cette clae.

5 Introduction aux algorithme de bandit 5 Nou pouvon ditinguer 2 type de problème elon l information reçue à chaque round: information parfaite ( full information ) ou information partielle ( bandit information ). Voici un modèle de bandit contre un adveraire: On dipoe de K bra. A chaque intant t =..., n, L adveraire choii de récompene x t (),..., x t (K) (uppoée à valeur dan [0, ], an le dévoiler au joueur Le joueur choiit un bra I t Dan le ca information parfaite, le joueur oberve le récompene de tou le bra x t (k), pour k =..., K. Dan le ca information partielle, le joueur n oberve que la récompene du bra choii: x t (I t ). La clae de tratégie de comparaion et l enemble de tratégie contante. Aini le regret par rapport à la tratégie contante k et défini elon R n (k) = x t (k) x t (I t ). La tratégie du joueur pouvant être aléatoire, on conidère le regret moyen pour la meilleure tratégie contante: R n = max ER n(k), kk et l on déire contruire un algorithme qui oit bon pour toute équence de récompene fournie par l adveraire, i.e. tel que up x,...,x n R n oit petit. 2. Information complete Conidéron l algorithme EWF (Exponentially Weighted Forecater): On initialie l algorithme avec w (k) = pour tout k =,..., n. A chaque intant t =,..., n, le joueur choiit le bra I t p t, où p t (k) = où > 0 et un paramètre de l algorithme. w t (k) = e P t = x(k), w t(k) P K i= w t(i), avec Propoition 3. Soit. On a Aini, en choiiant = 8 log K n, il vient R n log K + n 8. n log K R n. 8

6 6 Introduction aux algorithme de bandit Preuve. Noton = K w k(t). On a + = w k (t)e x t(k) = p k (t)e xt(k) [ = E I pt e x ] t(i) = e E[x t(k)] E I pt [ e (x t (I) E J pt [x t (J)]) ] e E[xt(I)] e 2 /8, par le lemme de Hoeffding Donc Maintenant log W n+ W E [ n x t (I t ) ] + n 2 8. log W n+ W = log e P n xt(k) log K x t (k) log K, pour n importe quel k =,..., n. Aini pour tout k, on a x t (k) E [ n x t (I t ) ] log K + n 8. Remarque: Borne inf du même ordre: R n = Ω( n log K). Dépendance logarithmique en K Poibilité d avoir un algorithme anytime (qui ne néceite pa la connaiance de l horizon temporel n) en choiiant un pa t = O( log K t ). Prédiction à bae d expert [Lugoi and Cea-Bianchi, 2006]. 2.2 Information partielle Conidéron l algorithme EXP3 (Exploration-Exploitation uing Exponential weight): > 0 et β > 0 ont deux paramètre de l algorithme. On initialie l algorithme avec w (k) = pour tout k =,..., n. A chaque intant t =,..., n, le joueur choiit le bra I t p t, où w t (k) p t (k) = ( β) K i= w t(i) + β K, avec où x (k) = x (k) p (k) {I = k}. w t (k) = e P t = x (k),

7 Introduction aux algorithme de bandit 7 Propoition 4. Soit, et β = K. On a Aini, en choiiant = log K (e )nk, il vient R n log K + (e )nk. R n 2.63 nk log K. Preuve. Noton = K w k(t). Remarquon que E I p [ x (k)] = K i= p (i) x (k) p (k) {i = k} = x (k), que E I p [ x (I )] = K i= p (i) x (i) p (i) K. On a + = w k (t)e x t(k) = p k (t) β/k e x t(k) β p k (t) β/k ( + x t (k) + (e 2) 2 x t (k) 2 ), β puique x t (k) K/β =, et e x + x + (e 2)x 2 pour x. Mai on a aui + + β log + log W n+ W log W n+ W = log β β p k (t)( x t (k) + (e 2) 2 x t (k) 2 ), p k (t)( x t (k) + (e 2) 2 x t (k) 2 ), p k (t)( x t (k) + (e 2) 2 x t (k) 2 ). e P n x t(k) log K x t (k) log K, pour n importe quel k =,..., n. l algorithme), on a pour tout k, En prenant l epérance (par rapport à la randomiation interne de [ E ( β) x t (k) i= [ n E x t (k) ] p i (t) x t (i) ] x t (I t ) E[R n (k)] log K ( β) log K βn + log K [ n + (e 2)E + (e 2)nK + (e )nk p k (t) x t (k) 2] Remarque: Borne inf R n 20 nk (voir [Auer et al., 2002]).

8 8 Introduction aux algorithme de bandit Algorithme INF [Audibert et Bubeck 2009] obtient un regret O( nk). Exp3 donne un regret en epérance en O( nk log K) mai le regret peut être grand ur certaine réaliation de l algorithme. En effet le récompene repondérée x t (k) ont d ordre /p t (k) ce qui peut être (en négligeant la dépendance en K) aui grand que n pour le valeur de β conidérée, ce qui entraîne un regret dont la variance et en n 3/2 et aini le regret peut être en n 3/4. On ne peut donc pa obtenir de regret en n avec forte probabilité. Cependant en modifiant légèrement l algorithme afin d augmenter l exploration (en uretimant le récompene reçue), on obtient un algorithme EXP3.P [Auer et al., 2002] qui dépend d un paramètre δ > 0 tel que max kk x t (k) x t (I t ) = O( nk log(kn/δ)). (7) 2.3 Equilibre de Nah Conider a 2-player zero-um repeated game: A and B play action: or 2 imultaneouly, and receive the reward (for A): A \ B (A like conenu, B like conflict) Nah equilibrium: (mixed) trategy (p, q ) for both player, uch that no player ha incentive for changing unilaterally hi own trategy: for any p and q, r A (p, q ) r A (p, q ) and r B (p, q) r B (p, q ). Ar Here the Nah i: A play with probability p A = /2, B play with probability p B = /4. B=2 2 A Now, let A and B be bandit algorithm, aiming at minimizing their regret, i.e. for player A: R n (A) def = max r A (a, B t ) r A (A t, B t ). and that of B accordingly. a {,2} In the cae of zero-um game (i.e. r A = r B ), the value of the game V i defined a V = inf up q [0,] p [0,] r A (p, q) = up inf r A(p, q) q [0,] p [0,] B=

9 Introduction aux algorithme de bandit 9 (minimax Theorem). Note that there may exit everal Nah equilibria (p, q ) but their value r A (p, q ) i unique and equal V. Indeed: V = up p [0,] inf r A(p, q) q [0,] inf r A(p, q) = r A (p, q ) = up r A (p, q ) q [0,] p [0,] inf r A(p, q) = V. q [0,] Propoition 5. If both player perform a (Hannan) conitent regret-minimization trategy (i.e. R n (A)/n 0 and R n (B)/n 0), then the average value of the received reward converge to the value of the game: lim n n r A (A t, B t ) = V. In addition, the empirical frequencie of choen action of both player converge to a Nah equilibrium. (Note that EXP3.P i conitent!). Preuve. Write p n def A = n n A and p n def B = n n B the empirical frequencie of played action. Write r A (p, q) def = E A p,b Q r A (A, B). Player A play a Hannan-conitent regret-minimization trategy, thu lim up max r A (a, B t ) r A (A t, B t ) n a {,2} n n 0 lim up up r A (p, B t ) r A (A t, B t ) n n n 0 p [0,] ince p r A (p, q) i a linear mapping. Thu V = inf q up r A (p, q) lim inf p n n r A (A t, B t ). Now, ince player B doe the ame, we alo have that lim up r A (A t, B t ) up inf n n r A(p, q) = V. p q Thu lim n n n r A(A t, B t ) = V. We alo have that the empirical joint ditribution (p q) n (a, b) = n n {A t = a, B t = b} converge to the et of Nah equilibria {(p, q )} ince the et of joint ditribution i compact (ince we conider a finite number of action) and any (p, q ) uch that r A (p, q ) = V i a Nah equilibrium: r A (p, q ) inf r A(p, q) V up r A (p, q ) r A (p, q ). q [0,] p [0,] Example: Texa Hold em Poker In the 2-player Poker game, the Nah equilibrium i intereting (zero-um game) A policy: information et (my card + board + pot) probabilitie over deciion (check, raie, fold) Space of policie i huge!

10 0 Introduction aux algorithme de bandit Idea: Approximate the Nah equilibrium by uing bandit algorithm aigned to each information et. Thi method provided the world bet Texa Hold em Poker program for 2-player with pot-limit [Zinkevitch et al., 2007]. Extenion: In non-zero um game or in game with more than 2 player, there are general convergence reult toward correlated equilibrium [Foter and Vohra, 997].

Problèmes de bandits et applications

Problèmes de bandits et applications Problèmes de bandits et applications Aurélien Garivier, avec Sarah, Eric, Olivier, Emilie... CNRS & Telecom ParisTech Mardi 3 juillet 2012 Plans d expériences séquentiels Plan de l exposé 1 Plans d expériences

Plus en détail

Changement de fréquence, effet Doppler

Changement de fréquence, effet Doppler N 804 BULLETIN DE L'UNION DES PHYSICIENS 869 Changement de fréquence, effet Doppler par Yve BAIMA, André JORANDON, Sylvie MORLEN et Marc VINCENT Lycée La Martinière Monplaiir - 69372 Lyon Cedex 08 RÉSUMÉ

Plus en détail

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité SYPOSIU DE GENIE ELECTRIQUE (SGE 4) : EF-EPF-GE 04, 8-0 JUILLET 04, ENS CACHAN, FRANCE Paramètre clé pour la conception d une machine pentaphaée à aimant à double polarité Huein ZAHR,, Franck SCUILLER,

Plus en détail

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIULATIONS DE ONTE CARLO. Déenfant *, N. Ficher *, B. Blanquart **, N. Bédiat** *Laboratoire national de métroloie et d eai (LNE) ** Centre Technique de Indutrie

Plus en détail

APP SUMMARY. ShareTime

APP SUMMARY. ShareTime Synape Team, Sénégal APP SUMMARY ShareTime ü Vivre enemble, ce n'et pa donné d'emblée : cela 'apprend. Beaucoup de collectif démarrent an grande expérience de la vie de groupe : dan le phae de démarrage

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

Commande d un système linéaire.

Commande d un système linéaire. PSI Brizeux Ch. E4: Commande d un ytème linéaire - Le ocillateur à boucle de réaction 43 CHAPITRE E4 Commande d un ytème linéaire. Le ocillateur à boucle de réaction On peut claer le ytème en deux catégorie

Plus en détail

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 2. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 2. Philippe PRIAULET MODELES DE LA COURBE DES TAUX D INTERET UNIVERSITE d EVRY Séance Philippe PRIAULET Plan de la Séance Le modèle de recontitution de la courbe de taux Introduction, Rappel et Notation La courbe d Etat Sélection

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1 Béton armé et précontraint I VERIFICATIONS E.L.S. Jean Marc JAEGER Setec TPI E.N.P.C. module B.A.E.P.1 ENPC Module BAEP1 Séance 3 1 ENPC Module BAEP1 Séance 3 2 3. ETATS LIMITES DE SERVICE : Définition

Plus en détail

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire Rapport de tage Développement et élaboration d outil de vérification de modèle numérique en utiliant l imagerie atellitaire Siham SBII Direction de la météorologie Nationale Marocaine Mr. Joël STEIN METEO-France

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years.

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years. Linja Game Rules 2 players Ages 8+ Published under license from FoxMind Games NV, by: FoxMind Games BV Stadhouderskade 125hs Amsterdam, The Netherlands Distribution in North America: FoxMind USA 2710 Thomes

Plus en détail

Travaux Pratiques d Electronique d Instrumentation I & II

Travaux Pratiques d Electronique d Instrumentation I & II TP1 : Caractériation de l ampliop réel (Chapitre I du cour d électronique d intrumentation) Le but de cette éance de TP et de d illutrer quelque caractéritique de l ampliop réel à traver l étude d un montage

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

Analyse de l état des flux de trésorerie

Analyse de l état des flux de trésorerie École de Haute Étude Commerciale Analye de l état de flux de tréorerie Document pédagogique rédigé par Louie St-Cyr et David Pinonneault Copyright 1997. Réviion 2000. École de Haute Étude Commerciale (HEC),

Plus en détail

Précipitation - Produit de solubilité

Précipitation - Produit de solubilité Précipitation Produit de olubilité A Introduction : Lor de l addition de certain ion ( O H, Cl,...) dan une olution contenant de cation métallique, nou contaton qu il apparaît une phae olide. L apparition

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Estimation d un ratio

Estimation d un ratio Chapitre 6 Etimation d un ratio Dan ce chapitre, nou étudion l etimation d un ratio qui et une fonction non linéaire de deux totaux L etimation ur un domaine qui et un exemple d application de l etimation

Plus en détail

Le paiement de votre parking maintenant par SMS

Le paiement de votre parking maintenant par SMS Flexibilité et expanion L expanion de zone de tationnement payant ou la modification de tarif ou de temp autorié peut e faire immédiatement. Le adree et le tarif en vigueur dan le nouvelle zone doivent

Plus en détail

ETAT D AVANCEMENT DE LA RECHERCHE. Mensualisation du kilométrage annuel avec KILOMENE

ETAT D AVANCEMENT DE LA RECHERCHE. Mensualisation du kilométrage annuel avec KILOMENE ETAT D AVANCEMENT DE LA RECHERCHE Menualiation du étrage annuel avec KILOMENE 98MT33 S. Laarre (INRETS-DERA, Arcueil) L. Jaeger (LOI, Colmar) P. A. Hoyau (INRETS-DERA, Arcueil) Synthèe de la recherche

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

Les sondes d oscilloscopes

Les sondes d oscilloscopes Le onde d ocillocope /6 I Decription Il exite troi grande catégorie de onde: - Le onde paive (, L, C, atténuatrice ou non, avec de rapport d atténuation de,, ou (Sonde X, X, X, X. - 2 Le onde active, qui

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Le défi. reseau-cdls-cls.ca

Le défi. reseau-cdls-cls.ca an 1 nce La cieo techn de en moue pratiq Le défi Concevoir un appareil qui doit enclencher une cacade d évènement. Le dernier évènement era le lancer d un projectile le plu prè poible d une cible. 15 0

Plus en détail

Votre entreprise et le marketing

Votre entreprise et le marketing Votre entreprie et le marketing SÉRIE PARTENAIRES EN AFFAIRES Selon la taille de votre entreprie Par où commencer Guide par étape SÉRIE PARTENAIRES EN AFFAIRES Utilier le marketing pour augmenter vo profit

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Modèle probabiliste: Algorithmes et Complexité

Modèle probabiliste: Algorithmes et Complexité Modèles de calcul, Complexité, Approximation et Heuristiques Modèle probabiliste: Algorithmes et Complexité Jean-Louis Roch Master-2 Mathématique Informatique Grenoble-INP UJF Grenoble University, France

Plus en détail

Rapport sur l administration de la Loi sur la protection des renseignements personnels 2013-2014

Rapport sur l administration de la Loi sur la protection des renseignements personnels 2013-2014 Rapport ur l adminitration de la Loi ur la protection de reneignement peronnel 213-214 TITRE DU RAPPORT 1 PUBLIÉ PAR Agence de développement économique du Canada pour le région du Québec Montréal (Québec)

Plus en détail

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L OBTENTION DU DOCTORAT EN GÉNIE Ph.D. PAR Côn TRAN ADAPTATION DE CAPACITÉ

Plus en détail

Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA

Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA Guide de bourier de l AIEA TABLE DES MATIERES I. INTRODUCTION... 2 II. PRÉPARATION POUR LE PROGRAMME DE BOURSE... 2 III. CONSIDÉRATIONS FINANCIÈRES...

Plus en détail

Etude de la gestion et du contrôle de l inertie lors de la réalisation d une tâche acrobatique complexe en gymnastique

Etude de la gestion et du contrôle de l inertie lors de la réalisation d une tâche acrobatique complexe en gymnastique Etude de la getion et du contrôle de l inertie lor de la réaliation d une tâche acrobatique complexe en gymnatique Aurore Huchez To cite thi verion: Aurore Huchez. Etude de la getion et du contrôle de

Plus en détail

Les colos, bien plus que s! des Vacance

Les colos, bien plus que s! des Vacance , o l o c Le plu que bien cance! a V de 4 partir bonne raion de en Colo! L exigence du réeau De équipe formée et ayant le qualification néceaire (Bafa, Bafd, urveillant de baignade etc.) Un temp de préparation

Plus en détail

AVIS DE LA COMMISSION. 30 juin 2004

AVIS DE LA COMMISSION. 30 juin 2004 COMMISSION DE LA TRANSPARENCE RÉPUBLIQUE FRANÇAISE AVIS DE LA COMMISSION 30 juin 2004 FUZEON 90 mg/ml, poudre et olvant pour olution injectable Boîte de 60 flacon de poudre pour olution injectable, 60

Plus en détail

Énergies renouvelables. 55 personnes. Pose de panneaux solaires photovoltaïques Economie financière. Achat d un véhicule hybride pour le commercial

Énergies renouvelables. 55 personnes. Pose de panneaux solaires photovoltaïques Economie financière. Achat d un véhicule hybride pour le commercial Page1 Proceu Énergie renouvelable Autre Date de création : 05/01 Date de mie à jour : 01/03/2010 Verion n 2 Créateur : Thibault CHARLES : Pôle Technique Odyée 2 Route de la Roche ur Yon 85220 COEX : 02

Plus en détail

Trouver des sources de capital

Trouver des sources de capital Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard La déciion dan l incertain préférence, utilité et probabilité Philippe Bernard Table de matière 1 Le rique 1 2 L epérance morale 2 3 Préférence et utilité 10 3.1 L approche parétienne... 10 3.2 Loterie

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Projet. Courbe de Taux. Daniel HERLEMONT 1

Projet. Courbe de Taux. Daniel HERLEMONT 1 Projet Courbe de Taux Daniel HERLEMONT Objectif Développer une bibliothèque en langage C de fonction relative à la "Courbe de Taux" Valeur Actuelle, Taux de Rendement Interne, Duration, Convexité, Recontitution

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

1. Introduction THÉORÈMES LIMITES POUR CERTAINES FONCTIONNELLES ASSOCIÉES AUX PROCESSUS STABLES SUR L ESPACE DE HÖLDER

1. Introduction THÉORÈMES LIMITES POUR CERTAINES FONCTIONNELLES ASSOCIÉES AUX PROCESSUS STABLES SUR L ESPACE DE HÖLDER Publ. Mat. 45 (), 37 386 THÉOÈMES LIMITES POU CETAINES FONCTIONNELLES ASSOCIÉES AUX POCESSUS STABLES SU L ESPACE DE HÖLDE M. Ait Ouahra et M. Eddahbi Abtract In thi paper we tudy the Hölder regularity

Plus en détail

CATALOGUE DE FORMATIONS

CATALOGUE DE FORMATIONS ce formation coneil getion de carrière CATALOGUE DE FORMATIONS 2015 Cabinet de coneil aux entreprie et organime de formation. QUI SOMMES-NOUS? CEOS (anciennement Atout Majeur) et un cabinet de coneil aux

Plus en détail

Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées

Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées Algorithmes de bandit pour les systèmes de recommandation : le cas de multiples recommandations simultanées Jonathan Louëdec 1,2 Max Chevalier 1 Aurélien Garivier 2 Josiane Mothe 1 1 Institut de Recherche

Plus en détail

Directive concernant l'utilisation de sedex

Directive concernant l'utilisation de sedex Département fédéral de l intérieur DFI Office fédéral de la tatitique OFS Diviion Regitre Office fédéral de la tatitique (OFS), fournieur de pretation de edex 21.05.2014 Directive concernant l'utiliation

Plus en détail

CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE

CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE 2.1 - HYDRAULIQUE FLUVIALE ET HYDRAULIQUE TORRENTIELLE... 55 2.2 - EXPÉRIENCE POUR ILLUSTRER CHARRIAGE ET SUSPENSION... 57 2.3 - CHARRIAGE ET SUSPENSION

Plus en détail

L adsorption du fluor par les os calcinés : Étude de la régénération en batch par l hydroxyde de sodium après saturation.

L adsorption du fluor par les os calcinés : Étude de la régénération en batch par l hydroxyde de sodium après saturation. J. oc. Ouet-Afr. hi. (9) 7 ; - 7 adorption du fluor par le o calciné : Étude de la régénération en batch par l hydroxyde de odiu aprè aturation. Mohaed Ndong, oudou Mar-Diop*, alou ab, El hadji Ngo, Ouar

Plus en détail

Instructions Mozilla Thunderbird Page 1

Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Ce manuel est écrit pour les utilisateurs qui font déjà configurer un compte de courrier électronique dans Mozilla Thunderbird et

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail

Keywords: Renewable Energy System, Modelling, Synchronous Generator, Simulation.

Keywords: Renewable Energy System, Modelling, Synchronous Generator, Simulation. Journal of Fundamental and Applied Science ISSN 111-9867 Available online at http://www.jfa.info OPTIIZATION OF AEOLIAN ENERGY CONVERSION OPTIISATION DE LA CONVERSION DE L ENERGIE EOLIENNE Y. Soufi *,

Plus en détail

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des ghhhf hhfhhj gbbj bghh hfhh bbb bbghhhf ;y dpi L'IDENTIFICATION DES SYMBOLES Chapitre 3 CHAPITRE 3 L IDENTIFICATION DES SYMBOLES Il exite depui longtemp dan no ociété une tendance à utilier de igle pour

Plus en détail

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de

Plus en détail

Conditions Générales de Vente. Clients professionels

Conditions Générales de Vente. Clients professionels Condition Vente Client profeionnel _dipoleelectroniqueprofeionnel PAGE 1/6 PREAMBULE Conformément a la loi en vigueur, le préente condition générale de la ociété DIPOLE, SARL au capital de 15.000, dont

Plus en détail

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse...

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse... Comment choisir sa pizza? Test A/B Introduction à l apprentissage par renforcement Guillaume Wisniewski guillaume.wisniewski@limsi.fr Université Paris Sud LIMSI J aime beaucoup les «4 Est-ce que je dois

Plus en détail

GAME CONTENTS CONTENU DU JEU OBJECT OF THE GAME BUT DU JEU

GAME CONTENTS CONTENU DU JEU OBJECT OF THE GAME BUT DU JEU GAME CONTENTS 3 wooden animals: an elephant, a Polar bear and an African lion 1 Playing Board with two tree stumps, one red and one blue 1 Command Board double sided for two game levels (Green for normal

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Chapitre 2 TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE

Chapitre 2 TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE Chapitre 2 TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE 1 - HYDRAULIQUE FLUVIALE ET HYDRAULIQUE TORRENTIELLE... 34 2 - CHARRIAGE ET SUSPENSION DES MATÉRIAUX NON COHÉRENTS... 35 3 - ÉROSION DU FOND, DÉPÔT...

Plus en détail

Produire moins, manger mieux!

Produire moins, manger mieux! Raak doier d Alimentation : o Produire moin, manger mieux! Nou voulon une alimentation de qualité. Combien de foi n entendon-nou pa cette revendication, et à jute titre. Mai i tout le monde et d accord

Plus en détail

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données

Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Mathématiques en mouvement 2014 Statistiques et inférence topologique : de nouvelles méthodes pour l analyse des données Bertrand MICHEL (LSTA - Upmc & INRIA Saclay équipe GEOMETRICA ) Introduction Beaucoup

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

UNE PREMIÈRE POUR ALTAPLAST

UNE PREMIÈRE POUR ALTAPLAST PLAST tand e d 100m ouvrir à déc 2 UNE PREMIÈRE POUR PLAST Pour a première participation à Verdun Expo, Altaplat voit grand : un tand de 100m2 où era expoé le avoir faire d un fabricant toujour à la pointe

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Ventilation à la demande

Ventilation à la demande PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et

Plus en détail

DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES. Marc BARBUT 1

DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES. Marc BARBUT 1 Math. Sci. hum / Mathematics and Social Sciences (48 e année, n 9, 2(2), p. -8) DES DISTRIBUTIONS DE PROBABILITÉ SINGULIÈRES Marc BARBUT RÉSUMÉ Ce texte n a rien d original. Son objectif est seulement

Plus en détail

Accord en nombre dans le GN - Séquence de 7 séances - Cycle 2

Accord en nombre dans le GN - Séquence de 7 séances - Cycle 2 Accord en nombre dan le GN - Séquence de 7 éance - Cycle 2 Domaine : françai Niveau : cycle 2 Séance n : 1 Durée : 20 min Séquence : orthographe grammaticale Compétence du ocle commun : repecter le accord

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud

Sébastien Mignot. Encadrant : Michèle Sebag Laboratoire de Recherche en Informatique Université Paris Sud Stratégies de décision dans les arbres de recherche pour jeux basées sur des informations incomplètes Application au bridge : Apprentissage statistique des enchères et jeu de la carte optimal Sébastien

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

PRÉSENTATION DU RÉSEAU INFORMATIQUE

PRÉSENTATION DU RÉSEAU INFORMATIQUE PRÉSENTATION DU RÉSEAU INFORMATIQUE 2.1 Apect phyique Le CHU de Beançon regroupe d une part l établiement Jean MINJOZ, monobloc de 13 étage aocié au Pôle Coeur Poumon, contruction adjacente ur 5 niveaux,

Plus en détail

T R E I L L I S D C F L EXZONE M C Guide de conception électrique SYSTÈMES D INSTALLATION

T R E I L L I S D C F L EXZONE M C Guide de conception électrique SYSTÈMES D INSTALLATION SYSTÈMES D INSTALLATION Enemble, no idée p r e n n e n t f o r m e MD T R E I L L I S D C F L EXZONE M C Guide de conception électrique Dein et détail du ytème électrique avec le partenaire compatible

Plus en détail

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes Optique Vitee de la lumière Meure avec de impulion lumineue courte LEYBOLD Fiche d expérience de phyique Détermination de la vitee de la lumière dan l air à partir de la ditance parcourue et du temp de

Plus en détail

Agrégation séquentielle d'experts

Agrégation séquentielle d'experts Agrégation séquentielle d'experts avec application à la prévision de consommation électrique Pierre Gaillard pierre-p.gaillard@edf.fr avec Yannig Goude (EDF R&D) et Gilles Stoltz (CNRS, HEC Paris) 27 août

Plus en détail

Le compte épargne temps

Le compte épargne temps 2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

MAXI SPEED-ROLL Course à boules

MAXI SPEED-ROLL Course à boules Course à boules Notice de montage 1. Posez le jeu à plat sur une table. 2. A l aide de la clé de service, dévissez les vis qui maintiennent la plaque de plexiglas et déposez la. 3. Dévissez les 4 vis fixant

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Emmanuel Rachelson 1 Patrick Fabiani 1 Frédérick Garcia 2 Gauthier Quesnel 2 1 ONERA-DCSD

Plus en détail

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 Instructions: Directives : 1 Provide the information requested below Veuillez fournir les renseignements demandés ci-dessous

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

(Programme de formation pour les parents ~ Training program for parents)

(Programme de formation pour les parents ~ Training program for parents) PODUM-INFO-ACTION (PIA) La «carte routière» pour les parents, sur l éducation en langue française en Ontario A «road map» for parents, on French-language education in Ontario (Programme de formation pour

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE

ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE ÉNERGIE ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE APPLICATIONS ÉCLAIRAGE - PUBLIC - SPORTIF - INTÉRIEUR GESTION DE L ÉCLAIRAGE Ditributeur de compoant électronique, électromécanique, paif, connectique,

Plus en détail

How to Deposit into Your PlayOLG Account

How to Deposit into Your PlayOLG Account How to Deposit into Your PlayOLG Account Option 1: Deposit with INTERAC Online Option 2: Deposit with a credit card Le texte français suit l'anglais. When you want to purchase lottery products or play

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr

Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - abderbal@yahoo.fr #A56 INTEGERS 9 009), 735-744 UNE FORME EFFECTIVE D UN THÉORÈME DE BATEMAN SUR LA FONCTION PHI D EULER Abdallah Derbal Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba - Alger - Algérie,

Plus en détail

PROBLEME DE CHIMIE. Toutes les données nécessaires à la résolution de ce problème apparaissent au VI en fin d énoncé. AUTOUR DU DIOXYDE DE TITANE

PROBLEME DE CHIMIE. Toutes les données nécessaires à la résolution de ce problème apparaissent au VI en fin d énoncé. AUTOUR DU DIOXYDE DE TITANE Le calculatrice ont autoriée. ***** N.B. : Le candidat attachera la plu grande importance à la clarté, à la préciion et à la conciion de la rédaction. Si un candidat et amené à repérer ce qui peut lui

Plus en détail

faites entrer la Fibre dans votre immeuble le guide du raccordement à la fibre

faites entrer la Fibre dans votre immeuble le guide du raccordement à la fibre faite entrer la Fibre dan votre immeuble le guide du raccordement à la fibre qu et-ce que la Fibre? La fibre optique et un fil de verre qui conduit la lumière. C et une technologie qui permet de tranmettre

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de

Plus en détail